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Abstract 

We have previously established that the BCS gap equation, using an electron-phonon interaction term with weak 
screening and a 2D electronic band structure showing saddle points (vHs) at the points of the Brillouin zone, leads to an 
anisotropic gap A k, the maximum gap A .... is at point M( _+ ~r/a, 0) and (0, + "rr/a) and the minimum gap Jmi,, at 45 °, 
points [_+Tr/2a, _ 7r/2a] of the Brillouin zone of a square lattice for the CuO z planes (we neglect the orthorhombic 
distortion). In this paper, we examine the consequences of doping, which varies the density of carriers in the CuO 2 planes, 
on the superconducting properties of the cuprates in the framework of this model. We use a rigid band model, the effect of 
doping is to vary the position of the Fermi level relative to the position of the singularity. We compute, the gap anisotropy 
Amax/Ami n and T~, the density of state of quasiparticle excitations, the tunneling conductance and the specific beat. We 
compare our calculations to many different experiments, photoemission, tunneling spectroscopy, specific heat measurements 
and find an excellent agreement. We find an interesting new result; the anisotropy J,,,~/d,~l~, decreases with dopin?. This is 
observed in photoemission. © 1997 Elsevier Science B.V. 

I. Introduct ion 

The van Hove scenario explains many physical 
properties of  high T c superconductors [1-4]  such as 
high T c, anomalous isotope effect, gap anisotropy, 
etc. We also have shown [5] that T c can vary in large 
proportions with the band width of  the compound, 
this is due to the renormalization of the Coulomb 
repulsion /x in /~* in wide band superconductors, 
but not in narrow band compounds. This explains 

that SrzRuO 4 has a very low Tc ( ~  1 K) [6]. 
Recently we have shown that the existence of  
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saddle points in certain directions and weak screen- 
ing of  the e lec t ron-phonon interaction [2] explains 
the gap anisotropy. We then applied this result to the 
calculation of  the density of states of quasiparticle 
excitations and of the I ( V )  characteristics of tunnel 
junctions [7,8]. 

In this paper we investigate in details the effect of 
doping, that we treat in a rigid band model, i.e. the 
effect of  overdoping is to displace the Fermi level 
from the singularity E~. Our approach neglects mag- 
netic fluctuations and is thus not applicable to under- 
doped material. But at optimum doping and for 
overdoped samples, the inelastic neutron scattering 
experiments [9] have shown that these magnetic exci- 
tations disappear. 

In Section 2 we compute the critical temperature 
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T~ and the maximum and minimum gaps Ama x and 
Ami n and hence the anisotropy as a function of 
doping and compare the results with the photoemis- 
sion experiments. 

In Sections 3 and 4 we use these results to 
compute the density of  states of  quasiparticle excita- 
tions and derive two important physical parameters 
that we can compare with experiments: the conduc- 
tance of  a tunnel junction and the electronic specific 
heat. 

2. T~ and gap anisotropy as a function of  doping 

2.1. Model and basic equations 

We use a rigid band model, the doping is repre- 
sented by a shift D = E F - E  s of the Fermi level. 
This band structure is 

¢, = - 2 t ( c o s  kxa + cos kya) - D. (1) 

The Fermi level is taken at sck = 0.We use the same 
electron-phonon interaction potential as in our pre- 
vious paper [2] 

[gq[2 

Vkk' q2 + q-------~ < 0, 

where g(q) is the electron-phonon interaction ma- 
trix element for q = k ' - k  and q0 is the inverse of  
the screening length.We use reduced units 

D 
X=k~a,  Y=kya,  Q=qa, u=-~t ,  6= 2t" 

We use the BCS equation for an anisotropic gap: 

1 Vkk, A~, 
= -  k~ ' (2) 

We compute k k for two values of  k: 

A A forkxa= zr, kya=O, 
"IT 

A B forkxa =kya = ~-.  (3) 

We solve Eq. (2) by iteration using the same 
procedure as in Ref. [2]. We know from group theory 
considerations, that Vkk, having a four-fold symme- 
try, the solution A k has the same symmetry. We then 

may use the angle qb between the 0 axis and the k 
vector as a variable and expand J(q~) in a Fourier 
series 

A(q~) = 3 o + A,cos(aq~ + (431) 

+ A2c°s(8q0+ q~2) + " "  (4) 

