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Abstract 

We report a calculation of the density of states (DOS) of quasi-particle excitations in the superconducting state of high T c 
cuprates using a model of the anisotropic gap that we have recently developed [1]. This model is based on the van Hove 
scenario, that is on the assumption that the Fermi level lies close to singularities in the DOS. We compare this theoretical 
DOS to the results obtained in various tunneling experiments especially with break junction [2,3] (S-I-S)  and with vacuum 
scanning tunneling spectroscopy [4] (N-I-S).  The agreement is very good. We explain the structure observed in the gap; and 
with the van Hove singularity slightly below the Fermi level we reproduce the observed asymmetry in the conductance and 
the dip in the DOS that is also seen in photoemission [5]. 

PACS: 74.20.-z; 74.20.Fg; 74.50. + r; 74.70.Vy 
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1. Introduction 

Tunneling spectroscopy has been very important 
in verifying the BCS theory of  conventional super- 
conductors.  The conductance  of  a n o r m a l -  
insulator-superconductor ( N - I - S )  junction is di- 
rectly proportional to the quasi-particle density of 
states (QP DOS) and gives a precise and direct 
measurement of  the superconducting gap. For a su- 
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perconductor with an isotropic (s-wave) gap A 0, the 
BCS prediction for the QP DOS is 

( e 2 - ~ 2 ) 1 / 2  f o r [ e l >  A 0, 
NBcs(e)  = 

for lel < A0, 

where N O is the constant DOS in the normal state. 
We extend the calculation of  Ns(e)  to the case of 

a two-dimensional superconductor with a saddle point 
in the band structure and an anisotropic gap A k of  
the form 

A k = A 0 + A 1 cos 4q0, 

where @ is given by tan q0 = k y / k  x such as the one 
calculated by the authors in a previous paper [1]. 
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Various experiments have been performed to di- 
rectly measure the gap and its anisotropy in HTCS. 
Let us only quote two approaches. 

1. Angular resolved photoemission: three groups 
[5-7] have reported data on five high T~ compounds. 
In all these crystals, van Hove singularities have 
been observed close to the Fermi level. The best data 
have been obtained for BiSrCuCaCuO (2212) where 
a maximum gap between 20 and 30 meV, and a 
minimum gap between 0 and 10 meV are measured. 
The difficulty involved in these experiments is 
preparing a clean and well defined surface and the 
extreme precision required; millivolts are measured 
starting from 20 eV photons. 

2. Tunneling spectroscopy. In the case of HTS, 
tunneling spectroscopy is still awaiting acceptance in 
the scientific community, as the experimental data 
are widely scattered. This is essentially due to the 
difficulty of preparing good tunnel junctions. These 
difficulties are the consequence of the very short 
coherence length in these materials and the high 
chemical reactivity of their surfaces. Nevertheless 
some convergent results have been reported recently 
[8]. The best results have been obtained in BiSr- 
CaCuO (2212) with break junction [3] and vacuum 
tunnel spectroscopy [4], some results exist also for 
YBaCuO (123) [9-11]. The main results are a maxi- 
mum gap between 19 and 30 meV, giving an average 
ratio 2/ t / kaT  c ---6, a minimum gap between 0 and 
12 meV, a normal density of states with a negative 
curvature (which is very different from classical 
superconductors), and a dip below the peak corre- 
sponding to the maximum gap (A M) in some N - I - S  
junctions. 

In this paper we propose a model which gives a 
direct interpretation of these results. We compute the 
density of states of a two-dimensional superconduc- 
tor with a band structure given by 

~:k = - 2 t ( c o s  kxa + cos kya) + 6, (1) 

where sek is the energy of itinerant electrons mea- 
sured from the Fermi level. This structure presents 
saddle points for 6 = 0 ,  sCk=E s and a van Hove 
singularity (vHs) in the normal density of states. We 
then apply this calculation to the I(V) characteristic 
of N - I - S  and S - I - S  tunnel junctions and compare 
it to the experimental result. 

