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Abstract We give a review of the role of the Van Hove
singularities in superconductivity. Van Hove singularities
(VHs) are a general feature of low-dimensional systems.
They appear as divergences of the electronic density of
states (DOS). Jacques Friedel and Jacques Labbé were the
first to propose this scenario for the A15 compounds. In
NbTi, for example, Nb chains give a quasi-1D electronic
structure for the d-band, leading to a VHs. They developed
this model and explained the high TC and the many struc-
tural transformations occurring in these compounds. This
model was later applied by Jacques Labbé and Julien Bok
to the cuprates and developed by Jacqueline Bouvier and
Julien Bok. The high TC superconductors cuprates are quasi-
bidimensional (2D) and thus lead to the existence of Van
Hove singularities in the band structure. The presence of
VHs near the Fermi level in the cuprates is now well es-
tablished. In this context we show that many physical prop-
erties of these materials can be explained, in particular the
high critical temperature TC, the anomalous isotope effect,
the superconducting gap and its anisotropy, and the marginal
Fermi liquid properties, they studied these properties in the
optimum and overdoped regime. These compounds present
a topological transition for a critical hole doping p ≈ 0.21
hole per CuO2 plane.
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1 Introduction

After World War II, Solid State Physics was practically non-
existent in France. Two places were at the origin of a re-
vival of the field, Ecole Normale Supérieure (ENS) in Paris
with Pierre Aigrain and the University of Orsay with Jacques
Friedel, André Guinier and Raymond Castaing.

A postgraduate course was also created in the Parisian
areas called “troisième cycle” in Solid State Physics. There
were two poles, one in Orsay with J. Friedel and A. Guinier
later joined by Pierre-Gilles de Gennes and another at ENS
with P. Aigrain, later replaced by J. Bok.

The great majority of solid state physicists working in
France are former students of this DEA (Diplôme d’Etudes
Approfondies). One of the authors (J. Bok) is very grateful
to J. Friedel for his constant confidence. We collaborated for
more than 30 years in maintaining a very high level in this
research school in solid state physics.

In this paper we shall review the work of Labbé, Friedel
and Barišić on the A15 and our work on cuprates in the
framework of the Van Hove scenario.

2 Friedel et al. Work on Supraconductivity and Van
Hove Singularity

The original approach of Friedel et al. is the following:
The elastic properties of most metals and metallic com-
pounds are generally weakly dependent on temperature. In
the A3B (V3Si, Nb3Sn), called A15 compounds, on the
other hand relatively high superconducting critical tempera-
tures TC (16–18 K) are observed simultaneously with struc-
tural instabilities. This fact, coupled especially with the oc-
currence among these same materials of structural phase
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transformations known to involve lattice vibrational insta-
bilities, has created a lively interest in the lattice dynamics
and in particular the nature of electron–phonon interaction
in materials with this structure. The basic idea, first pro-
posed by Labbé and Friedel and since elaborated by vari-
ous authors, is that one is dealing with a nearly empty set of
d-electron bands whose degeneracy is removed by the elas-
tic strain. The re-equilibration of the electrons within the
split bands of the strained structure can in favorable con-
ditions balance the normal increase in elastic energy. This
destabilizing d-electron contribution is one, however, which
increases with decreasing temperature as the Fermi surface
becomes sharper.

From the 1960s to the 1980s Jacques Friedel was col-
laborating with Jacques Labbé, and Slaven Barišić [1–15,
19]. They studied the instability of the cubic phase of inter-
metallic compounds of the type V3Si at very low temper-
ature. There idea was that a Jahn–Teller type of effect for
the d-band electrons can explain this instability. When the
temperature is raised the effect is reduced and above a cer-
tain temperature TM, it is compensated by the action of the
conduction electrons, which can reasonably be supposed to
stabilize the cubic phase. It is at this temperature TM that
the change of structure from tetragonal-to-cubic phase oc-
curs. They explained the martensitic transition observed at
low temperature in experiment.