We know that qh = 0, because the maximum gap 
is in the direction of  the saddle points. We use the 
first two terms. The first step in the iteration is 
obtained by replacing A~ by Aav = A 0 in the integral 
of  Eq. (2). We thus obtain, for the two computed 

values: A A = Ama x = A 0 -l- A l and A s = Ami n = A 0 

- A~, the following expression: 

"max aav(T)  ( 
A A , B ( T )  ao,fj.,°,o V,u2 + U v(T) 

×l(A m(u)tanh( (u2 + u2av(T) kBT/t d u ,  

(5) 

where 

t/mi n 
h oJ c ~ g..o c 
- -  , Umax -~- q- - - ,  
2t  2t  

2 ~ '  x ;  = a c ° s  

where to c is the cut off frequency, for electron-pho- 
non interaction, we take for w e a characteristic 
phonon frequency as discussed in Ref. [2]. 

We have taken three values of h %,  60, 90 and 
100 meV. Our results are presented in Table 1. 

In the classical BCS theory, we have the relative 
variation ATc/T ~ = Awc/O) c for the s a m e  heft,. Then 
we can see in Table 1 that for E F - E ~ = 0 ,  the 
discrepancy between this relation and our results, the 
isotopic effect is weak [1]. When E F goes away 
from the singularity, E F - E ~  ~ 0, then the isotopic 
effect is strong and gets back to the BCS prediction. 

For the following part of  this work we will keep 
the value of hto¢ = 60 meV for the Bi2212 corn- 

= fo x '̀ dx' 
{l  - -  [ ( 6 - - U )  - -COS X' ]2}  1/2 

(qoaf  
× Q2A,B + (qoa)2, (6) 
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Table 1 
Isotopic effect on T~ within the van Hove model 

h to~ t A~ff qo a A~,. Am~ x Ami . T~ 
(meV) (eV) (meV) (meV) (K) 

For a shift of E F  - -  E~ = 0 

60 0.2 0.665 0.12 14.5 23.424 5.6031 90.75 

90 0.2 0.665 0.12 17.582 27.735 7.4293 110.5 

100 0.2 0.665 0.12 18.563 29.122 8.0037 116.6 

For a shift of E F - E~ = 60 meV 
60 0.2 0.665 0.12 4.7562 6.7686 2.7438 31.2 

90 0.2 0.665 0.12 8.0242 11.581 4.4674 52.9 

100 0,2 0.665 0.12 9.0961 13.156 5.0363 59.9 

pound. This choice respects our approximation for 

gkk" 
For the choice of t, the transfer integral comes 
from the photoemission experiments and is t = 0.2 
eV as explained in Ref. [2]. 
qo a is adjusted, it is the Thomas-Fermi approxi- 
mation for small q. 
/~eff is adjusted so as to find the experimental 
value of Am, x and Ami n and we find a reasonable 
value of about 0.5. Aef t, is the equivalent of  A - / z *  
in the isotropic 3D, BCS model. 
In fact the values of  qo a and '~eff m u s t  depend on 

the doping level D. This calculation will be done 
later. 

25 
m - - n ' - - I - - m ~ k n ~ l  I 

, I , I , I , i 

0 20 40 60 80 

Temperature (K) 
100 

Fig. 1. Variation of the various gaps A m a x ,  A m i  n and A~v versus 
the temperature, at the opt imum doping, i.e. D = EF -- E~ = 0 in 
our model. With the following parameters t = 0.2 eV, h t% = 60 

meV, qo a = 0.12, h.ef f = 0.665. The critical temperature found is 

T~ = 90.75 K. squares: / I m a x ,  diamonds: A~ ,  up triangles: Ar~i,. 
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Fig. 2. Variation of the various gaps Area x, A m i . ,  Aav versus the 
doping, D = E~ - E~, at T = 0 K. squares: Amax, diamonds: A , 

up triangles: A~i .. 

2.2. Results 

In Fig. 1, we present the variation of the various 
gaps A . . . .  Ami n and Aav with temperature at opti- 
mum doping, i.e. for a density of holes of  the order 
of  0.15 per CuO z plane. We take in that case D = 0 
and we find T c---91 K and an anisotropy ratio 
o~ ~- Amax/Arnin = 4.2 and for the ratios of 2 A / k B T  ~ 
the following values: 

2 Ama x 2 Aav 2 A~i n 
6.0, - -  = 3.7, - -  = 1.4. 

kBTc kBTc kBT~ 

4 

< 

2 

1 

0 ,0 ,'0 ;0 3o'   o'6'0 
E v - E s (meV) 

Fig. 3. Variation of the anisotropy ratio ce = Area X/Amio, versus 
the doping, D = E v - EL,. 
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In Fig. 2 we present the same results, A . . . .  Arnin, 

/tav as a function of  D = E v - E~ (in meV). 
In Fig. 3 we plot the variation of  the anisotropy 

ratio a =  A ~ a J A m i  n versus D. In Fig. 4(a) the 
critical temperature T~ versus D and in Fig. 5 the 
various ratios 2 A / k B T  ~ versus D. 

