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Abstract 

We compute the superconducting gap A k using a simple band structure of the CuO 2 planes in the high-To materials. We 
suppose that for maximum T c, the van Hove singularities lie close to the Fermi level as is confirmed by many photoemission 
experiments. We use a electron-phonon interaction with weak screening; we find a strong gap anisotropy. For Bi 2212, A is 
maximum along the 001 and 010 directions with values of the order of 22 meV and minimum along 011 with a value of 6 
meV. These values are in agreement with experiments. 

1. Introduction 

Many recent experiments of  angle-resolved pho- 
toemission spectroscopy (ARPES) have confirmed 
the existence of saddle points (vHS) at the Fermi 
level in five different copper oxide compounds by 
three different groups, in Stanford [1], in Argonne [2] 
and in Wisconsin [3]. These observations have been 
made in the following compounds: Bi2Sr2CuO 6 (Bi 
2201), Bi2Sr2CaCu20 8 (Bi 2212), YBa2Cu30  7 
(Y123), YBa2Cu40 8 (Y124) and Nd2_xCexCuO4+ 8 
(NCCO). These experiments establish a general fea- 
ture: in very high-T c superconductors cuprates (To ~ 
90 K) van Hove singularities are present near the 
Fermi level. This is probably not purely accidental 
and we think that any theoretical model must take 
into account these experimental facts. The origin of  a 
high T c in the cuprates is still controversial and the 
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role of these singularities in the mechanism of high-T c 
superconductivity is not yet established, but we want 
to stress that the model of  2D itinerant electrons in 
the presence of vH singularities in the band structure 
has already explained a certain number of  experi- 
mental facts, i.e. high To's, anomalous isotope effect 
[4], marginal Fermi-liquid effects [5] and the very 
small values of  the coherence length [6]. It has also 
been shown that the singularity is in the middle of  a 
wide band and that in these circumstances, the 
Coulomb repulsion /x is renormalized and /x is 
replaced by a smaller number; the effective elec- 
t ron-phonon coupling is hcf f = A - / x *  and remains 
positive [7]. More recently, we have interpreted, 
using this same model, the results of  NMR experi- 
ments of 7Li in YBCO 123, where the Knight shift 
A K obeys a logarithmic law versus the inverse of  
the temperature, A K  = In 1 / T  [8,9]. 

The purpose of this paper is to show by a detailed 
calculation that the 2D band structure of  the cuprates, 
with a vHS at the Fermi level can explain the 
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observed gap anisotropy, in the case of  a weak 
screening of the electron-phonon interaction. Such a 
prediction has been made by Abrikosov [10] on the 
basis of  an extended saddle-point singularity in the 
electron energy spectrum, lying close to the Fermi 
level, but he did not give any quantitative calculation 
of the gap. We show that, without adjustable parame- 
ter, we find the measured values of  the gap in 
various crystallographic directions of the cuprate 
compounds. 

2. Electron band structure and electron-phonon 
interaction 

The simplest band structure we can take for a 
square lattice of  dimension a is 

ek = - 2 t ( c o s  kxa + cos kya), (1)  

where t is a transfer integral between nearest neigh- 
bours, k x and ky the components of  the wave vector 
along the 1, 0 and 0, 1 axis. This gives a square 
Fermi surface, and the vHS corresponds, in this 
approximation, to half filling (Fig. 1). Also this leads 
to the logarithmic density of  state near a saddle point 
[4]: 

N D 
n ( ~ )  = ~2----~ln I e ] '  (2) 

where D is the width of the vHS, in the case of  the 
CuO 2 planes of  the cuprates N = 8 per Cu atom, and 
with formula (1) D = 16t. 

We have taken a classical electron-electron inter- 
action potential Vkk, between two electron states of  
wave vector k and k', respectively, via electron- 
phonon coupling. From BCS theory [11] this matrix 

n(ck) 

Fig. 1. 
by Eq. 