Fig. 1 The A15 crystal structure: the spheres represent vanadium
atoms; the Si atoms would be at the corner and at the center of the
cube

At absolute zero temperature the Fermi level is supposed
to lie in a region of quickly changing density of states. The
deformation of the crystal reduces the degeneracy of the
electron spectrum and a large change of the DOS occurs at
the Fermi level. For a certain range of initial Fermi level po-
sitions this can be accompanied by the decrease of the free
energy and thus by a phase transition. Furthermore such a
situation will be temperature sensitive; thus one can expect
a strong temperature dependence of the associated quanti-
ties, in particular of the coefficients in the series expansion
of the free energy in terms of the strains of the cubic lat-
tice.

In their model they used arbitrary values for the DOS at
the Fermi level and for the bandwidth, but the lattice pa-
rameters, the shear modulus, and the variation of the elas-
tic constant with temperature were taken from experiments
[16, 17]. They concluded in favor of a first order transition.

d-electrons, moving along the dense vanadium chains,
are treated in the tight-binding approximation. In the cubic
phase the vanadium atoms are arranged in chains stretching
in the [100], [010] and [001] directions (Fig. 1). They write
a self-consistent potential V for vanadium d-electrons, and
calculate the DOS corresponding to the single-chain energy
contribution, this leads to a very high peak in the DOS. The
Fermi level should fall in one of these peaks. The value of
n(E) (DOS) is infinite at the edges of a d-sub-band Fig. 2.
The width of this peak is much smaller than the width �ωD

of the phonon spectrum. A tetragonal distortion could make
the energy decrease, when the Fermi level (FL) was suffi-
ciently close to a peak. In such a distortion, the degeneracy
is partly lifted, each peak splitting into two peaks. In V3Si,
the stable phase, at absolute zero, is tetragonal, FL lies be-
tween two high peaks (Fig. 3). The rather fine structure is
very sensitive to temperature. By an increase in the tem-
perature, the occupancy of a high peak becomes apprecia-
ble, this leads to a decrease in the stability of the tetragonal
phase (Figs. 4, 5). A variation of the distortion parameter ε

occurs.
Among other properties, this leads to a large and strongly

temperature-dependent Pauli susceptibility, Knight shift,
which were studied and calculated by J. Labbé [8, 9].

In the framework of the BCS theory, J. Labbé, S. Bar-
išić and J. Friedel [6] calculated the critical superconducting
temperature TC and the superconducting gap �, using their

Fig. 2 Density of states (DOS)
in the tetragonal phase,
calculated in the tight-binding
model
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high DOS at FL in the normal state at the bottom of the d-
sub-band. TC and � vary with the small number of electrons
in the narrow d-sub-band. The limit of integration becomes
−�ωD to +�ωD. They conclude that they can expect among
the A3B type compounds the situation between strong and
weak coupling limit of superconductivity (Fig. 6), with more
or less negligible isotopic effect.

In the 1980s, the discovery of high critical supercon-
ducting temperature in layered-metal oxides TC = 35 K, as
La2−xAxCuO4 (A = Ba, Sr), by Bednorz and Müller [18]
raised once again the questions concerning the interplay be-
tween the structural and the superconducting instabilities.
These new superconductors are tetragonal. But La2CuO4 is
orthorhombic at ambient temperature and shows a metal-
to-insulator transition below 100 K, and with the doping x.
The properties of these materials come essentially from the
CuO2 plane. Friedel et al. [19] proposed a simple electron-
phonon model for these new compounds. The predictions of
the model are the tetragonal-to-orthorhombic instability and
separately from it, the bond dimerization within the layers.
The high TC in those materials is associated with the soft
shear branch in their tetragonal state, the main contribution
to the electron-phonon coupling in ionic metals is attributed
to the deformation-induced variation of the crystal field on
the ionic sites which are involved in conduction.

The work of Friedel et al. is very unique and profound.
It gave a good description of the properties of the A15 and
it opened a new approach of superconductivity which was
later developed by a new generation of researchers.

