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ABSTRACT 

 

We give a general description of our approach which explains many physical 

properties in the superconducting and normal states of almost all 2D high Tc 

superconductors (HTSC). This 2D character leads to the existence of Van Hove 

singularities (VHs) or saddle points in the band structure of these compounds. The 

presence of VHs near the Fermi level in HTSC is now well established. We review some 

physical properties of these materials which can be explained by this scenario, in 

particular: the critical temperature Tc, the anomalous isotope effect, the superconducting 

gap and its anisotropy, and thermodynamic and transport properties (eg: Hall effect). The 

effects of doping and temperature are also studied, and they are directly dependent of the 

position of the Fermi level relative to the VHs position. We show that these compounds 

present a topological transition for a critical hole doping p  0.21 hole per CuO2 plane. 

Most of these compounds are disordered metals in the normal state, we think that the 

Coulomb repulsion is responsible for the loss of electronic states at the Fermi level, 

leading to a dip, or the so-called “pseudo-gap”. 

 

INTRODUCTION 

Twenty years after the discovery of the high temperature superconductivity in cuprates 

compounds [1], the exact mechanism of superconductivity is still not yet understood. All 

these compounds are strongly anisotropic and almost two dimensional, due to their CuO2 

planes, where superconductivity mainly occurs. It is well known that in 2 dimensions, 

electrons in a periodic potential show a logarithmic density of states (DOS), named Van 

Hove singularity (VHs) (Van Hove (1953) [2]). The Van Hove scenario is based on the 

assumption that, in high critical temperature superconductors cuprates (HTSC), the Fermi 
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Level (FL) lies close to such a singularity (Labbé-Bok (1987)) [3]. This hypothesis has been 

confirmed by many experiments, in particular by Angular Resolved Photoemission 

Spectroscopy (ARPES) [4-9] in different compounds as: 

La2-xSrxCuO4-  (LSCO), Bi2Sr2CuO6 (Bi 2201), Bi2Sr2CaCu2O8 (Bi 2212), YBa2Cu3O7-  

(Y123), YBa2Cu4O8 (Y124) and Nd2-xCexCuO4+  (NCCO). These experiments establish a 

general feature: in very high Tc superconductors cuprates (Tc ~ 90 K) Van Hove singularities 

are present close to the Fermi level. This is probably not purely accidental and we think that 

any theoretical model must take into account these experimental facts. 

The origin of high Tc in the cuprates is still controversial and the role of these 

singularities in the mechanism of high Tc superconductivity is not yet established, but we 

want to stress that the model of 2D itinerant electrons in presence of VHs in the band 

structure has already explained a certain number of experimental facts. 

 

In this review paper: 

We recall what are the VHs physics in 1, 2, 3 dimensions. 

We give a rapid description of the band structure of the CuO2 planes. 

We compute the critical temperature Tc [3,10,11], the anisotropic superconducting gap 

[10]. We show the importance of screening and Coulomb repulsion [10,12]. We explain the 

anomalous isotope effect [13] , the very small values of the coherence length [14,15]. 

We compute the DOS in these compounds and apply this result to the calculations of 

various physical parameters: the conductance of tunnelling junctions, the specific heat [11], 

the magnetic susceptibility [16]. The variation of all these properties with hole doping (from 

underdoped UD to overdoped OD samples) and temperature are obtained and compared with 

the experiments. The agreement is very satisfactory. The variation with the doping is linked 

to the distance of the FL from the singularity level ( F - S), so does the variation with the 

temperature due to the Fermi-Dirac distribution. 

Transport properties in the normal state are described. We show that F - S is critical for 

these properties, leading to Fermi liquid or marginal Fermi liquid [17]. 

We compute the Hall coefficient and its variation with doping and temperature [18]. We 

show that the experimental results may be explained by the topology of the Fermi surface 

(FS) which goes from hole-like to electron-like as the hole doping is increased. The critical 

doping, for which a topological transition is observed and calculated is p = 0.21 hole per 

CuO2 plane. 

A so-called “pseudo-gap” is observed in the normal state of cuprates. These compounds 

are disordered metals if we refer to their coefficient of diffusion, which is very low. The 

Coulomb interaction between electrons must be taken into account as shown by Altshuler and 

Aronov (1985) [19]. The main effect is to open a dip in the DOS at the FL. We show that this 

explains the observed features of the “pseudo-gap”, value, anisotropy and variation with 

doping [20]. 

In conclusion we show that VHs play an important role in HTSC, and that by taking them 

into account, we may explain most of their normal and superconducting properties. 



Van Hove Scenario for High Tc Superconductors 

 

3 

VHS PHYSICS IN 1, 2, 3 DIMENSIONS 

Van Hove singularities (2) are general features of periodic systems. They are topological 

properties of the electronic band structure (BS) and do not depend on the particular form of 

the BS. In one dimension (1D), they give a divergence of the DOS varying as  S
/1

 , 

where S is the energy of the singularity level. In two dimensions (2D), near VHs the 

variation of the DOS is logarithmic varying as:   

                                                                                        S

D
ln

 
(Figure 1) where D/2 is the width of the singularity. In three dimensions (3D) the divergence 

is removed and we have a truncated 2D DOS. 
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Figure 1: Density of States of a 2D system. (EF ≡ F) 

 

CALCULATION OF TC 

Labbé-Bok [3] have computed the band structure for the bidimensional CuO2 planes of 

the cuprates, considered as a square lattice (quadratic phase). The simplest band structure we 

can take for a square lattice is : 

   k x y
t k a k a2 cos cos      (1) 

where t is an interaction with nearest neighbours. This gives a square Fermi surface with 

saddle points, or VHs., at [ 0 , | | ] positions of the Brillouin zone (B.Z.), and a logarithmic 

D.O.S. with a singularity : n n D
S

( ) ln / ( )
1  . The VHs. corresponds to half filling in 

this first calculation. We know that is not a good representation of the high Tc cuprates 
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because for half filling (one electron per copper site) they are antiferromagnetic insulators. 

We think that the Fermi level is at VHs. for a doping level corresponding to 21 % of holes in 

each CuO2 plane or 0.395 filling of the first B.Z., this is confirmed by the observations of Ino 

et al [7]. This can be achieved by taking into account the repulsive interaction between second 

nearest neighbours (s.n.n.) and the effect of the rhomboedric distorsion. For the repulsive 

interaction with s.n.n. the band structure becomes: 

 

  
k x y x y

t k a k a t k a k a2 4cos cos cos cos
    (2) 

 

where  t  t’  is an integral representing the interaction with s.n.n.. The singularity occurs for  

 = -4 t , there is a shift towards lower energy. The Fermi surface at the VHs. is no longer a 

square but is rather diamond-shaped. More detailed calculations can be obtained in reference 

[14], taking also into account the rhomboedric distorsion. 