2. Calculation of the quasi-particle excitations 
DOS 

We use the itinerant electron model in a two-di- 
mensional space that we have previously taken to 
compute an anisotropic gap using the BCS gap equa- 
tion. The band structure is given by Eq. (1). We shall 
first perform the calculation in the case 6 = 0, i.e. 
where the vHs coincides with the Fermi level E F. 
The following form for the gap is obtained: 

A k = A 0 + A l cos4qb, (2) 

where A 0 is the average gap which obeys the rela- 
tion 2 ~to~kaTe = 3.7. 

The maximum gap is A M = / to  +/t~ in the direc- 
tion of the saddle points (0, + 7r) and ( + 7r, 0) and 
the minimum gap is A m = / to  - / t ~  at qO = 7r/4. By 
fitting with values from photoemission experiments, 
we found 2/tM/kBTc = 6 and 2/tm/kBT c = 2. These 
values are close to those observed in tunneling ex- 
periments. 

Remaining in a weak coupling model with /~eff of 
the order of 0.4, we take a simplified version of Eq. 
(2) which makes the calculation easier: 

/t* = AM -- A2 sin2kx a, (3) 

so that Am = AM -- /t2 is the minimum gap. 

kya 

~ < c < Ama x 

- n ~  ~ ~  ~ ~  +~ kxa 

~g > Amax 

Fig. 1. Fermi surface and curves of  constant energy ~k. For clarity, 

the scale between A M and A m is expanded. 
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Fig. 2. DOS or  conduc tance  d l / d V  at T = 0 K calculated for  a 

N - I - S  tunnel ing junct ion.  A M = 25 meV,  A m = 9 meV,  t = 0.2 

eV. Dot ted-dashed line: F = 0 meV,  solid line: F = 0.5 meV.  

Hence using the BCS theory we find for the 
energies 6 k of  the excited states: 

62 = ~2 + A~, (4)  

with ~:k = --2t(COS kxa + cos kya), 6 = O. The 
bandwidth in this case is W =  8t, photoemission 
experiments [5] have determined a value of t be- 
tween 0.18 and 0.25 eV. 

To compute the quasi-particle DOS (Ns(6))  in the 
superconducting state, we must first calculate the 
area A(e)  embraced by the curve of  constant energy 
(Fig. 1), e k = cte = 6 given by Eq. (4) in k space 
(k x, ky plane), taking into account the spin degener- 
acy, then N s is given by: 

1 8A 
N s ( 6 )  = 27r2 --~-. (5) 

We have also taken into account a possible finite 
lifetime of  the quasi-particle states, by introducing a 
phenomenologicai broadening F .  We replace 6 k by 
6 k - i F  in Eq. (4) and take the real part of Ns(E). 

The result of  our calculation is given in Fig. 2 for 
F =  0 and F = 0.5 meV, and A M = 25 meV, A m = 9 
meV, t = 0.2 eV. We see that the DOS is no longer 
zero for A < A M ,  it starts at A m with a step for 
F =  0, and with a shoulder for a finite F .  

3. I ( V )  characteristic of  a tunnel junction 

Since the first experiments by Giaever [ 12], many 
theoretical calculations of  the I(V) characteristic 

have been made. We follow the analysis given in the 
book by Wolff  [13]. 

The general expression of the current in a tunnel 
junction is given by: 

I (V)  C += 6+ ) [ f ( e )  = L =  N L ( 6 ) N R (  V 

- f ( e +  V)]  d e ,  

where C is a constant (independent of  energy e)  
proportional to IT[ 2, the square of  the transmission of 
the barrier; N L and N R are the DOS of  the left and 
right electrodes respectively. 

3.1. N- I -S  tunnel junction 

In this case the left electrode may be taken as 
normal so we may put N L = N O = cte, and that the 
right one is the DOS of the superconductor so N R = 
Ns(E), following the formulae found in the hook of 
Wolff  [13], we have: 

I (V)  =CNoL+=Ns( e ) [ f ( 6 )  - f (  6 -  V)]  d6 

and 

d =CN0f_ Ns(6/ d6, (6) 

and at low temperature kBT << ,:1,., we have: 

d l /dV  = CNoNs( V ). (7) 

To compare with experiments, especially with vac- 

t~ 1.6 

-~. 1.2 

J~ 
o 

q~ 

o 
o 

0 .~  I, 

o 
-I00 -5 0 0 50 I oo 

Vsarnple (fflq) 