Fig. 3 Fermi level position in the tetragonal phase of V3Si

3 VHs Physics in 1, 2, 3 Dimensions—Electronic
Structure of the Cuprates

Van Hove singularities [20] are general features of periodic
systems. They are topological properties of the electronic
band structure (BS) and do not depend on the particular form
of the BS. In one dimension (1D), they give a divergence of
the DOS varying as 1/(E − ES)1/2, where ES is the energy
of the singularity level. In two dimensions (2D), a one elec-
tron calculation is easy to perform, a general feature of a 2D
model is the presence of VHs with logarithmic divergence
of the DOS at an energy E = ES [21]. Near VHs the varia-
tion of the DOS is logarithmic varying as ln(D/(E − ES))
(Fig. 7) where D/2 is the width of the singularity. In three
dimensions (3D) the divergence is removed and we have a
truncated 2D DOS.

It is now well accepted that the origin of cuprate su-
perconductivity is to be found in the CuO2 planes, which
are weakly coupled together in the c direction, so that
their electronic properties are nearly two dimensional.
There were examples of superconducting cuprates with
high TC to which we applied our model: Bi2Sr2CaCu2O8

(Bi 2212), YBa2Cu3O7 (Y123), YBa2Cu4O8 (Y124) and
Nd2−xCexCuO4+δ (NCCO). For low oxygen content (no
doping) all copper ions in this plane are Cu++ ions, the
material is an anti-ferromagnetic insulator due to strong
electron-electron repulsion on the same copper site. With ad-
ditional oxygenation or doping, holes are introduced in the
CuO2 planes and the compound becomes conducting and
superconducting for T < TC. The maximum TC is achieved
when the hole content is around 16% per Cu atom.

More advanced calculation, using the band structure of
(2), gives the result shown in Fig. 8 for the constant energy
surfaces (CES) in k-space [22, 23]. This is very well con-
firmed by the results of Ino [24] using angular resolved pho-
toemission spectroscopy (ARPES) (see Fig. 7 of Ref. [24]).
A topological transition is well seen for a doping value pc =
0.21 hole per Cu atom. The CES are hole-like for p < pc

and electron-like for p > pc. The resulting VHs is shown in
Fig. 9, and thus increases the transition temperature what-
ever the pairing mechanism. The main consequences of this
Van Hove scenario are given in Refs. [22, 23].

This approach is not valid for the underdoped region.
The strong Coulomb repulsion U between two electrons on

Fig. 4 Density of states in the
cubic phase, calculated in the
tight-binding model
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Fig. 5 Density of states and Fermi level position in the normal state

Fig. 6 Variations of the gap and the superconducting transition tem-
perature with small number of electrons in the narrow d sub-band

Fig. 7 Density of states of a 2D system (EF ≡ FL)

a same site is responsible for the fact that with p = 0 the
cuprates are Mott insulators with antiferromagnetic (AF) or-
der. The AF order disappears rather rapidly with doping,
but AF fluctuations remain, and decrease, until the optimum
doping. This region of strong correlations is present and the
valid approach is that of a doped Mott insulator [25]. This
is also seen in ARPES; some points of the Fermi surface
disappear for underdoped samples.

Fig. 8 Constant energy surfaces

Fig. 9 Density of states

4 Calculation of TC with Electron–Phonon Interaction

4.1 Calculation of TC Using the BCS Approach

Labbé–Bok (1987) [21] have computed the band structure
for the bidimensional CuO2 planes of the cuprates, consid-
ered as a square lattice (quadratic phase). They obtained a
formula for TC using the following assumptions:

1. The Fermi level lies at the Van Hove singularity.
2. The BCS approach is valid:

– The electron–phonon interaction is isotropic and so is
the superconducting gap �.

– The attractive interaction Vp between electrons is non-
zero only in an interval of energy ±�ω0 around the
Fermi level where it is constant. When this attraction
is mediated by emission and absorption of phonons,
ω0 is a typical phonon frequency.
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In that case, the critical temperature is given by

kBTC = 1.13D exp

[
−

(
1

λ
+ ln2

(
�ω0

D

)
− 1.3

)1/2]
(1a)

where λ is the electron-phonon coupling constant [4].
A simplified version of formula (1a), when �ω0 is not too

small compared to D, is

kBTC = 1.13D exp
(−1/

√
λ
)
. (1b)

The two main effects enhancing TC are

1. The prefactor in formula (1b) which is an electronic en-
ergy much larger than a typical phonon energy �ω0.

2. λ is replaced by
√

λ in formula (1b) in comparison with
the BCS formula, so that in the weak coupling limit when
λ < 1, the critical temperature is increased.