We observe of course that T~ and the gaps de- 
crease with D or d x. The agreement with experi- 
ment [10] is very good (Fig. 4(b)). We obtain a new 
and interesting result which is the decrease of  the 
anisotropy ratio a with doping. This is confirmed by 
recent results on photoemission [11,12] where a max- 

imum gap ratio 2 A m a x / k B T  c = 7 is observed at opti- 
mum doping with T~ = 83 K and 2Amax/kBT ~ = 3 
for an overdoped sample with T c = 56 K, with a 
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Fig. 5. Variation of the various rations 2A/kBT c versus the 
doping D = E v - E~. squares: A , ~  / kBTc ,  diamonds: 
Aav/kBTc, up triangles: A,,i,/k~T~.. 
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Fig. 4. (a) Variation of the critical temperature T~ versus the 

doping D = E F - E ~ .  (b) Comparison of the variation of T~ 
versus the doping d x calculated in our model (filled circles) and 
the experimental  results of Ko'ike et al. [10] (open circles). 

small gap Ami n = 0 - 2  meV for both T c, for a Bi2212 
compound. 

3. Density of states 

The density of  states, DOS, is computed using the 
formula: 

1 OA 
n ( e ) =  2rr2 0 e '  (7)  

where A is the area in k space between two curves 
of  constant energy of  the quasiparticle excitation e k 
given by: 

E~ = ~ + a~, (8) 

where E k is the band structure (Eq. (1)). We use the 
same procedure and the same expression of  A k as in 
Refs. [7,8]. 

Fig. 6 represents the variation of  the DOS as a 
function of  E for T =  0 K. This is similar to the 
conductance of  a NIS junction. But for different 
values of E F - E ~  we see a new maximum emerg- 
ing, which is a signature of  the van Hove singularity 
and a dip between that maximum and the peak at 
Am, x. This dip is seen experimentally in the STM 
tunneling experiments of  Renner et al. [13]. The dip 
moves away from Ama x as the doping level, i.e. D 
increases. Fig. 7(a) shows the variation of  the DOS 
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Fig. 6. Variation of the DOS versus the energy E. for T = 0 K, 
that is similar at a NIS junction, for different values of the doping 
D = E F - E~, i.e. 0, 10, 20, 30, 40, 60 and 70 meV with F = 0.1 
meV and F'  = 5 meV in the model of Refs. [7,8]. 

as function of temperature for D = 0 and then for 
D = 60 meV (Fig. 7(b)). 

For the calculation of the conductance, we use the 
following formula 

d- - -~=CNoL N~(e) - ( E - - V )  dE, (9) 

where fFD is the usual Fermi-Dirac  function; I and 
V are the current and voltage, C a constant propor- 
tional to IT[ 2, the square of the barrier transmission, 

N o the DOS of the normal metal that we assume 
constant, and N~(E) the previously calculated DOS 
in the anisotropic superconductor. The tunneling into 

an anisotropic superconductor is given in more de- 
tails in previous papers [7,8]. We shall now use the 
calculated DOS to evaluate the specific heat. 

4 .  S p e c i f i c  h e a t  

4.1. Theoretical calculation 

The purpose of this section is to evaluate the 
influence of the vHs and the anisotropy of the gap on 
the specific heat calculated in the mean field BCS 
approximation, i.e. we do not take into account the 
fluctuations near the critical temperature T c. There 
are a great number of experiments measuring C~. To 
compare our calculations to experiments, we must 

subtract the part due to fluctuations. These kinds of 
adjustment have been made by various authors by 

using the fact that thermodynamic fluctuations are 
symmetric about T c and can be easily evaluated 

above T c [14-17]. 
Also we do not take into account the magnetic 

fluctuations in low temperature, nor the pair-break- 
ing which may exist in overdoped sample. 