--4t 0 4t 

@ 
ek 

= kx 

Density of states n(g)  and Fermi surface for a band given 
0). 

element may be written 

[gq ]2 (h  toq)2 
Vk ,= (3) 

q2+q2  ~kk'2 _ ( h t o q )  2 '  

where k'  - k = q is the phonon wave vector, ] gq I 2 
is the square of an electron-phonon interaction ma- 
trix element, ek, k = e k ' -  ~t, is the electron energy 
difference and toq is the phonon frequency; q0 is a 
screening vector, qo a is the screening length. In the 
cuprates, the important phonons are the optical ones, 
so we take the usual approximation, t o q  = tO o = 

constant. 
The interaction between electrons is attractive 

Vkk, < 0, as long as the energy variation [ 6kk, [is less 
than h tOo. In most models the last term of Eq. (3) is 
taken as - 1. In our case, this is even more justified 
since the important contributions to A will come 
from states of vector k near the saddle points taken 
on the Fermi surface, that is for energy differences 
close to zero. Abrikosov [10] has done the same 
approximation. 

3. Anisotropic BCS gap equation 

We first solve the problem at zero temperature, 
T = 0 K, in which case the BCS equation giving the 
gap A k reads 

1 Vkk, A k 
A t ' = - 2  k~ , ~ 2  2 ' (4)  

with 

- I g q l  2 
Vkk' q2 + q2 < 0  

and 

- h t o  o < ekk, < +hto o. 

Eq. (4) may be rewritten, replacing the sum by an 
integral: v..,a.,+ 

-~-=~-A2 dk; dk'y. (5) A k = _ 
A~, 

It is useful to introduce tangential and normal 
coordinates dk t and d k ± .  dk t is tangential to the 
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constant energy curve F and dkj_ is normal to this 
curve. We obtain 

dk± 
dkt d k i - -  d----e- de  dk t (6a) 

but 

de  
hlvk l  = ~  

dk~ 

so that 

dk I 1 h 
h - = ; ( 6 b )  

de I vk [ 2talsinZkxa + sinZkra 

for ~ = cte and Eq. (1) we find 

dk x 
Isin2kxa + sin2kya (6c) dk t = ~ -  sin kya 

and finally 

sin kya = 1 -  2t cos kxa (6d) 

by combining Eqs. (4), (5) and (6) we obtain for the 
gap 

dk'xa 
A k = Aefffoh 0'[' deft [ 

1 - ( ( ~ / 2 t )  - c o s  k'xa;2l 

( q0 a) 2 Ak' 
× (7) 

(qa) 2+(qoa)  2 ~ + A ~ ,  

Aaf is a numerical parameter with no dimension; it 
includes an effective interaction V and an average 
density of states N/rr 2 t. 

Eq. (7) is an integral equation which is not easy to 
solve. But we know from symmetry considerations, 
that A k will have a four-fold symmetry; we can 
expand it in a Fourier series of the form 

A k = A o + z~ 1 COS 4qb + . . . .  (8) 

where qO is the angle between k x and k. 
We solve Eq. (7) by iteration, we first replace in 

the integral A k by its average value Ao, then com- 
pute A1, introduce A 1 in the integral, etc. 

We shall present here only the first two steps: 
calculation of A 0 and A1; a detailed calculation will 
be given in a following paper. To compute A o and 

m m 

-n/a 

l ky 

-n/a A" 

kx 

Fig. 2. Square Fermi surface and the interesting points 
(A,~, B, B'). 

A 1, we use the following procedure. Let us first take 
ka at point A (0, ~r) (see Fig. 2). We have 

A A = Amaximu m = A 0 + A1; 

then at point B ( I r /2 ,  ax/2) 

A B -- Aminimu m = A 0 -- AI. 

For A A, the vector k' must circumscribe the 
whole contour AA~'.~" but we see that this is twice 
the contour ~ ' .  For large values of q the integral 
is very small, so in a first approximation, we neglect 
large q values and integrate only from A to B and 
multiply by two. We thus obtain 

Ama x = Aefff0 umax Z~0 I.(u) du 

with 

foXb dx'  
IA(U) = [ 1 -  ( u -  cos X')2] 1/2 

2 (  q0 a) 2 
× 

2 £  2 + ( qoa) 2' 

Ami n = hefff0 umax A° U ~ T ~  0 IB(U) du, 

(9a) 

(9b) 

(10a) 
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with 

I~( u) = fo x;' 
dx' 

[1 - (u  - cos x ')2] 1/2 

2( qo a) 2 
× (lOb) 

2(x ' -  2 )2+ ( qoa) 2 

where x' =k'xa, x' 0 = arccos(u/2) ,  u = e/2t, u o = 
Ao/2t, and Uma x = hwo/2t. 