As it is, however, this approach already explains many of
the properties of the high TC cuprates near optimum doping.

4.2 The Variation of TC with Doping

Then we did more accurate calculations (1995–1997)
[26, 27]. By taking into account the repulsive interaction
between second nearest neighbors (s.n.n.), and the variation
of hole doping [26], the band structure becomes

Ek = −2t (cosX + cosY) + 4t ′ cosX cosY + De (2)

where t ′ is an integral representing the interaction with
s.n.n., where De = EF − ES + (4t ′) represents the dop-
ing in hole p. The Fermi surface at the VHs is no longer
a square but is rather diamond-shaped, Fig. 8, and we
obtain the DOS of Fig. 9. For lower or higher doping
the critical temperature decreases. We adjusted the exper-
imental results of Koïke et al. [28], Fig. 10. In this case
the authors varied the hole concentration in the CuO2

planes of Bi2Sr2CaCu2O8+δ using different substitution of
cations with different valences, obtaining different systems,
i.e.: Bi2Sr2Ca1−xLuxCu2O8+δ , Bi2Sr2Ca1−xNaxCu2O8+δ ,
Bi2Sr2−xCa1−xLaxCaCu2O8+δ , Bi2Sr2−xKxCaCu2O8+δ .
In this figure our model account for the variation of the
holes in the CuO2 plane, from an optimum doping, here
p ≈ 0.20, of this group of compounds, and we calculate the
corresponding TC when EF shifts from ES.

4.3 Influence of the Coulomb Repulsion

Although BCS theory [29] neglects Coulomb repulsion, An-
derson and Morel [30] showed very early that it plays a cen-
tral role in superconductivity. Assuming a constant repulsive
potential VC from 0 to EF, they found that TC is given by

TC ∼= T0 exp

[ −1

λ − μ∗

]
(3)

Fig. 10 Comparison of the variation of TC with the variation of the
doping dp from the optimum doping at dp = 0, calculated in our model
(filled circles) and the experimental results of Koïke et al. (open cir-
cles) [28]

with

μ = NoVC and μ∗ = μ

1 + μ lnEF/ω0
.

Cohen and Anderson [31] assumed that for stability rea-
sons μ is always greater than λ. Ginzburg [32] gave argu-
ments that in some special circumstances μ can be smaller
than λ. Nevertheless if we take μ ≥ λ, superconductivity
only exists because μ∗ is of the order of μ/3 to μ/5 for
a Fermi energy EF of the order of 100 �ω0. It is useless to
reduce the width of the band W, because λ and μ vary si-
multaneously and μ∗ becomes greater if EF is reduced, thus
giving a lower TC. Superconductivity can even disappear in
a very narrow band if λ − μ∗ becomes negative.

Force and Bok studied the renormalization of μ, in the
case of a peak in the DOS in the middle of a broad band [33].
They predict a high TC in this case due to three main effects:

– (λ − μ∗) is replaced by the square root (λ − μ∗)1/2.
– μ∗ is reduced compared to μ because the renormalization

is controlled by the width W of the broad band and not
the singularity.

– The prefactor before the exponential in the formula giving
TC is the width of the singularity D instead of the phonon
energy �ω0.

In Fig. 11, we show the variation of TC with the width of
the singularity D, all others parameters (W,ω0) remaining
constant.

5 Anomalous Isotope Effect

The variation of TC with the mass M of the atom of the metal
is considered as evidence for electron–phonon interaction
as the origin of pairing. In this BCS model [29] TC varies
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Fig. 11 Effect of the band width D of the singularity on TC

Fig. 12 From Ref. [37], experimental results of TC(�) and α(•) as
a function of doping concentration for La2−xSrxCuO4 (the data were
taken from Ref. [35])

as M−1/2. The almost complete absence of the isotope ef-
fect when O18 was substituted to O16 in the cuprates [34]
was considered as evidence for the non-phonon origin of su-
perconductivity. But Labbé–Bok [21], using formula (1a),
have shown that the isotope effect is strongly reduced for
HTCS cuprates at optimum doping. This is due to the fact
that in this situation the Fermi level lies near the VHs and
then the width of the singularity D is more important than
the phonon frequency ω0. They also have predicted that the
isotope effect should reappear for underdoped samples. This
was later experimentally observed [35, 36]. The isotope ef-
fect may be measured by the coefficient α defined as TC

proportional to M−α (α = 0.5 for usual superconductors).
Tsuei et al. [37], using the VH scenario, have calculated the
variation of α with doping and have shown that it explains
the experimental observations, Fig. 12.