 

The Labbé-Bok [3] formula was obtained using the following assumptions : 

1- the Fermi level lies at the van Hove singularity 

2- the B.C.S. approach :  

- The electron-phonon interaction is isotropic and so is the superconducting gap . 

- The attractive interaction Vp between electrons is non zero only in an interval of energy 

 0  around the Fermi level where it is constant. When this attraction is mediated by 

emission and absorption of phonons, 0 is a typical phonon frequency. 

 In that case, the critical temperature is given by  

  
k T 1.13D exp

1
ln

D
1.3

B c

2 0

1/2


  (3) 

where ( / )1 2 n V1 p  is equivalent to the coupling constant. 

A simplified version of formula (1), when  0  is not too small compared to D, is : 

 k T 1.13D exp( 1 / )
B c  

The two main effects enhancing Tc are  

1- the prefactor in formula [3] which is an electronic energy much larger than a typical 

phonon energy   0 . 

2-  is replaced by  in formula (3) in comparaison with the BCS formula, so that in 

the weak coupling limit when 1 , the critical temperature is increased. In fact it gives too 

high values of Tc, we shall see later that this is due to the fact that we have neglected Coulomb 

repulsion between electrons. Taking this repulsion into account we shall obtain values for Tc 

which are very close to the observed one. 

As it is however, this approach already explains many of the properties of the high Tc 

cuprates near optimum doping. 

- The variation of Tc with doping 
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The highest Tc is obtained when the Fermi level is exactly at the VHs in this first 

calculation (formula (1)). For lower or higher doping the critical temperature decreases. That 

is what is observed experimentally [11]. 

- The isotope effect 

Labbé and Bok [3] showed using formula (3) , that the isotope effect is strongly reduced 

for high Tc cuprates. Tsuei et al [21] have calculated the variation of the isotope effect with 

doping and shown that it explains the experimental observations. 

- Marginal Fermi liquid behaviour 

In a classical Fermi liquid, the lifetime broadening  1/   of an excited quasiparticle goes as 
2
. The marginal Fermi liquid situation is the case  where 1/  goes as  . Theoretically 

marginal behaviour has been established in two situations (a) the half-filled nearest-neighbour 

coupled Hubbard model on a square lattice and (b) the Fermi level lies at a VHs (17,21). 

Experimental evidence of marginal Fermi liquid behaviour has been seen in angle resolved 

photoemission [22], infrared data [23] and temperature dependence of electrical resistivity 

[17]. Marginal Fermi liquid theory, in the frame work of VHs predicts a resistivity linear with 

temperature T. This was observed by Kubo et al [24]. They also observe that the dependence 

of resistivity goes from T for high Tc material to T
2
 as the system is doped away from the 

maximum Tc, which is consistent with our picture; in lower Tc material the Fermi level is 

pushed away from the singularity. 

INFLUENCE OF THE COULOMB REPULSION 

It was also been shown that the singularity is in the middle of a wide band and that in these 

circumstances, the Coulomb repulsion  is renormalized and  is replaced by a smaller 

number * [25] , the effective electron-phonon coupling is eff =  - * and remains positive 

[15]. We think that this fact explains the very low Tc observed in Sr2RuO4, where a very 

narrow band has been determined by ARPES [26]. 

Cohen and Anderson [27] have shown that the electron-electron repulsion plays a central 

role in superconductivity. Assuming a constant repulsive potential Vkk' = Vc from 0 to F they 

find that Tc is given by: 

   Tc  To exp [
-1

- *
]       (4) 

With    = NoVc    and   

0F
/ln1

*  

Cohen and Anderson [27] assumed that for stability reasons  is always greater than . 

Ginzburg [28] gave arguments that in some special circumstances  can be smaller than . 

Nevertheless if we take , superconductivity only exists because * is of the order of  

to  for a Fermi energy 
F
 of the order of 100 

0
. It is useless to reduce the width of the 

band W, because  and  vary simultaneously and * becomes greater if 
F
 is reduced, thus 

giving a lower Tc. Superconductivity can even disappear in a very narrow band if * 

becomes negative. 
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We have shown [15] that high Tc can be achieved in a metal containing almost free 

electrons (Fermi liquid) in a broad band, with a peak in the D.O.S. near the middle of the 

band. 

Taking a D.O.S., which is a constant no between energies [- W/2, - D] and [+ W/2, + D] 

(the zero of energy is at the Fermi level) and is n n D n( ) ln /
1 0

 between - D and 

+ D we find for Tc, the following formula: 

   k T
D

2
exp 0.819

n

n
F

B c

0

1

    (5) 

where 

 

 

F
n

n
0.819 ln

D
2

2

n
n ln

2.28

D

1

V V

0

1

2

0

2

1

0

0

p c

*

 
       

 

   

V
V

V
n D

n
W

c

c

c

*

ln ln1
2 2

1

0

2

0

0
 

       

 

 

We can have a few limiting cases for this formula : n1 = 0 : no singularity. We find the 

Anderson-Morel formula. Vc = 0 and n
0
 = 0 : this gives the Labbé-Bok (L.B.) formula. 

There are many effects enhancing Tc 

 - * is reduced by the square root, down to  1 1- *   when n1 is large enough.  

As  - * < 1 the critical temperature is strongly increased because this factor appears in 

an exponential. The prefactor before the exponential is D, the singularity width instead of 

 0 . We expect D >  0
. For instance D may be of the order of 0.5 eV and  0

 about a 

few 10 meV (D/ 0  of the order of 5 to 10). 

We have made some numerical calculations using formula (5) to illustrate the effect of 

Coulomb repulsion. We used two values of D : D = 0.9 eV corresponding to t = 0.25 eV and a 

much more smaller value D = 0.3 eV. These calculations show that the Coulomb repulsion 

does not kill superconductivity in the framework of the L.B. model. The general rule for high 

Tc in this model is to have a peak in the density of states near the middle of a broad band to 

renormalize the effective repulsion . For a narrow band, W, or D, is small, Tc decreases very 

rapidly as seen in Figure 2 . A recent case has been observed in Sr2RuO4 with a narrow band 

and Tc is small [26]. 
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Figure 2: Effect of the width of the singularity D on Tc. n0 and the total number of electrons per 

unit cell are maintained constant with this set of parameters. 

Then W = 2 eV, n0 = 0.3 eV/states/Cu, n1 = 0.2/D. 