Aef f in these integrals is the isotropic part of the 
electron-phonon interaction; it is of the order of 0.5. 
These results allow one to make a first qualitative 
comparison between Area x and Ami  n. In the integrals 
IA(U) and IB(u), the dominant contribution is that for 
which the velocity v k goes to zero, i.e. the limit 
x ' ~  0. We see that the multiplicative factor is 1 

1 1 (q = 0) in the case of 1 A and of the order of  g to 7, 
in the other case, q = w/2a. We see that the physi- 
cal origin of  the gap anisotropy comes from the fact 
that in certain directions there are saddle points 
where ] vkl ~ 0 and A k is large and other directions 
for which I vi[  is always finite and A k is smaller. At 

finite temperature T, Eqs. (9) and (10) are replaced 
by Eq. (11): 

Uoa  f A( 
. . . . .  in) = "~eff ] 0 ~U 2 -[- u 2 ( Z  ) I(A,B)(u) 

×tanh( f~+u~ (T) ) (11) 

4. Results and discussion 

We evaluate numerically A A and A B using the 
two integral equations (9) and (10). To do that we 
have to choose two parameters, the phonon fre- 
quency w 0 and the transfer integral t. We could 
consider them as adjustable parameters to find the 
values of Ama x = 20 + 3 meV, Ami n = 5 -[- 5 m e V  

and T c = 86 + 2 K observed experimentally [2,12] 
for Bi 2212. For YBa2Cu307_ x or YbBa2Cu307_ x 
single crystals, tunneling effects show a two-gap 
structure [13]; with values for the maximum gap 

Table 1 

Several  sets o f  parameters  for  the calculated gap,  for  h o% 

(a) t = 0.20 eV 

= 60 meV and with two choices  for  the integral transfer. 

h co o = 60 meV t = 0.20 eV 

qo a Aef f A A (meV)  A B (meV) A o (meV) T c (K) 2 Ao/knTc 

0.18 0.57 22 6 14 88.5 3.7 

0.12 0.785 22 5 13.5 84.4 3.7 

0.13 0.37 20 7 13.5 84.5 3.7 

0.08 1.10 22 4 13 81.5 3.7 

0.23 0.45 20 6 13 82 3.7 

0.05 1.67 22 3 12.5 78.5 3.7 

0.15 0.62 20 5 12.5 78.5 3.7 

(b) t = 0.25 eV 

h w 0 = 60 meV t = 0.25 eV 

qo a "~eff A A (meV) A B (meV) A o (meV) T~ (K) 2 Ao/knZ c 

0.19 0.50 22 6 14 87.5 3.7 

0.13 0.67 22 5 13.5 84.5 3.7 

0.35 0.31 20 7 13.5 85 3.7 

0.085 0.94 22 4 13 81.5 3.7 

0.25 0.39 20 6 13 82 3.7 

0.045 1.60 22 3 12.5 77.5 3.7 

0.165 0.53 20 5 12.5 78.5 3.7 
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between 26 and 30 meV and for the minimum gap 
between 0.5 and 11 meV. 

But on the contrary we have taken to o and t from 
experimental  measurements and we show that we 
obtain correct values for `4 and T c. So our model  
contains no adjustable parameter, but leads to a low 
value of q0 a; we discuss this point in the last part of 
this work. 
(1) Choice of  t. t has been estimated theoretically by 
band-structure calculations [14]. We prefer experi- 
mental determinations. From ARPES measurements 
t is estimated to be between 0.20 and 0.25 eV 
[15,16]. 
(2) Choice of h too. Many authors have determined 
several mode frequencies of  phonons which should 
play a major role in the superconductivity mecha- 
nism. The modes involved are mainly the breathing 
modes of  the C u - O  6 complex,  with an important 
implication for the apical oxygen. Here we cite these 
modes for the most known HTSC's .  For example in 
La2CuO 4 the oxygen breathing modes frequencies 
are in the range 400-640  cm -1 [17]; and for 
YBa2Cu30 7 in the range 340-610  cm -1 [18]. In 
this compound the 340 cm-1 mode frequency seems 
to play a particular role [19]. Then in Bi2Sr2CaCu20 8 
the mode frequencies assigned to the axial phonon 
(IIc) and involved in an e lec t ron-phonon interaction 
are 445 cm -1 and 594 cm-1  [20]; other phonons 
seem to play an important role, like the 587.2 cm -1 
mode frequency due to the phonons in the B i - O  
plane and the 645.2 cm -1 associated with those in 
the C u - O  plane [21]. 