Fig. 13 From Ref. [43], fit of the resistivity ρ of Tl2Ba2CuO6+δ to a
power law temperature dependence ρ = ρ0 +AT n shown on a log–log
scan. The dashed lines indicate the slope for n = 1 and n = 2

6 Non-Fermi Liquid Properties

6.1 Resistivity

In a classical Fermi liquid, the lifetime broadening 1/τ of an
excited quasiparticle goes as ε2 and the resistivity ρ varies
as T 2. The marginal Fermi liquid situation is the case where
1/τ goes as ε (electronic energy) and ρ is linear in T . In
the half-filled nearest-neighbor coupled Hubbard model on
a square lattice, Newns et al. [38, 39] have shown that this
can also occur when EF is close to ES. This calculation was,
however, contradicted by Hlubina and Rice [40].

Experimental evidence of marginal Fermi liquid behav-
ior has been seen in angle resolved photoemission [41], in-
frared data and temperature dependence of electrical resis-
tivity [42]. Marginal Fermi liquid theory, in the framework
of VHs, predicts a resistivity linear with temperature T . This
was observed by Kubo et al. [43] and cited in Ref. [25]. They
also observe that the dependence of resistivity goes from T

for high TC material to T 2 as the system is doped away from
the maximum TC, Fig. 13, which is consistent with our pic-
ture; in lower TC material the Fermi level is pushed away
from the singularity.

6.2 Hall coefficient

Many measurements of the Hall coefficient RH in various
high TC cuprates have been published [44, 45]. The main
results are the following:

(i) At low temperature T , RH ≈ 1/ph0e, where ph0 is the
hole doping, when T increases RH decreases, and for
highly overdoped samples becomes even negative.

(ii) These authors are also able to define a temperature T0,
where RH changes its temperature behavior, and they
found that RH(T )/RH(T0) versus T/T0 is a universal

Author's personal copy



J Supercond Nov Magn (2012) 25:657–667 663

Fig. 14 Universal law RH(T )/RH(T0) versus T/T0 for various hole
doping levels, from 0.09 to 0.18

curve for a large doping domain (from ph0 = 0.10 to
ph0 = 0.27).

We can explain [46], following the approach given by
Ong [47], these results by using the band structure for carri-
ers in the CuO2 planes. In particular, the existence of hole-
like and electron-like constant energy curves, Fig. 8, which
give contributions of opposite sign to RH. The critical dop-
ing, for which a topological transition is observed and calcu-
lated is p = 0.21 hole per CuO2 plane. The transport prop-
erties explore a range of energy kBT around the Fermi level,
when T is increased more and more carriers are on the
electron-like orbits, resulting in a decrease of RH. In Ref.
[46] we present our calculations and the theoretical fits of
many experimental results, and we show that it works and
this supports our model. We find the universal law (Fig. 14).

6.3 Specific Heat and Electronic Susceptibility

Several experiments on photoemission, NMR and specific
heat have been analyzed using a normal state pseudogap
[48]. In fact, all that is needed to interpret these data is a
density of state showing a peak above the Fermi energy.
To obtain the desired DOS several authors [48] introduce
a pseudogap in the normal state. This seems to us rather ar-
tificial, the above authors themselves write that the physical
origin of this pseudogap is not understood. We have shown
that by using a band structure of the form of formula (2),
we may interpret the results obtained in the normal metallic
state.

The variation with the doping is linked to the distance
of the FL from the singularity level (EF − ES), so does the
variation with the temperature due to the Fermi–Dirac dis-
tribution.