In all these cases the calculations are made so that the total number of states of the band is one by 

Cu atom. Then n0 W + 2 n1 D = 1, and  = (n0 + n1) Vp . In all these cases  0  = 0.05 eV and  = 0.5. 

GAP ANISOTROPY 

Bouvier and Bok [10] have shown that using a weakly screening electron-phonon 

interaction, and the band structure of the CuO2 planes four saddle points: an anisotropic 

superconducting gap is found. 

1. Model and basic equations 

We use the rigid band model, the doping is represented by a shift De = F - s  of the 

Fermi level. This band structure is  

   k x y e
t k a k a D2 cos cos    (6) 

The Fermi level is taken at k = 0 . 

We use a weakly screened attractive electron-phonon interaction potential : 

   V
g

q q
kk

q

'

2

2
0
2

0  

where g(q) is the electron phonon interaction matrix element for 
  
q k k'  and q0 is the 

inverse of the screening length. 
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We use reduced units: X = kxa ,  Y = kya ,  Q = qa ,  u
t2  

,  
D

t

e

2
 

We use the B.C.S. equation for an anisotropic gap : 

 


k

kk k

k k
k

V ' '

' '
' 2 2

     (7) 

 

We compute  
k

 for two values of 

k  : A for kxa = , kya = 0   (8) 

     B for kxa = kya = 
2

 

 

We solve equation (7) by iteration. We know from group theory considerations, that Vkk' 

having a four-fold symmetry, the solution k has the same symmetry. We then may use the 

angle  between the 0 axis and the 

k  vector as a variable and expand  in Fourrier series: 

 

  ( ) cos( ) cos(8 ) ...0 1 1 2 24  (9) 

 

We know that 1 = 0, because the maximum gap is in the directions of the saddle points. We 

use the first two terms. The first step in the iteration is obtained by replacing k by 

av 0  in the integral of equation (9). We thus obtain, for the two computed values : 

A Max 0 1  and B min 0 1 , the following expression : 

 

A B eff
av

avu

u

A B
av

B

T

u u T

I u
u u T

k T t
du, ,( ) ( ) tanh

/
min

max

2 2

2 2

  

(10) 

 

with I u
dx

u x

q a

Q q a
A B

o

x
o

A B o

o

,

,

( )
'

( ) cos '
( )

'

1
2

1
2

2

2 2
 (11) 

where    umin = 
 c

t2
 ,    uMa  = + 

 c

t2
 ,    u

t
av

av( )
( )

2
 ,    X o a

u'
cos

2
 

c is the cut off frequency. In the following part of this work we will keep the value of 

 c  = 60 meV for the Bi2212 compound, a characteristic experimental phonon energy. This 

choice respects our approximation for Vkk'. 

 

- For the choice of t, the transfer integral comes from the photoemission experiments and 

is t = 0.2 eV as explained in Reference [10]. 

- q a0  is adjusted, it is the Thomas Fermi approximation for small q's, 
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- eff is adjusted so as to find the experimental value of Max and min and we find a 

reasonable value of about 0.5. eff is the equivalent of -  in the isotropic 3D, BCS model. 

In fact the values of q a0  and eff  must depend of the hole doping level linked to De. 

Here q0a = 0.12 and eff = 0.665. 

2. Results 

In Figure 3, we present the result of the iterative calculation (formula 7-11). 
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Figure 3: Anisotropic superconducting gap. Exact calculation for  = 0  and  /4  

This represents a s-wave anisotropic superconducting gap with no nodes in  = /4  

 

In Figure 4, we present the variation of the various gaps Max, min and av with 

temperature at optimum doping, i.e. for a density of holes of the order of 0.20 per CuO2 plane. 

We take in that case De = 0 and we find Tc = 91 K and an anisotropy ratio  = Max/ min = 4.2 

and for the ratios of 2 /kBTc the following values : 

  
2

6Max

B ck T
. ,  

2
3 7av

B ck T
.  ,     

2
1 4min .

k TB c

 

This may explain the various values of 2 /kBTc observed in experiments. Tunneling 

spectroscopy gives the maximum ratio and thermodynamic properties such as (T) 

(penetration depth) gives the minimum gap. 

 

In Figure 5 we present the same results, Max, min, av as a function of  

De = F - s  linked to the variation of doping. 

 

In Figure 6 we plot the variation of the anisotropy ratio  = Max/ min versus De. In 

Figure 7 the critical temperature Tc versus dx (variation of hole in the CuO2 plane) from the 

optimal doping 0.20 hole per CuO2 plane at dx=0 , dx is linked in our calculation to the 

variation of De . 
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Figure 4: Variation of the various gaps Max, min and av versus temperature, at the optimum 

doping, i.e De = F - s = 0 in our model. With the following parameters, t = 0.2 eV,  c  = 60 meV, 

q0a = 0.12, eff = 0.665. 

 

The critical temperature found is Tc = 90.75 K 

red square symbol = Max , black diamond symbol = av , blue up triangle symbol = min 
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Figure 5: Variation of the various gaps Max, min, av versus De = F – S  EF - ES , at T = 0K 

red square symbol = Max , black diamond symbol = av , blue up triangle symbol = min 
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Figure 6: Variation of the anisotropy ratio   Max/ min, versus De = F – S  EF - ES . 
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Figure 7: Comparison of the variation of Tc versus the variation of doping dx calculated in our 

model (red filled circles) and the experimental results of Koïke et al ref [29] (black open circles). 

 

We observe of course that Tc and the gaps decrease with De or dx. The agreement with 

experiment [29] is very good Figure 7. We obtain a new and interesting result which is the 

decrease of the anisotropy ratio  with doping. This is confirmed by results on photoemission 

[30,31] where a maximum gap ratio 2 Max/kBTc = 5 to 7 is observed at optimum doping with 

Tc = 83 K and 2 Max/kBTc = 3 for an overdoped sample with Tc = 56 K, with a small gap 

min = 0-2 meV for the both Tc, for a Bi2212 compound. 
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DENSITY OF STATES AND TUNNELING SPECTROSCOPY 

We have calculated the density of states of quasiparticle excitations in the 

superconducting state of high Tc [11,32] cuprates using the model of anisotropic gap that we 

have developed [10,32]. 

Here the D.O.S. is computed using the formula : 

n
A

( )
1

2
2

     (12) 

where A is the area in k space between two curves of constant energy of the quasiparticle 

excitation k given by : 
k k k

2 2 2
      (13) 

where 
k

 is the band structure (formula (6)). We use the same procedure and the same 

expression of k as before. 

