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We recall the van Hove scenario
1,2 

developed since 1987. It explains high Tc, anomalous isotope 

effect, gap anisotropy etc . We apply this scenario to the superconductive surface layer, obtained 

by field effect on CaCuO2 by J. H. Schön et al
3,4

. We show that the variation of resistivity and Hall 

effect with temperature can be understood by the presence of a van Hove singularity (v.H.s.) in the 

band structure. The doping by field effect changes the distance between the Fermi level and the 

v.H.s.. In MgB2, two gaps are observed. The large gap is related to a portion of the Fermi surface 

which is almost bidimensional. 

 

 

 

1. INTRODUCTION 

 

 All experiments of angular resolved photoemission spectroscopy (ARPES) have confirmed the 

existence of saddle points (v.H.s.) close to the Fermi level in high Tc copper oxide compounds
5
. 

This is probably not purely accidental and we think that any theoritical model must take into 

account these experimental facts. We have developed a model using itinerant electrons in the 

presence of a v.H.s. in the band structure
1,2 

since many years and we have explained a certain 

number of experimental facts : high Tc
1,2

, anomalous isotope effect
1
, gap anisotropy, specific heat, 

magnetic susceptibility and tunneling conductance, see for more details and more references the 

review paper
2
. Here we shall apply this model to explain the results obtained by J. H. Schon et al

4
 

on a conducting layer of the infinite phase CaCuO2, obtained by field effect, and to explain the 

large gap of MgB2. 

 

 

 

 

 

 

 



2. SUPERCONDUCTOR FIELD EFFECT TRANSISTOR 

 

A recent paper by J. Schon et al
4
 reports experimental results on transport properties of electrons 

and holes in one plane of CuO2 in a layered cuprate (CaCuO2) where the carriers are created 

employing a field effect device (FET). This device allows to vary the carrier concentration from 

0.26 hole per CuO2 to 0.24 electron per CuO2 by applying a voltage on the gate of the FET. The 

results reported are the variation of the resistivity and Hall cœfficient with temperature in this 

wide range of carriers concentration. This method allows a large variation of carriers 

concentration without introducing additional disorder linked to the inhomogeneous distribution of 

chemical dopants and to crystallographic defects. The variation of the hole or electron doping and 

the exploration of all the phase diagram can be performed also using one single sample. The 

existence of hole and electron bands can be explained following theoretical band structure 

calculations made by D. M. Newns et al
6
. These calculations use an Hamiltonian containing the p 

type orbitals of the oxygen atom, the d type orbital of the copper atom, and a large intra-atomic 

Coulomb repulsion U on the Cu atom. They find that the effect of U is to split the p band in two 

subbands. The lower Hubbard band can be doped with holes and the upper Hubbard band with 

electrons. In two dimensions, both bands possess a van Hove singularity. The Fermi level lies 

close to the v.H.s. for doping levels of the order of 0.20 hole or 0.18 electron per unit cell. 

 

 We present a model
7
 that explains all the observed experimental features of (T) and RH(T) 

using the band structure for holes in a CuO2. The Fermi surfaces of CuO2 planes, and their 

variation with the doping as YBCO and the BiSCCO compounds have been studied 

intensively
2,5,8

, they are well described by the following formula : 

k = -2 t (cos kxa + cos kya) + 4 t’ cos kxa cos kya + (EF - ES)   (1) 

 

where t is the transfer integral between the first nearest neighbors, t’ between the second nearest 

neighbors, a is the lattice parameter (Cu-Cu distance), ES is the position of the saddle point 

(v.H.s.) and EF the Fermi level (FL). t and t’ have been determined by ARPES in Bi(2212) 

samples
8
. To fit the observed Fermi surface and its variation with hole doping, the following range 

values have been proposed: t = 0.25 to 0.18 eV and t’ = 0.10 to 0.09 eV. The variation of EF – ES 

with doping has been calculated by J. Bouvier and J. Bok
2,9 

using the same values for t and t’. 