We find a characteristic temperature T0 where the varia-
tion of the electronic susceptibility χp versus T goes through

Fig. 15 The temperature, T0, where the calculated χp (dashed line)
and the specific heat (solid line) go through a maximum, versus δp.
For comparison we show the results presented in Fig. 27 of Ref. [49],
the symbols are the same (solid squares: from thermoelectric power,
circles: from specific heat, triangles: from NMR Knight shift data)

a maximum. We may express De = EF − ES as a varia-
tion of doping δp = p − p0, p0 being the doping for which
EF = ES, p0 = 0.20 hole/copper atom in the CuO2 plane.

We have also computed the electronic specific heat Cs

[27] in the normal state using the same DOS. We find that
γ = Cs/T goes through a maximum with temperature T ,
at a value T ∗ as found experimentally by Cooper and Lo-
ram [49]. In Fig. 15 we compare our computed T0 with the
experimental one (Ref. [49]); the agreement is excellent. So
we are able to interpret the NMR and specific heat data in
the normal metallic state without invoking a pseudogap, but
simply by taking into account the logarithmic singularity in
the DOS. The existence of a pseudogap is however well es-
tablished in the underdoped regime.

We also explain the shift between the observed experi-
mental optimum TC, where p = 0.16 instead of 0.20, and the
expected optimum TC from our theory, i.e. where De = 0,
by the fact that at first in our gaps calculations we have not
taken into account the variation of the 3D screening parame-
ter q0a in function of De. These calculations show the com-
petition between the effect of the position of the VHs and
the value of q0a for getting the optimum TC, this compe-
tition depends on the compound. When the overdoping is
increased, i.e. the density of free carriers increases, then q0a

increases too, and in our model this leads to a decrease in TC.
It is why for De = 0, or p = 0.20, we do not have the opti-
mum TC, and why the logarithmic law for χp is found in the
overdoped range [27]. In the underdoped range with respect
to the observed optimum TC, (i.e. the density of free carriers
decreases), q0a decreases too, but the Fermi level goes too
far away from the singularity to obtain high TC. Our results
agree completely with the experimental observations.
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7 Gap Anisotropy

7.1 The Calculation

Bouvier and Bok [26] have shown that using a weakly
screening electron–phonon interaction, and the band struc-
ture of the CuO2 planes, an anisotropic superconducting gap
is found.

We use the BCS equation for an anisotropic gap:

�	k =
∑
k′

Vkk′�k′√
ξ2
k′ + �2

k′
(4)

and instead of a constant potential as used in BCS, we
choose a weakly screened attractive electron-phonon inter-
action potential:

Vkk′ = −|gq |2
q2 + q2

0

< 0 (5)

where g(q) is the electron–phonon interaction matrix ele-
ment for 	q = 	k′ − 	k and q0 is the inverse of the screening
length. We compute �	k for two values of 	k:

�A for kxa = π,kya = 0, (6a)

�B for kxa = kya = π

2
. (6b)

We solve (4) by iteration for these two specific points of the
Fermi surface, the saddle point A (π,0) or (1, 0) direction,
and point B (π/2,π/2) or (1, 1) direction. To obtain the
entire dependence in the wave vector 	k, we know from group
theory considerations that Vkk′ having a four-fold symmetry,
the solution �k has the same symmetry, so we may use the
angle Φ between the 0 axis and the 	k vector as a variable
and expand �(Φ) in Fourier series:

�(Φ) = �0 + �1 cos(4Φ + ϕ1) + �2 cos(8Φ + ϕ2) + · · ·
(7)

Further developments of the calculations and explanations
about this model are presented in Ref. [26]. We obtain, for
the two computed values:

�A = �Max = �0 + �1 and �B = �min = �0 − �1.

The gap anisotropy is important because the scattering is es-
sentially forward, this is due to the weak screening in two
dimensions. The wave vector explores a small region in k-
space. The gap is important in the direction of the saddle
point, due to its high density of states, and its effect is rein-
forced by the weak screening. But for the point B (π/2,π/2)

the DOS is smaller and the effect is reduced.
From our theoretical results, we find an effective cou-

pling constant λeff in agreement with the hypothesis of the
BCS weak electron-phonon coupling.