Figure 8 represents the variation of the D.O.S. as a function of  for T = 0 K. This is 

similar to the experimental conductance (dI/dV versus the voltage V) of a N-I-S junction here 

we show the measurement made by Renner and Fisher [33] on a BSCCO sample. Max is 

located at the maximum peak and min at the first shoulder after the zero bias voltage, 

Figure 9. But for different values of F - s, we see a new maximum emerging, which is a 

signature of the van Hove singularity and a dip between this maximum and the peak at Max. 

This dip is seen experimentally in the STM tunneling experiments of Renner et al [33]. Figure 

10 show the behaviour in fonction of the temperature, the value of the superconducting gap 

dependant in temperature are done by our calculations with formula (7-11). 

 

 
Figure 8: The best fit of the conductance measured by tunneling spectroscopy on BSCCO, N-I-S 

junction, by Renner and Fischer (Figure (10) of Reference [33]). solid line: fitted curve with 

Max = 27 meV, min = 11 meV, t = 0.18 eV,  = 0.5 meV at T = 5 K, dashed line : experimental 

curve. 
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Figure 9: Variation of the D.O.S. versus the energy , for T = 0 K, that is similar at a NIS junction, 

for different values of the doping D = F - s, i.e. 0, 10, 20, 30, 40, 60 and 70 meV with  = 0.1 meV 

and ' = 5 meV in the model of Reference [32]. 
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Figure 10: Variation of the in fonction of temperature T =0, 60, 80, 85, 91, Tc= 90.8 K, 

                   for the case F = s =0. 

 

For the calculation of the conductance, we use the following formula  

dI

dV
CN N

f

V
V dS

FD
0 ( ) ( )   (14) 
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where fFD is the usual Fermi-Dirac function; I and V are the current and voltage, C a constant 

proportional to T
2

, the square of the barrier transmission, N0 the D.O.S. of the normal metal 

that we assume constant, and Ns( ) the previously calculated D.O.S. in the anisotropic 

superconductor. We introduce a damping parameter  in order to take into account the effect 

of a low 3D interaction and of the surface impurities. 

 

 
Figure 11: (a) Curves of the conductance calculated for a N-I-S junction. Solid line: in the 

superconducting state at T = 5 K with Max = 22 meV, min = 6 meV,  = 0.1 meV, t = 0.2 eV and 

De = -60 meV, ' = 5 meV. Dashed line : in the normal state at T = 100 K with Max = min = 0 meV, 

 = 0.1 meV, t = 0.2 eV and De = -60 meV, ' = 5 meV. (b) For comparison we show Figure (7) of 

Reference [33]. The maximum of the normal state conductance (or D.O.S.) at negative sample bias is 

well reproduced. 
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SPECIFIC HEAT 

1. Theoretical calculation 

The purpose of this chapter is to evaluate the influence of the VHs and the anisotropy of 

the gap on the specific heat calculated in the mean field B.C.S. approximation, i.e. we do not 

take into account the fluctuations near the critical temperature Tc. There are a great number of 

experiments measuring Cs. To compare our calculations to experiments, we must subtract the 

part due to fluctuations. These kind of adjustment have been made by various authors by 

using the fact that thermodynamic fluctuations are symmetric about Tc and can be easily 

evaluated above Tc [34,35]. Also we do not take into account the magnetic fluctuations in low 

temperature, nor the pair-breaking which may exist in overdoped sample. By the usual way, 

we obtain for Cs :  

 

C T)
k T

k T)

k T)
s

B

k B

k B
k

k(
exp( /

exp( /

2

1
2 2

2

1

1
2

2

k T

k T)

k T)

T)

TB

k B

k B
k

kexp( /

exp( /

(
            (15) 

 

We use the values of k and k ( Max (T, De) and min (T, De)) given by formula (7-11) to 

evaluate the two integrals of formula (15) numerically. Near Tc we have a very good 

agreement between the calculated values and the following analytical formula :  

  Max Max cT T T,min ,min

/
( ) . ( / )0 17 1

1 2
 

We see that the slopes 
2

/ T do not depend on doping which simplifies the calculation of 

the second integral of formula (15). The results are presented in Figures 12 and 13 where we 

plot Cs versus T and C/C|Tc for various doping levels De. 

 

We can make the following observations : 

 1- The jump in specific heat varies with doping C/C|Tc is 3.2 for De = 0 and 1.48 for 

De = 60 meV compared to 1.41, the B.C.S. value for a isotropic superconductor, with a 

constant D.O.S., N0 in the normal state. The high value of C/C|Tc is essentially due to the 

VHs when it coincides with the Fermi level and the highest value of the gap k. With doping, 

the VHs moves away from F and C/C|Tc decreases toward its B.C.S. value. 

 2 - There is also a difference in the specific heat CN in the normal state. For a usual 

metal with a constant DOS N0, N NC T/  is constant and proportional to N0. Here we find 

N
a T) bln( /1  for 0  D  30 meV where a and b are constant. For De = 0 this 
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behaviour has already been predicted by Bok and Labbé in 1987 [36]. The specific heat CN(T) 

explores a domain of width kBT around the Fermi level F. So for De << kBTc, the variation of 

N above Tc is logarithmic. For De > 30 meV, at high temperature T - Tc > De, the B. L. law is 

observed, but for lower temperatures N increases with T and passes through a maximum at 

T*, following the law : T* (meV) = 0.25 De (meV) or T* (K) = 2.9 De (meV). 

2. Comparison with experiments 

Because of the difficulty to extract exactly Cs from the experimental data, we will 

compare only the general features to our calculation. We see that the doping has a strong 

influence on Tc and all the superconducting properties, so we assume that its role is to 

increase the density of holes in the CuO2 planes. To compare our results on the effect of 

doping on Cs with experiments, we have chosen the family of the Tl2Ba2CuO6+  , studied by 

Loram et al [37], Figure. 9 of Reference [37], because they are overdoped samples, with only 

one CuO2 plane. The family YBa2Cu3O6+x is underdoped for x < 0.92 and for x > 0.92 the 

chains become metallic and play an important role. However, recent results by Loram et al, 

Figure 2a of the Reference [38] on Calcium doped YBCO, Y0.8Ca0.2Ba2Cu3O7-  , which are 

overdoped two dimensionnal systems, show a very good agreement with our results. We 

notice the displacement and the decrease of the jump in specific heat Cs with doping. The 

jump C/C|Tc = / |Tc = 1.67 [37], and 1.60 [38] greater than the B.C.S. value 1.41 for a 

metal with a constant DOS. We find theoretically this increase in our model due to the 

logarithmic VHs. The symmetrical shape of the peak of Cs, at low doping level, is due to the 

critical fluctuations. A subtraction of these fluctuations [34,35] gives an asymmetrical shape. 

For high doping levels the classical B.C.S. shape is found. 