C~ is calculated using the classical formula in the 

BCS framework. The entropy of the excited quasi- 
particle is given by 

S = - - 2 k B Y ' , ( 1 - - f k ) l n ( 1 - - f k )  + ( f ~ l n f k ) ,  (10) 
k 
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Fig. 7. (a) Variation of the DOS for different temperatures at the 
doping D= E F - E~ =0, with F =0.1 meV and F'  =5 meV in 
the model of Refs. [7,8]. T= 0, 60, 80 85 K and T> T c. (b) 
Variation of the DOS for different temperatures at the doping 
D = E  F-E~=60meV, with F=0.1 meV and F ' = 5  meVin 
the model of Refs. [7,8]. T = 0, 25, 30, 30.8 K and T > T~. 
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Fig. 8. (a) The calculated specific heat versus the temperature for 
different values of doping D = E F - E~ = 0, 10, 20, 30, 40, 50, 
60 and 70 meV. (b) The corresponding coefficient Z = Q / T for 
the same values of D as in (a). 

fk is the Fe rmi -Di rac  distribution function and E~ is 
given by Eq. (8). Then C~ is deduced from Eq. (10) 

Td~TT v" C~ = (11) 

This gives 

2 exp( ek/kBT ) 
C~(T) V" 2 

2 ' 7  [ l  + exp(, /kBr)] 2 

1 V' e x p ( e k / k B T  ) OA~(T) 

k.V ~ [( + exp (ek /k l3T) ]  2 or 

(12)  

We use the values of e k and A k given by formulae 
(8) and (4) to evaluate the two integrals of  Eq. (12) 
numerically. 

The variation of  Amax(T,D) and Amin(T,D) was 

already done numerically in Figs. 1 and 2. Near T c 
we have a very good agreement between the calcu- 
lated values and the following analytical formula: 

A . . . . .  in = A m a x , m i n ( T  = 0) 1.7 1 - 

We see that the slopes OA2/OT do not depend on 
doping which simplifies the calculation of  the second 
integral of  formula Eq. (12). The results are pre- 
sented in Fig. 8(a),(b) where we plot Q and Q / T  
versus T for various doping levels D. We can make 
the following observations 

(1) The jump in specific heat at T =  T c varies 
with doping AC/ C = ( C~ - CN ) // CN[T= T, is 3.2 for 
D = 0 and 1.48 for D = 60 meV compared to 1.41, 
the BCS value for a isotropic superconductor (s- 

wave) with a constant DOS, N o in the normal state. 
The high value of  AC/C is essentially due to the 
vHs when it coincides with the Fermi level and the 
highest value of the gap A k. With doping, the vHs 
moves away from E F and AC/C decreases toward 
its BCS value of  1.41 (or 1.31, because we take 1.7 
instead of  1.74 for the coefficient of  the equation of  
the gaps near T~), Fig. 9. 

(2) There is also a difference in the specific heat 
C N in the normal state. For a usual metal with a 
constant DOS, N o, YN = CN/T is constant and pro- 
portional to N 0. Here we find YN = aln(1/T) + b 
for 0 < D < 30 meV where a and b are constant. 
For D = 0 this behaviour has already been predicted 
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' ' o . . . .  o ' '  0 10 2 30 40 50 6 70 

E F - E s (meV) 

Fig. 9. Variat ion o f  the j u m p  in the specific heat at T = T~, 

A C / C ,  versus the doping  D = E F - E~. 
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Fig. 10. Variation of the temperature T*, where the change of 
behaviour of y~ occurs, versus the doping D = E F -E~. T * 
(meV) = 0.25D (meV) or T" (K) = 2.9D (meV). 

by Bok and Labb6 in 1987 [18]. The specific heat 
CN(T) explores a domain of width kBT around the 
Fermi level E F. So for D < kBT c, the variation of YN 
above T c is logarithmic as predicted by Bok and 
Labb6 (BL) [18]. For D > 30 meV, at high tempera- 
ture T - T  c > D, the BL law is observed, but for 
lower temperatures YN increases with T and passes 
through a maximum at T* as shown in Fig. 10. We 
shall now analyze the experimental observations and 
show that such a behaviour has been seen. 

4.2. Comparison with experiments 

Many authors have measured the specific heat of 
high T c cuprates [17,19-24]. But it is difficult to 
compare all these experimental results to a theoreti- 
cal model for the following reasons. 

(i) It is difficult to extract the electronic specific 
heat C~ from the measured total specific heat C~T 
which contains many other contributions, the contri- 
bution of the lattice vibrations, the contribution of 
magnetic fluctuations at low temperature and that of 
impurities and defects. 