Fig. 16 Anisotropic superconducting gap. Calculation for Φ = 0 and
π/4. This represents a s-wave anisotropic superconducting gap with no
nodes in Φ = π/4

7.2 Results

In Fig. 16, we present the result of the iterative calculation.
We thus obtain an “extended s-wave” gap and not a d-wave
pair function. The order parameter is never negative in our
model. Abrikosov [50] has shown, however, that if a short-
range repulsive interaction (which can represent either some
part of the Hubbard repulsion at the copper sites or the inter-
action mediated by spin fluctuations) is added, then the order
parameter can vary in sign and become negative at points
of the Fermi surface distant from the singularity. Such an
approach may reconcile all the observations leading some-
times to s-wave and other times to d-wave symmetry of the
order parameter. The fact that the order parameter is nega-
tive in certain regions of the Fermi surface explains the re-
sults of experiments showing a π phase shift of the order
parameter [51].

In Fig. 17, we present the variation of the various gaps
�Max, �min and �av (or �0) with temperature at optimum
doping, i.e. for a density of holes of the order of 0.20 per
CuO2 plane. We find TC = 91 K and an anisotropy ratio
α = �Max/�min = 4.2 and for the ratios of 2�/kBTC the
following values:

2�Max

kBTC
= 6,

2�av

kBTC
= 3.7,

2�min

kBTC
= 1.4.

This may explain the various values of 2�/kBTC ob-
served in various experiments. The critical temperature
found is TC = 90.75 K as for HTSC cuprates as Bi2Sr2Ca
Cu2O8 (Bi 2212), YBa2Cu3O7−δ (Y123).

In Fig. 18, we present the same results, �Max, �min, �av

as a function of EF − ES linked to the variation of doping.
We observe of course that TC, Fig. 10, and the gaps,

Fig. 18, decrease with the doping from the optimum dop-
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Fig. 17 Variation of the various gaps �Max, �min and �av versus
temperature, at the optimum doping, with the following parameters,
t = 0.2 eV, �ω0 = 60 meV, q0a = 0.12, λeff = 0.665. From top to bot-
tom: square symbol = �Max, diamond symbol = �av, up triangle sym-
bol = �min

Fig. 18 Variation of the various gaps �Max, �min, �av versus the dop-
ing linked to EF − ES at T = 0 K. From top to bottom: square symbol
= �Max, diamond symbol = �av, up triangle symbol = �min

ing to the overdoped region in these calculations. We ob-
tain also an interesting result, which is the decrease of the
anisotropy ratio α with doping [22, 23, 52]. This is con-
firmed by ARPES results.

7.3 Effect of the Screening on the Gap Anisotropy and TC

We stress the importance of q0a, the screening parameter, in
the value of TC and the anisotropy ratio α = �Max/�min. We
give the results of our study, in the approximation of weak
screening (q0a < 0.2). The results are presented in Fig. 19.
We see that increasing q0a, or, in other words, going towards
a more metallic system or 3D, the anisotropy of the gap de-
creases. For TC, the results are presented in Fig. 20. The

Fig. 19 The anisotropy ratio α = �Max/�min versus the screening pa-
rameter q0a, detailed calculations are done in Ref. [52]

Fig. 20 TC versus the screening parameter q0a, detailed calculations
are done in Ref. [52]

effect of increasing the screening strength is to decrease TC.
An increase of the screening can be due to the proximity of
EF to ES where the DOS is high, and on the other side TC

is increased by the high DOS. There is a competition of the
two effects to obtain the maximum TC. It is why we have to
take into account these two effects and why the experimental
TC is not maximum when EF = ES [52].

We show that the effect of increasing q0a is to transform
the system in a metallic and more isotropic one.

8 Evidence of Lattice Involvement

Labbé and Friedel [3–5] gave an explanation for the marten-
sitic phase transformation from the cubic to the tetrago-
nal structure observed at low temperature in the A15 com-
pounds of formula V3X (X = Si, Ga, Ge, . . .) or Nb3Sn.
This change of structure occurs at a temperature TM greater
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than TC. The vanadium (V) atoms form a linear chain and an
almost one dimensional approximation can be used for the
d-electrons. In these conditions a VHs appears at the bottom
of the band and can explain high TC [4, 6, 7]. The electronic
energy is reduced when the lattice is deformed and leads
to a band type Jahn–Teller effect. This effect can explain
the observed cubic to tetragonal transition at low tempera-
ture. This effect does not change TC very much in these A15
compounds, because the role of the high DOS due to the
VHs is important only for small doping (low concentration
of d-electrons).