Moreover,  we know that the mode frequencies are 
screened by the carriers and renormalized in the 
interaction. Therefore, we have chosen an arbitrary 
average phonon of 480 cm-1  or 60 meV, which is in 
the range 335-640  cm -1, for h too in our calcula- 
tions. 

We have tried other values for h too of  the same 
order of  magnitude, and we have observed no signif- 
icant change in the results. This observation confirms 
the anomalous isotope effect already observed and 
explained in these materials [4]. 

The numerical results are presented in Table 1. 
We see that there is a good agreement between our 
computation and the experimental  values. The set of  
parameters ( t  = 0.20 eV, h to  0 = 60 meV) has been 
chosen in Fig. 3, where we plot the gap A(q0) as a 

20 ~ 

15 " .  ",,,,,, 

5,0 ...x,. . .  

5 • 

0 I I I ~ _'~ 
0 x/8 7t/4 

0 
Fig. 3. Angle-dependent calculated gap g(~) for two sets of 
parameters: A o = 14 meV, A l = 8 meV, for T c = 88.5 K (solid 
line), and A o = 12.5 meV, A 1 = 7.5 meV, for T c = 78.5 K (dashed 
line); experimental values from Refs. [2] and [12] (black dots). 

function of  the angular coordinate ~ ,  using the first 
two terms in the Fourier expansion 

A ( ~ ) )  = a 0 -+- A 1 c o s  4 ~ ,  

with `4o = 14 meV and ,41 = 8 meV, for T c = 88.5 
K (solid line); and with ,40 = 12.5 meV and A 1 = 7.5 
meV, for T c = 78.5 K (dashed line). 

The black dots represent the experimental  values 
for several samples as published by Shen et al. [12], 
and Ding et al. [2]. The agreement seems very good 
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Fig. 4. Temperature-dependent maximum (full circle), average 
(full square) and minimum (full triangle) gaps at T = 0 K, for 
Aav = A o = 14 meV, A 1 = 8 meV, and for a T c of 88.5 K. 
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consider ing the experimental  precision of  ARPES 
measurements  and the approximat ions  made in our 

theory. Fig. 4 gives the variat ion of the average gap 

Ao, the max imum gap Area x (22 meV at T =  0 K), 
the m i n i m u m  gap Ami n (6 meV at T = 0 K), with the 
temperature T. Here we obtain a T c value of  88.5 K, 
close to the experimental  one. We find that 

2 A o / k B T  ~ = 3.7 (very close to the BCS value), 

2 A m a x / k B T  c = 5.8 and 2 A m i n / k B T  c = 1.6. This per- 
haps explains the different values observed in vari- 

ous experiments.  

5. Conclusion 

We have calculated the gap anisotropy in the 
high-T c cuprates using an i t inerant electron model  in 
a two-dimensional  periodic potential  leading to van  
Hove singularities.  We assume that the vHS lies 
close to the Fermi level and we use a weakly screened 

e l ec t ron -phonon  interaction potential.  
With that model,  we predict for Bi 2212 for 

example,  a m i n i m u m  gap of  6 _ 2 meV and a maxi-  
m um gap of 20 + 3 meV. We use only  experimen-  
tally determined parameters in our calculation,  ex- 
cept a rather low isotropic value of  qo a that is 
essential to obtain a large anisotropy. The values  
obtained theoretically agree very wel l  with the val- 

ues determined by various experiments,  ARPE S  and 
tunnel  effect. We  thus obtain an "ex tended  s w a v e "  
gap and not a d wave pair function.  The order 

parameter  is never  negative in our model.  Abr ikosov 
[22] has shown, however,  that if a short-range repul- 
sive interaction (which can represent either some 
part of  the Hubbard repulsion at the copper sites or 
the interaction mediated by spin fluctuations) is 
added, then the order parameter  can vary in sign and 
become negative at points of  the Fermi surface dis- 
tant from the singularity. 

Such an approach may reconcile all the observa- 
t ions leading somet imes to s wave and other t imes to 
d wave symmetry  of  the order parameter.  
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