(ii) The homogeneity and quality of the samples 
has also an influence on CsT. 

(iii) Near T c, the fluctuations of the order parame- 
ter must also be taken into account. These fluctua- 

tions are usually assumed to be symmetric around T c 
[15,17,24]. 

Several techniques have been used to extract C~ 
(see above references): extraction of the non-metallic 
phonon spectrum (for instance YBazCu306 for 
YBa2Cu3OT) or with a theoretical model, or by 
suppressing superconductivity with a high magnetic 
field [24]. 

To compare our results on the effect of doping on 
C~ with experiments, we have chosen the family of 
the TI2Ba2CuO6+ a, studied by Loram et al. [25], 
because they are overdoped samples, with only one 
CuO 2 plane. The family YBa2Cu306+ x is under- 
doped for x < 0.92 and for x > 0.92 the chains 
become metallic and play an important role [26-29]. 
However, recent results by Loram et al. [30] on 
calcium doped YBCO, Y0.8Ca0.2 Ba2Cu 3 0 7  _ ,5, which 
are overdoped two dimensional systems, show a very 
good agreement with our results. 

The Bi2212 compound exists only near optimum 
doping and many experiments at low temperature 
give a law C~ = T 2 attributed to magnetic fluctua- 
tions [31-36]. 

In the TI2Ba2CuO6+ a compounds studied by Lo- 
ram et al. [25] 6 varies from 0 to 0.1 and T c from 85 
to 0 K, and in the Y0.sCa0.2Ba2Cu307_ a [30] com- 
pounds 6 varies from 0.29 to 0.04 and T c from 85 to 
45 K. Because of the difficulty to extract exactly C~ 
from the experimental data, we will compare only 
the general features to our calculation. We see that 
the oxygen doping has a strong influence on T c and 
all the superconducting properties, so we assume that 
its role is to increase the density of holes in the 
CuO 2 planes. 

We compare our calculations with the results 
published in Fig. 9 of Ref. [25], and in Fig. 2(a) of 
Ref. [30]. We notice the displacement and the de- 
crease of the jump in specific heat C~ with doping. 
The jump at T c optimum, AC/C= Ay/y  is 1.67 
[25], and 1.60 [30] greater than the BCS value 1.41 
for a metal with a constant density of states. We find 
theoretically this increase of AC/C which in our 
model is due to the logarithmic van Hove singularity. 
The symmetrical shape of the peak of C~, at low 
doping level, is due to the critical fluctuations. A 
subtraction of these fluctuations [17,24] gives an 
asymmetrical shape. For high doping levels the clas- 
sical BCS shape is found. 
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We find a correct value for the coefficient YN in 
the normal state, without adjustable parameter. In the 
normal state our formula 

N D 
P( ~ )  2-- ln , -  E, 

gives 0.6 nd /ga t  K 2 the experimental value with 
N = 10% of holes per Cu atom. In fact, T c is maxi- 
mum for N of the order of 15 to 20%, but it is 
already very satisfactory that our approach gives the 
measured value of YN within a factor 1.5. For 6 = 0, 
we find that YN is not constant but given by the 
logarithmic law [18]: 

1 
")IN = a l n - -  + b 

T 

with a = 0.04, b = 0.08 when YN is measured in 
mJ/gat  K z and T in K. 

When 6 increases, the law changes, YN passes 
through a maximum for a value of T that we call 
T*. This behaviour is clearly seen in the YBCuO6+ ~ 
family [25]. 

We explain the high value AC/Clrc = 2.5 for 
x = 0 . 9 2  in the YBCO family, and we find the 
predicted variation of T* with x (Fig. 10). 

Our model, neglecting magnetic fluctuations gives 
an Arrhenius law for C~ at low temperature with a 
characteristic energy which is Ami n. We see that 
such a law is observed in YBaCuO6.92 and for 
T1 z BazCuO 6 at optimum doping. 

In conclusion we interpret the main features of the 
measurements of C~ and CN (or ~, and YN), the high 
value of the jump AC/C at T c for 6 = 0 ,  the 
decrease of that jump with doping, the variation of 
"YN with T as a function of doping, the variation of 
C s as exp(-Amin/(kBT)) for YBCO and T1- 
BaCuO. We also explain with that model the ob- 
served tunneling characteristics and their variation 
with doping. Finally we predict that the gap anisotro- 
py is reduced when the doping is increased, such a 
behaviour has been observed [11 ]. 
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