For De = 0, we find that  is not constant but given by the logarithmic law [36]: 

N a T) bln( /1 . When De increases, the law changes, N passes through a maximum 

for a value of T, T
*
. This behaviour is clearly seen in the YBCuO6+x family [37]. We explain 

the high value C/C|Tc = 2.5 for x = 0.92 in the YBCO family, and we find also the predicted 

variation of T*. 

Our model, neglecting magnetic fluctuations gives an Arrhenius law for Cs at low 

temperature with a caracteristic energy which is min. We see that such a law is observed in 

YBaCuO6.92 and for Tl2Ba2CuO6 at optimum doping. 
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Figure 12: The calculated specific heat versus the temperature for the different value of  

De = F - s = 0, 10, 20, 30, 40, 50, 60 and 70 meV, linked to the variation of doping. 

 

 
Figure 13: Variation of the jump in the specific heat, C/C|Tc versus De. 

 

 

VAN HOVE SINGULARITY AND CHARACTERISTIC 

TEMPERATURE T° 

Several experiments on photoemission, NMR and specific heat have been analyzed using 

a normal state pseudo-gap [39]. In fact, all what is needed to interpret these data is a density 

of state showing a peak above the Fermi energy. To obtain the desired D.O.S. several authors 
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[39] introduce a pseudogap in the normal state. This seems to us rather artificial, the above 

authors themselves write that the physical origin of this pseudogap is not understood. 

We have shown that by using a band structure of the form formula (6), we may interpret 

the results obtained in the normal metallic state. We have computed the Pauli spin 

susceptibility using the following formula : 

 

dBfBf)(n
B

BFDBFD

B0

P
  (16) 

 

The results fit well the experiments. We find a characteristic temperature T° where the 

variation of p  versus T goes through a maximum. We may express De = F – S as a 

variation of doping p = p-p0,  p0 being the doping for which F – S , p0 = 0.20 hole/copper 

atom in the CuO2 plane. Figure 14 the Pauli susceptibility in the normal state for the different 

value of the doping, from metallic system to the metal-insulator transition. Figure 15 

represents the various experimental points taken from Figure 5 of Reference [39] where the 

authors plot Eg/kBTcMax versus p. We see that what the authors call pseudogap is exactly our 

De = F – S , the distance from the Fermi level to the peak in the D.O.S.. 
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Figure 14: Pauli susceptibility in the normal state for the different value of the doping, decreasing 

from the top to the bottom. p =0, p0 = 0.20 corresponding to the top curve,  

then p varies from 0 to -0.15, from metallic system to the metal-insulator transition. 
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Figure 15: De = F – S  EF - ES divided by kBTcMAX (TcMAX = 110 K) versus the variation of the 

density of hole: solid line. The different symbols are the same as in the Figure 5 of the Reference [39], 

they represent the values of the so-called normal pseudogap divided by kBTcMAX (Eg / kBTcMAX ) obtained 

from NMR on different compounds. Our calculations are made with a transfer integral t = 0.25 eV, p is 

taken as zero for p = 0.20. 
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Figure 16: The temperature, T°, where the calculated p  (dashed line) and the specific heat (solid 

line) go through a maximum, versus p. For comparaison we show the results presented in Figure 27 of 

Reference [40], the symbols are the same. (solid squares : from thermoelectric power, circles : from 

specific heat, triangles: from NMR Knight shift data). 
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We have also computed the electronic specific heat Cs [11] in the normal state using the 

same DOS. We find that  = Cs/T goes through a maximum with temperature T, at a value T* 

as found experimentally by Cooper and Loram [40]. In Figure 16 we compare our computed 

T° with the experimental one (Reference [40]), the agreement is excellent. So we are able to 

interpret the NMR and specific heat data in the normal metallic state without invoking a 

pseudogap, but simply by taking into account the logarithmic singularity in the DOS. 

We also explain the shift between the observed experimental optimum Tc, where p = 0.16 

instead of 0.20, and the expected optimum Tc from our theory, i.e. where De =0 , by the fact 

that in first time in our gaps calculations we have not taking into account the variation of the 

3D screening parameter q0a in function of De. These calculations (see the following chapter) 

show the competition between the effect of the position of the V.H.s. and the value of q0a for 

getting the optimum Tc, this competition depends on the compound. When the overdoping 

increases, i.e. the density of free carriers increases, then q0a increases too, and in our model 

this leads to a decrease in Tc. It is why for De = 0 , or p = 0.20, we have not the optimum Tc, 

and why the logarithmic law for p  is found in the overdoped range
 
[11]. In the underdoped 

range in respect of the observed optimum Tc, (i.e. density of free carriers decrease), q0a 

decreases too, but the Fermi level goes too far away from the singularity to obtain high Tc. 

Our results agree completely with the experimental observations. 

EFFECT OF SCREENING ON THE GAP ANISOTROPY             

AND TC  

In the preceding part (“Gap Anisotropy” chapter) we have taken q0a = 0.12 and the 

effective coupling constant eff = 0.665 in order to fit the experimental values of the gap 

observed by ARPES and tunneling spectroscopy. We also have stressed the importance of q0a 

in the value of the anisotropy ratio  = Max/ min. We shall now study in more details the 

influence of q0a on  , Tc. 

For  and Tc the calculations use equations 7-11 where q0a is included in Vkk'. 

For  we adjusted our values of eff to obtain a constant critical temperature of 90.75 K 

and an average gap of av = 14.50 ± 0.15 meV. This approximation is valid in the limit of 

weak screening (q0a < 0.2).The results are presented in Figure 17. We see that increasing q0a , 

or in other word going towards more metallic system or 3D, that the anisotropy of the gap 

decreases. There are no direct experiments to measure  as a function of q0a. The 

photoemission experiments measure the anisotropy as a function of doping, so q0a and F - s 

vary simultaneously. But there is a decrease in  when the doping is varying [30,31]. 

For Tc, we keep the parameter De = 0 = F – S  and we resolve the self-consistant 

equation (7) varying q0a, and adjusting Max, min and av .The results are presented in 

Figure 18. The effect of increasing the screening strength is to decrease Tc. An increase of the 

screening can be due to the proximity of F to S where the DOS is high which leads to a 

strong screening, and in the other side the hide DOS increase Tc . It is why we have to take 

into account these two effects to explain the phase diagram (see the previous chapter). 
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Figure 17: The anisotropy ratio  = Max/ min versus the screening parameter q0a. 
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Figure 18: Tc versus the screening parameter q0a. 