Fig. 3. The best fit o f  the conduc tance  measured  by tunneling 

spect roscopy on B S C C O ,  N - I - S  junct ion,  by  Renner  and  Fischer  

(Fig. 10 o f  Ref. [4]). Dashed  line is fitted curve with A M = 27 

meV,  a m = l l  meV,  t = 0 . 1 8 e V ,  /"  = 0.5 meV at T = 5 K .  Solid 

line is exper imental  curve.  
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uum tunnel spectroscopy [4,14], we shall use Eq. (6) 
at different temperatures. 

The best results have been obtained on BSCCO 
(2212) by Renner and Fisher [4]. The best fit with 
their results (Fig. 10 of Ref. [4]) is obtained with the 
following set of parameters: 

A M = 27meV, A m = 11 meV, t =  0.18eV, 

F = 0.5 meV, T = 5 K. 

As the prefactor C is unknown we adjust the theoret- 
ical curve to the experimental one for V---> ~. The 
results are given in Fig. 3. The agreement is very 
good. In particular if the shoulder seen at 12 meV is 
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Fig.  5. Conduc tance  o f  a S - I - S  junc t ion  at T = 0  K ,  w i t h  

A M = 25 meV,  A m = 9 meV,  F = 0.5 m e V  and  t = 0.2 eV. The 

ar rows show the main  structures fo l lowing f rom the superconduct -  

ing DOS convolut ion.  

not an experimental artefact, it gives a direct mea- 
surement of the minimum gap. 

We present in Fig. 4 the curves of the N - I - S  
junctions characteristics versus the temperature. We 
use our temperature dependence of the gaps previ- 
ously calculated [1]. We can see that the behavior is 
similar to that observed by Tulina et al. [15] (Fig. 4 
of Ref. [15]). The gap fills up under A m. 

3.2. S-I-S junctions 

( b )  4 .2K . . . .  12K~ 

_ 1.0o 55K . . . . . .  - f f / ~  ~/~/~ 

0.80 70K /II A I~ ~,\~ 

~ 0.80 

0.40 

0.20 , , , , I a 

-150 -100 -50 0 50 100 150 

Vsarnple [ mV ] 

Fig. 4. (a) The temperature  dependence  o f  the conduc tance  mea-  

sured on a N - I - S  junct ion.  The set o f  the tempera ture  depen-  

dence  o f  the gaps  come  from our  previous  ca lcula t ions  (Ref.  [1 ]). 

(b) Exper imenta l  curves  o f  the tunnel character is t ics  o f  the N - I - S  

junct ion  (Fig.  4 o f  Ref.  [15]). Set o f  parameters  ( f rom Ref.  [1]): 

T = 5  K A M = 2 2  meV,  A m = 6  meV;  T = 4 0  K A M = 2 1 . 4  

meV,  A m = 5.8 meV; T = 6 0  K A M = 18.6 meV,  A m = 5.1 meV;  

T = 75 K A M = 8.7 meV,  A m = 3.7 meV;  T = 100 K A M = A m 

= 0 meV.  

To interpret the results obtained with break junc- 
tions [2,3], we compute the I(V) characteristic of a 
S - I - S  junction, where S is an anisotropic gap super- 
conductor. 

At low temperature I(V) is given by the convolu- 
tion integral 

I (V )=C Ns(E)Ns(E--V)dE. 

We compute this integral and then dl/dV numer- 
ically. The results are given in Fig. 5 at T =  0 K. 
This curve shows some particular structures due to 
the convolution of the two DOS of the superconduct- 
ing electrodes. The result is symmetric about zero 
voltage. 

4. The van Hove singularity is not exactly at E r 

Finally we examine the case where the saddle 
point is not at the same energy E s as the Fermi level 
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Fig. 6. (a) Curves o f  the conductances calculated for  a N - [ - S  

junction, wi th the position o f  E s 6 = -  60 meV, and dif ferent 

values of the empirical  l ifetime F '  at the logarithmic singularity 

E s. At T =  5 K, with ,:Ira = 22 meV, A m = 6 meV, F = 0.1 meV 
and t = 0.2 eV. Dotted line: F ' =  0 meV, dotted-dashed line: 
F '  = 5 meV, dashed line: F '  = 15 meV, solid line: F '  = 30 meV. 