The situation is more favorable in the cuprates, which
are almost bidimensional and where the VHs lies near the
middle of the band. Far from or near TC, lattice defor-
mations, tetragonal-to-orthorhombic phase transformations,
deformation of the orthorhombic phase, even martensitic
phase transformations, have been observed in the cuprates in
function of temperature, doping, substitution, or under strain
[27, 53–57]. This leads to a competition between electronic
and elastic energies. Evidence of the role of phonon in the
physics of cuprates has been seen experimentally, see for
example the paper of Graf et al. [58].

When the Fermi level lies close to a VHs, of energy ES,
as is the case for cuprates near optimum doping, the situa-
tion could be unstable and a small distortion increases the
distance EF − ES and decreases strongly the electronic en-
ergy.

We propose a different scenario in most of these 2D com-
pounds. When the lattice in the CuO2 plane is quadratic, the
four saddle points correspond to the same electronic energy
ES and the VHs is fourfold degenerate. Due to the doping,
and then to the effect of decreasing the temperature, the lat-
tice becomes orthorhombic (rectangular unit cell). The de-
generacy is lifted and we hope to obtain two VHs at differ-
ent energy ES1 and ES2 corresponding to the saddle points
along kx and ky in reciprocal space.

Ek = −2t (1 + β) cosX − 2t cosY + 4t ′ cosX cosY + De

(8)

Using the twofold degenerate electronic dispersion, (8),
where βt represents the difference in the interaction with
the first neighbors in the x and y direction, we calculate the
DOS versus energy, represented on Fig. 21. In optimal con-
ditions the Fermi level could lie between ES1 and ES2. EF

is then between these energy levels of high DOS in a dip,
itself of a smaller but sufficiently high DOS, the lattice is
stabilized. No more phase transformation could be possible,
at lower temperature this situation favors the BCS condensa-
tion into a superconducting phase instead of a lattice trans-
formation, leading to high TC due to the high DOS.

The goal for experimentalists will be to find the opti-
mal parameters (doping, strain, temperature, . . .) to lead the
sample to such situation that it condensates when EF is
pinned in its dip in order to obtain a very high TC.

Fig. 21 Density of states in the orthorhombic phase

We want to indicate in favor of the electron-lattice inter-
action that de Gennes and Deutscher [59] proposed a model
valid in the underdoped regime based on the idea that if
two holes occupy two adjacent copper sites, a contraction
of the Cu–O–Cu band occurs. This increases significantly
the transfer integral between the Cu and this can lead to the
formation of bound hole pairs.

9 Conclusion

Strong correlations are probably the dominant factor in the
underdoped region. But in the optimum and overdoped re-
gions, we have shown that the experimental observations
may be explained by electron–phonon or electron–lattice in-
teraction coupled with the Van Hove scenario, both in the
normal and superconducting states. The existence of VHs
close to the Fermi level is now well established experimen-
tally and this fact must be taken into account in any physi-
cal description of the properties of high TC superconducting
cuprates.

Acknowledgements Jacqueline Bouvier personally met Professor
Friedel for the first time the day of her thesis defense. He came, invited
by one of my researcher friends, and he stayed during the cocktail. She
adds: I was very impressed by his long and slim figure and his glittering
eyes with strength emerging from him. After this first meeting, we met
sometimes in his home to discuss our respective work. He was always
very interested and always took into account my own words and ca-
pacities. I was very touched by his gentleman behavior regarding me.
Until now, we are corresponding to exchange the ideas submitted in
our papers. I want to deeply thank him for his intellectual interest in
our work and express how I am admiring his lifelong work.

References
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6. Labbé, J., Barišić, S., Friedel, J.: Phys. Rev. Lett. 19, 1039 (1967)
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