 

We have shown that the effect of increasing q0a is to transform the system in a metallic or 

more isotropic one. 
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INFLUENCE OF DISORDER IN SUPERCONDUCTOR 

COMPOUNDS 

We can consider underdoped or overdoped cuprates as disordered conductors because the 

diffusion coefficient D can be as low as 10
-5

 m
2
.s

-1
. Under these conditions Coulomb 

interaction between electrons must be taken into account. The main effect is to open a dip in 

the DOS near the Fermi level. We show that this model explains most of the observed features 

of the so-called “pseudogap” in the normal state including its value, anisotropy and variation 

with doping. 

1. Introduction 

Many experiments made in the normal state of high Tc superconductor have revealed a 

so-called pseudogap. This pseudogap was observed in transport, magnetic, specific heat 

measurements and in scanning tunneling and ARPES measurements [41]. The pseudogap 

observed in the normal state seems to be a partial gap. It is related to a crossover temperature, 

named T*, below which its observation is possible. Many authors relate T* with magnetic 

phenomena. We propose another explanation for the pseudogap related to T*. It is mainly 

observed in underdoped samples, which are disordered and in which the mean free path and 

thus the diffusion coefficient is very low. Under these conditions, the diffusion length (LD) 

becomes of the order of magnitude or smaller than the electron wavelength 1/kF. The 

materials are thus disordered conductors and the Coulomb repulsion becomes important (for a 

review see Altshuler and Aronov [19]). 

2. Description of the model used 

Altshuler and Aronov [19] have developed a theory to study the effect of the electron-

electron interaction on the properties of disordered conductors. The conditions for its 

application kFLD  1 is also satisfied for underdoped cuprates. The theory has also shown 

that the interaction effects are most clearly pronounced in low-dimensionality systems. We 

compute the one particle DOS taking into account the Coulomb interaction in the self-energy 

term. We show that particle repulsion produces a dip in the DOS at the Fermi energy. In the 

cuprates, where the Fermi surface is very anisotropic, we find that the pseudogap appears first 

and is more pronounced in the directions of the saddle points (1,0) and equivalent of the CuO2 

planes, where the Fermi velocity is smaller. This is clearly seen in the ARPES experiments. 

We take an anisotropic dispersion relation for the one electron energy k in the CuO2 

planes (bidimensional): 

 

k = -2t(cosX + cosY) + 4t’ cosX cosY + De   (17) 

 

where De = F – S + 4 t’ 
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The self-energy is computed using the following formula: 

 

m = m
ex

 + m
H
        (18) 

 

where m
ex

 is the exchange part and 
H

m the Hartree part of the self-energy. 

 

The exchange energy is given by: 

 

22
Dq

2

2
Dq

qU
3

2

q
3

d
d

2

1ex
,m

r
  (19) 

 

with 
'

kkq


, D the diffusion coefficient. U( q


) is the Fourier transform of the long 

range Coulomb interaction and the term in Dq
2
 the Fourier transform of the electron-electron 

correlation function. For U( q


) we take a screened Coulomb potential (the screening is 

tridimensional): 

 

U( q


) = C / ( q
2
 + qo

2
 )      (20) 

 

where qo
-1

 is the screening length. We then compute the DOS within a small angle d , in the 

two directions (1,0) and (1,1), using a selfconsistent procedure. 

3. Variation of the coefficient of diffusion D with doping and k space 

direction. 

In a simple Fermi liquid, the diffusion coefficient is given by D = (1/3)vFl, vF is the Fermi 

velocity and l is the mean free path. For a given sample, with doping and disordered fixed, l is 

constant and vF varies with direction, it is much smaller near the saddle point A (0, ) than at 

point B ( /2, /2). In underdoped samples there are disorder in the oxygen vacancies and 

crystalline defects. We assume that l is strongly reduced as the doping decreases until we 

reach a region where the crystalline order is restored in the insulating antiferromagnetic state. 

F – S  varies slightly and vF at point A is reduced, vF at point B remains almost unchanged, 

so the anisotropy remains. 
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Figure 19: Calculated DOS with Coulomb interaction with different sets of values of D 

A : in the (1,0) direction, and equivalent directions - B : in the (1,1) direction 
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Figure 20: Effect of the screening on the DOS calculated with the Coulomb interaction term. 

 

4. Effect of the the coefficient of diffusion, the screening and the bandwith. 

Our results are presented in Figure 19. We can see that our model explains 

why the pseudogap opens in the (1,0) direction and not in the (1,1) direction as 

seen in ARPES [41]. We have studied the effect of screening by varying qoa, in 

the A direction, the result is shown on Figure 20. The decrease of qoa increases the 

number of states in the wings and deepens the dip. The effect of varying the 

transfer integrals, t and t', i.e. the bandwidth, is less important. 

5. Pauli susceptibility and disorder 

We are able to calculate the total DOS including the exchange term in the self-energy, the 

dip created at FL by the disorder effect can be more or less deep or broad, depending for a 
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given bandwidth of the coefficient of diffusion or the screening strength values. We study 

some cases and calculate the corresponding Pauli susceptibility, as already made but without 

disorder effect (see the previous chapter “VHs and T° ” and Reference [42], where the 

maxima in the Xp(T) curves were related to the high DOS at S. In Figure 21 we present our 

theoretical results for two different pseudogaps. In Figure 21b it is deeper and broader, at T* , 

where these pseudogaps open, Xp(T) (dashed line) begins to be lower than Xp(T) (full line) 

without pseudogap. In Figure 21a  this opening occurs after the temperature T°, where the 

high DOS at ES begins to be filled, but in Figure 21b this opening occurs before this event. 

The consequence of these mixing effects give an effective T°1 in our initial theory [42] and 

T* > T°. This is a theoretical result to be discussed as all experimental results seem to give 

T° > T*. Such bigger pseudogap probably occurs for lower doping, leading to T* <T°. 
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Figure 21: Calculated Pauli Susceptibilities 

Full line = without disorder effect - Dashed line = with disorder effect. Figure 21a: for 0.11 hole doping. 

Figure 21b: for 0.10 hole, lower doping, with a deeper and broader dip, leading to a smaller Xp(T), to a 

more pronounced decrease, and to T* > T°. 
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6. Discussion 

Experiments reported by I. Vobornik et al [43] show the possibility of having disorder-

induced pseudogaps comparable to those existing in underdoped Bi2212 samples. The 

pseudogap can also be observed in overdoped samples [43]. As we can see in our figures, the 

dip is less pronounced if either the screening or the diffusion coefficient is higher. These 

higher values exist in the overdoped regime, leading to a lower value of T*. Then it seems to 

be below Tc, so it cannot be observed in the normal state [44]. Therefore in varying the 

physical parameters in our model (screening, doping (i.e.: F - S), diffusion coefficient, 

bandwidth), we have a good explanation for the evolution of the pseudogap in the phase 

diagram. The pseudogap decreases from underdoped to overdoped region in agreement with 

these parameters. The pseudogap was observed in a non-superconducting region in scanning 

tunneling spectroscopy measurements made by T. Cren et al
 
[45]. This shows that the 

pseudogap is not inevitably related to superconductivity, but is an intrinsic property of the 

material. The existence of the "Coulomb dip" in the HTSC and the Si doped metals [20,46], 

where we know it is due to disorder, confirms that disorder can be at the origin of the 

pseudogap. 