(b) Photoemission measurement  from Hwu et al. (Ref. [16]). Solid 

line: normal state, dashed line: superconducting state. 

E F. The position E s of  the van Hove singularity 
depends only on the band structure of the crystal 
whereas E F is dependent on the density of  holes, 
that is on the doping. Hence for a given compound 
such as YBaCuO(123) or BiSrCaCuO(2212), the 
distance E F - E s varies with doping between differ- 
ent samples. 

We take E F = 0, so that the band structure is 
given by 

sCk = --2t(COS k~.a + cos kya) + 6, (8) 

with 6 = E s - E F 

We take 6 < 0, i.e. E s below the Fermi level and 
for the quasi-particles excitations, we still have for- 
mula (4) 

We compute the DOS using the same procedure 
as before; we compute numerically the area A(E) 
embraced by a constant energy curve (E = cte) and 
we take 

1 aA 

N ( e ) -  20r2 OE 

The result of  the corresponding conductance is 
given in Fig. 6. We see that we have now three 
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Fig. 7. (a) Curves o f  the conductance calculated for  a N - I - S  

junction. Solid line: in the superconducting state at T = 5 K with 

A M = 2 2  meV, A m = 6  meV, F = 0 . 1  meV, t = 0 . 2  eV and 
6 = - 6 0  meV, / "  = 5 meV. Dashed line: in the normal state at 

T = 1 0 0  K with A M = A m = 0  meV, F = 0 . 1  meV, t = 0 . 2  eV 
and 6 = - 6 0  meV, F ' =  5 meV. (b) For comparison we show 
Fig. 7 of Ref. [4]. The maximum of the normal state conductance 
(or DOS) at negative sample bias is well reproduced. 
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Fig. 8. Curves of the conductances calculated for a N - I - S  

junction, with different values of the position 6 of  E s. At T = 5 

K, with A M = 2 2  meV, A m = 6  meV, F = 0 . 1  meV and t = 0 . 2  

eV. Solid line 6 = - 7 5  meV, dashed line 6 = - 4 5  meV, dotted 

line 6 = - 25 meV. 
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singularities, two at + A M as for a classical super- 
conductor, and a third one at a negative energy - E r 
Between - E t  and - A  M we find a dip which has 
been observed both in photoemission [16] and in 
tunneling spectroscopy [4]. The two singularities at 
+ A M are square root singularities, the DOS varies 
as ( e 2 _  A~) -1 /2 ,  the singularity at - E  l is loga- 
rithmic like a 2D vHs. We can easily find that result 
using a simplified model. Let us take an isotropic 
gap A, = constant = A and ~:k still given by Eq. (8). 
We get 

1 aA(u) Ou 
Ns(~)  277 -2 OU a~ ¢' 
where u = _ ~ - A 2 , but [1/(2rre)][3A(u)/(Ou)] 
is nothing else than NN(U), the DOS in the normal 
state so that 

I,I 
N s ( ,  ) = N N ( U  ) gr~z _ A 2 (9) 

However we know that in the normal state the 
saddle point in 2D gives a logarithmic singularity 

lu - Esl 
NN(U ) = - -N  O In----D---, 
where D is the width of  the vHs, so that 

Ns(E)  = - N  o In D ~ -- /I 2 

(lo) 

for e < 0 a n d  E s < 0 , a n d  

~ A 2 _ E s 

NS(E ) = - N  O in D ~ - A  2 

for E >  0 and E s < 0 .  
We see clearly the three singularities with 

Ep = E s  2 + A  2. (11) 

Formula (11) is a good approximation for the actual 
case (A,  anisotropic) that we have computed numer- 
ically and which is represented in Fig. 6. 
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Fig. 9. (a) Curves of  the temperature dependence of  the conduc- 
tance calculated for a S - [ - S  junction with the set o f  gaps(T) 
calculated in Ref. [1]. Solid line: T = 5 K A M = 22 meV, A m = 6 
meV, dashed line: T=O0 K A M =  18.6 meV, A m = 5 . l  meV, 
dotted-dashed line: T = 80 K A M = 10.8 meV, Am = 2.95 meV, 
dotted line: T =  100 K A M = A m = 0 meV.  (b) Exper imental  
curves of  Mandrus et aL (from Ref. [2]). 
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In the actual samples, we have various impurities 
and crystalline defects (disorder), so that the singu- 
larities are damped. To take into account these ef- 
fects, we introduce two empirical lifetimes F and 
/ " .  