 



2.1 RESISTIVITY 

 

 D. M. Newns
10

 has shown that the van Hove singularity gives « marginal Fermi liquid » 

properties when EF (FL) is very close to ES (vHs). The lifetime (1/ ) of a quasiparticle is shown to 

vary as  (the energy measured from EF) when the FL lies at the vHs
6,10

, and when EF (FL) is far 

from ES (vHs) (more than kbT) the dependence is 1/   
2
. This variation is observed 

experimentally in infrared reflection and in photoemission
6,10

. We have computed the resistivity in 

the reference
7
 and we found: 

      = o + b T
2
    for   kbT < EF – ES 

      = o + a T     for   kbT > EF – ES 

 In our model the temperature T* is the temperature where (T) changes its variation going from 

T
2
 to T, so T* is directly related to the distance between EF (FL) and ES (v.H.s.). In our theoretical 

result we find: EF – ES = 1.85 kbT*. The numerical factor is due to an optimal filling of the DOS at 

ES at this temperature. In Figure 1, we show the fit of experimental curves (T) for various hole 

doping, and in Figure 2 our calculated T*, reported with the experimental values of reference
4
. We 

can see that the agreement is remarkably good. 

 

2.2 Hall effect 

 

 For hole energies (opposite in sign to electron energies) E < ES, the orbits of carriers in a 

magnetic field are hole like; they give a positive Hall cœfficient RH. For the hole energies E > ES, 

the orbits are electron like and give a negative contribution to RH. At very low temperature, the 

only important orbits are at E  EF. The sign of RH is positive for the hole doping p < po, and 

negative for p > po. The calculated value of po is 0.21 hole, corresponding to the experimental 

value where the resistivity is perfectly linear in T. The opposite signs are true in the electron band. 

As the temperature increases, i.e. kbT  EF – ES, the electron orbits contribute to the Hall effect 

with a negative sign, then RH decreases. In Figure 3 we plot *
/ HH RR  versus */TT  and find a 

universal curve, as found experimentally
4
. This is natural because our only variable is EF – ES 

when we change the doping. 

 

 

 

 



 

 

FIGURE 1 

(T) for hole doping, from the underdoping top curve to the overdoping bottom curve 

full lines : experimental curves (4) 

dashed crossed lines : fit for some curves 

 

FIGURE 2 

Full line: our calculated T* compared with the experimental values (dots). 
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FIGURE 3 

Universal curve for the ratio of RH/RH*, for hole doping. 

 

 

 

3. MgB2   

 

 We have computed the critical temperature of MgB2 using the Morel-Anderson approach
2,11

. We 

used the band structure (1), one piece of the Fermi surface is nearly 2D and gives a large gap. We 

have used a screened electron-phonon interaction for pairing. In this compound Tc is not so high 

because the Fermi level is rather far from the singularity (about 2.4 eV). We present in Table I our 

calculated values of the large gap , using the following parameters: bandwidth W = 6 eV, and 

various values for the screening qoa (a is the unit cell parameter) and for the effective electron-

phonon constant eff*, chosen to obtain Tc = 41 K. 
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qoa eff*  meV 

0.2 0.100 6 

0.2 0.140 7 

0.3 0.140 6. 

0.3 0.100 6.25 

 

Table I 

 

 

 

4. Conclusion 

 

 In conclusion, we have shown that the van Hove scenario explains many experimental results 

obtained in 2D superconductors. The single doped monolayer, made by J. H. Schön, is a perfect 

object to check the van Hove scenario in the HTSC cuprates. J. Bouvier et al (12) have already 

proposed the same explanation for the maxima observed in the variation with temperature of 

several measured quantities: Pauli susceptibility, the specific heat, the Knight shift, the 

thermoelectric power etc…(13). On the other hand, some experiments (14) show a pseudogap, i.e. 

a loss of states near the Fermi level. This pseudogap may be related to disorder introduced by 

doping (15). In some highly disordered samples two characteristic temperatures T° and T* are 

observed corresponding to these two different effects. 
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