HALL EFFECT IN THE NORMAL STATE OF HTSC 

1. INTRODUCTION 

Many measurements of the Hall coefficient RH in various high Tc cuprates have been 

published [47-51]. The main results are the following : 

(i) at low temperature T, RH  1/ph0e, where ph0 is the hole doping, when T increases 

RH decreases, and for highly overdoped samples becomes even negative [47]. 

(ii) these authors are also able to define a temperature T0 , where RH changes its 

temperature behaviour, and they found that RH(T)/RH(T0) versus T/T0 is a 

universal curve for a large doping domain (from ph0 = 0.10 to ph0 = 0.27). 

We can explain these results by using the band structure for carriers in the CuO2 planes. 

In particular, the existence of hole-like and electron-like constant energy curves, which give 

contributions of opposite sign to RH. The transport properties explore a range of energy kBT 

around the Fermi level, when T is increased more and more carriers are on the electron like 

orbits, resulting in a decrease of RH. 

2. CALCULATION OF THE HALL COEFFICIENT 

The constant energy surfaces of carriers in the CuO2 planes are well describe by 

formula 17. It is very clearly seen [7] that the Fermi level crosses the saddle points (or VHs), 

at S , for a hole doping of ph0  0.22. For energies E > S the orbits are hole-like, and for 

E < S they are electron-like. 
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To compute the Hall coefficient we use the formula obtained by solving the Boltzmann 

equation. In the limit of low magnetic fields B, perpendicular to the CuO2 plane, B << 1, 

where  is an average mobility of the carriers, RH is given by: 

 

B
R

xx

yx

H

1
2

         (21) 

 

where xy and xx are the components of the conductivity tensor. We follow the approach 

given by N. P. Ong [52]: 

 

dEE
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yx
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min

0
    (22) 

 

where f0 is the Fermi Dirac distribution function, Emin and Emax are the bottom and the top of 

the band, and xy(E) is xy computed on a constant energy surface. 

For metals, where kBT << F, xy is usually chosen as xy = xy ( F ), computed on the 

Fermi surface only, this is done by N. P. Ong [52]. In our case, kBT is not small compared to 

F - S , so when T increases the electron-like orbits as well as the hole-like orbits are 

populated. The electron-like orbits give a negative contribution to RH, so that RH decreases 

with temperature. This is our original approach to the problem. To compute RH, we use the 

following method: We compute first xy(E) using the Ong approach. The idea is to draw the 

l


 curve swept by the vector kkvl


 as k


 moves around the constant energy curve 

(C.E.C.). Then xy reduces to: 

 

BA
e

lyx 2

3
2


         (23) 

 

where Al is the area enclosed by C.E.C., in the (lx, ly) plane. There may be secondary loops in 

the l


 curve. When the C.E.C. is non-convex, the l


 curve presents several parts where the 

circulation are opposite (see Reference [52] Figure 2). Then the effective density of carriers 

that must be taken in computing xy is ee
nn

'
 for the electron-like orbits, with  < 1, and 

hh pp
'

 for the hole-like orbits, because for the hole-like orbits we can see that the C.E.C. 

have no non-convex parts. Finally we obtain for the Hall coefficient: 
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where b is the ratio of the average mobilities of the carriers on the electron and hole like 

orbits. That is the mean value of m/ , where  is the relaxation time and m the effective 
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mass. V is the volume of the unit cell. We adjust the Fermi level so that the total number of 

carriers ph0 remains constant. To compute , we must know the scattering mechanisms and 

evaluate .  was computed by Ong [52] assuming a constant l


, but this is not valid in our 

case because l


 is very small near the saddle points (hot spot), both vk and mainly the 

relaxation time k are small at this point. So we estimated a much smaller value of , around 

 = 0.2 for E near S and going to  = 1 when E approaches Emin. We choose a function (E), 

varying from ( S) to 1 for (Emin). 
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en , h
p  are given by the following formulae: 
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Ae is the area enclosed by the electron-like surfaces for E < S, Ah is the area enclosed by 

the hole-like surfaces for E > S. Emax is determined in order to only take into account the 

holes added to the lower half-band. So we obtain for T = 0 K the density of free hole per 

CuO2 plane, the Hall number nH = 1/(RH e) = ph0 / V. The scattering mechanism being 

probably the same for the electron and the hole orbits, which are very similar along the (1,1,0) 

direction, then we assume b = 1. 

3. RESULTS 

The results of our calculations and their comparison with the experimental results are 

given in Figures 22, 23, 24, 25 . When the authors of the experiments give only the 

concentration x of doping atoms, and the critical temperature Tc we have to evaluate the actual 

hole doping ph0 using the universal phase diagram of Tc versus doping for high Tc 

superconductors [53]. 
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Figure 22: 

symbols: experimental RH(T) given by Matthey et al (Reference [50]) in GdBa2Cu3O7-   

full lines: theoretical fits 

theoretical hole doping level ph0 = 0.10 for the experimental Tc = 53.1 K 

theoretical hole doping level ph0 = 0.12 for the experimental Tc = 62.7 K 

theoretical hole doping level ph0 = 0.16 for the experimental Tc = 84.6 K 

The calculations are made with : t = 0.18 eV , t’ = 0.04328 eV , 2t’/t = 0.48, (ζS) = 0.2 

 

 
For the theoretical results of Figures 22, 23, 24 we use the following parameters : 

t = 0.18 eV, t’ = 0.04328 eV, 2t’/t = 0.48, ( S) = 0.2. These values of t and t’ means that the 

shape of the Fermi surfaces changes when we cross the critical doping ph0  0.22. This is also 

seen in the photoemission curves reported by Ino et al [7]. 

In Figure 23 , we can see the representation of the universal law RH(T)/RH(T0) versus 

T/T0, where T0 is defined experimentally by the fact that RH becomes almost constant above 

this temperature [47-50]. In our model this temperature is given by 2kBT0 = F – S, this 

shows that this universal behaviour is due to the 2D band structure, in which the shift F – S 

is connected to the hole doping. This is very natural in our approach, because the factor 

 ( F – S)/kBT enters the Fermi-Dirac distribution.  