F is a pair breaking lifetime and is characteristic 
of the superconducting state. It gives a broadening of 
the peaks at + A M, we have seen before that F is of 
the order of 0.5 meV. 

F '  takes into account the effects which broaden 
or even destroy the logarithmic singularity. This vHs 
is very sensitive to disorder in the CuO 2 planes (the 
v.H. theorem is only valid for a periodic potential) 
and to a coupling in the third dimension. 

F '  is of the order of 5 to 30 meV by comparison 
of our theory with the experimental results. This 
comparison is given in Figs. 6 and 7. The position of 
E s can move versus the doping, this is represented 
Fig. 8. 

In Fig. 9 we plot the temperature dependence of 
the S - I - S  junctions characteristics. The symmetric 
dip disappears when the temperature increases, this 
is observed in the experimental curves of Mandrus et 
al. (Fig. 1 of Ref. [2]). 

5. Conclusion 

We see that this model is in excellent agreement 
with a great number of experimental results. The 

main features that it predicts in tunneling spec- 
troscopy are: 

1. Structures are seen in the gap between the 
maximum gap A M and the minimum gap A m . 

2. The normal density of states has a maximum at 
an energy close to E F. The curvature is downwards 
and not constant, or upwards, like in classical super- 
conductors. 

3. A dip is seen in the DOS on the left side only 
of the gap (asymmetry of the I(V) characteristic). 
This dip is also seen in photoemission experiments 
[16] and is well explained, assuming that E s < E F. 

4. The dip moves towards the right for overdoped 
samples, this is in concordance with the fact that the 
distance E F - E  s is getting smaller with increasing 
doping. That is experimentally observed [17]. 

5. The predicted variation of the d l/dV curve 
with temperature is observed experimentally. 

6. The sum rule is verified. The total number of 
states is conserved between the normal and super- 
conducting state. 

A detailed adjustment between our calculations 
and the experimental results is not always possible. It 
is very precise and quantitative in Fig. 3 with the 
result of Renner et al. [4] and more qualitative in 
other cases. But the important features are always 
present. 

This discrepancy can be due to several reasons. 
Some are theoretical, our model is simplified, we do 
not take into account the antiferromagnetic fluctua- 
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Fig. 10. Andreev reflection results of Achsaf et al. [18]. Open circles: experimental results, line: extended s-wave fit, with A M 
A m = 5 m e V .  

= 15 meV, 
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tions nor the phonon contribution to dI/dV. Others 
are experimental, in all papers, the authors point out 
the great difficulty to make "c lean"  experiments. 
They meet many problems: the quality of the sample 
surface, its high chemical reactivity [15], the quality 
of the insulating barriers, the problem of the current 
distribution in the surface [3], the experimental reso- 
lution of the various peaks and shoulder [4], the 
temperature calibration, the heating effects [2], etc. 

Nevertheless we think that our itinerant electron 
model, with a normal band structure showing four 
saddle points (van Hove singularities), and with an 
anisotropic gap varying from A M in the directions of 
the vHs t o  A m a t  an angle of ~-/4, gives a very good 
description of all phenomena observed in tunnel 
spectroscopy and angular resolved photoemission. 

6. Note added in proof 

Recently Achsaf et al. [18] have measured An- 
dreev reflections at an interface between a gold tip 
and a La2_xSrxCuO 4 single crystal along the l l0 
direction. The best fit of their data is obtained for an 
anisotropic gap (our formula (2)) with A M = 15 meV 
and A m = 5 meV. The variation of the conductance 
with applied voltage shows clearly two peaks corre- 
sponding to _+ A m (Fig. 10). 
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