We see that the agreement of our fits with the experiments are excellent. There is a small 

discrepancy between the values of our theoretical RH and the experimental values. We think 

that this is due to the inhomogeneities in the material and to the way to carry out the RH 

measurements. This can may be explained by the evaluation of the experimental volume V. 

We use in our calculation the unit cell volumes:  

VLSCO  189 10
-30

 m
3
 for LSCO  and  VYBCO  174 10

-30
 m

3
 for YBCO. 

The experimental value of RH is determined by the geometrical aspect of the sample (the 

thickness in particular). This value is evaluated assuming that the current flow is 

homogeneous throughout the sample, this is not always true. We find a discrepancy between 

1.5 and 2 in the case of YBCO [48] and GdBCO [50], a larger discrepancy is found in the 

case of LSCO [47]. In this later case, the authors find different RH results for the same doping, 

with various compounds (single crystals and thin films). 

Anyway, adjusting our values for RH, at low temperature, we can fit many experimental 

results, for the three different compounds. We also use a rigid band model, where the 
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bandwidth does not change with the doping. This is not exactly the case as shown in the 

photoemission experiments [51], but the effect is small and does not change our conclusions. 
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Figure 23: 

a) : universal law RH(T)/RH(T0) versus T/T0 for various hole doping levels, from 0.09 to 0.18. 

b) : calculated T0, 2kBT0 = F – S, compared with the experimental T0 given by Matthey et al 

(Reference [50]). 
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Figure 24: 

Filled circles: experimental nH(T) = V /(RH e) given by Wuyts et al (Reference [48]) in 

YBa2Cu3Ox. 

Dashed lines: theoretical fits 

a) x=6.50, theoretical hole level = 0.09 

b) x=6.65, theoretical hole level = 0.11 

c) x=6.75, theoretical hole level = 0.13 

d) x=6.85, theoretical hole level = 0.16 

The calculations are made with: t = 0.18 eV, t’ = 0.04328 eV, 2t’/t = 0.48, ( S) = 0.2 

then we obtain the same universal law as in Figure 23a, expressed in nH(T)/nH(T0) . 

From overdoped to lightly underdoped samples the upturns, at low temperature, in the 

experimental curves are due to the occurrence of the superconductivity transition.  
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Figure 25: Filled circles: experimental RH(T) given by Hwang et al (Reference [47]), in 

polycrystalline La2-xSrxCuO4, for x= 0.15, 0.18, 0.20, 0.22, 0.25. Dashed lines: theoretical fits, the 

theoretical hole levels as the same as the experimental. 

 

The calculations are made with : t = 0.23 eV, t’ = 0.06 eV, 2t’/t = 0.52, ( S) = 0.1 

4. THEORETICAL RESULTS AND DISCUSSION 

We use a theoretical band structure closed to the observed experimental one, but not in 

the fine details. We take a rigid band structure not varying with the doping, but we know that 

this variation occurs. Here we make our study with the ratio of transfer integrals of transfer 

closed to 2t’/t = 0.48 in order to obtain this special doping ph0  0.22 when F = S as in our 

previous studies, leading to convincing results (see previous chapters and Reference [12]). 

In Figures 22-25 , we give the best fits with the parameters that we need for this. The 

value of  maybe is too big because with our choice of t and t’ the curvatures of the C.E.C. 

are not so pronounced as in reality. 

But the aim of this chapter is to demonstrate that the temperature dependence 

of the Hall coefficient is due to the effect of the distribution of the hole carriers in 

the electron-like energy levels and in the hole-like energy levels with increasing 

temperature. The results of our model do not change appreciably if we change 

slightly our set of parameters. 
 itself could change with the doping when the band structure varies. Near the optimum 

hole doped and overdoped systems  could decrease due to bigger curvatures of the C.E.C. In 

Figure 26 , we show the effect of the decreasing of  for a slightly overdoped system. This 

account for the behaviour of RH(T) in the optimum and slightly overdoped samples, where 

RH(T) is very flat and its value is very low closed to zero, and even can goes under zero at low 

or high temperature [47-49,51]. Theoretically this is due to the proximity of F and S. 
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Figure 26: Theoretical curves of RH(T).showing the effect of  with , from the top to the bottom, the 

values: –0.2, -0.1, -0.05, 0, +0.1, +0.2. The calculations are made with: t = 0.23 eV, t’ = 0.0553 eV, 

2t’/t = 0.48, VYBCO  174 10
-30

 m
3
, for a theoretical hole doping = 0.22. As the curvatures of the orbits 

increase,  goes from positive to negative value. This leads to very low (even negative) values to higher 

positive values at low T, for RH(T) in the optimum and overdoped samples. 
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Figure 27: Theoretical curves of RH(T) with the same fit parameters of Figure 26 and with 

( S) = 0. From the bottom to the top the hole dopings are the following : 0.22, 0.20, 0.19, 0.16, 0.14, 

0.12, 0.10, 0.09, 0.07, 0.06. 

 

In Figure 27 , we show the theoretical RH(T) curves for a set of doping, using the same fit 

parameters as in Figure 26 , letting ( S) =0. We can see that the general behaviour of RH(T) 

is kept. 

For very underdoped samples, near the metal-insulator transition our approach is no 

longer valid. We propose an explanation for the downturns observed in RH(T) [50,52] based 

on the localization of the carriers above an energy Eloc (see Figure 28). 
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Figure 28: A localization level (Eloc) is introduced in the model to take into account the proximity of the 

metal-insulator transition in very underdoped sample. 

The calculations are made for a hole doping of 0.05, with: t = 0.18 eV, t’ = 0.04328 eV, 

2t’/t = 0.48, ( S) = 0, VYBCO  174 10
-30

 m
3
. 

 

From the bottom to the top of the Figure 28 Eloc – F varies from +1015 meV, that means 

no localization, to +22 meV, effective localization. We see that a strong maxima appears 

when the localization increases. This is due to the loss of localized particles, which do not 

contribute to transport. 

 

In conclusion we find that the electronic structure of CuO2 planes, with hole-like and 

electron-like orbits can explain the values of RH for the high Tc cuprates in the normal state 

and its temperature behaviour [54], this conclusion is reinforced by the fact that we obtain a 

representation of the experimental universal law RH(T)/RH(T0) versus T/T0. 

CONCLUSION 

In conclusion, we have proven that the Van Hove scenario explains many physical 

properties of the HTSC cuprates both in the normal and superconducting states. The existence 

of saddle points (VHs) close to the Fermi level is now well established by many experiments. 

This fact must be taken into account in any physical description of the properties of high Tc 

superconductors. 
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