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Hall effect in the normal state of high Tc cuprates
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Abstract

We propose a model for explaining the dependence in temperature of the Hall effect of high Tc cuprates in the normal

state, in various materials (LSCO, YBCO, BSCCO, GdBCO). They all show common features: a decrease of the Hall

coefficient RH with temperature and a universal law, when plotting RHðT Þ=RHðT0Þ versus T=T0 where T0 is defined from

experimental results. This behaviour is explained by using the well known electronic band structure of a CuO2 plane,

showing saddle points at the energies ES in the directions ½0;�p� and ½�p; 0�. This is well confirmed by photoemission

experiments. We remark that in a magnetic field, for energies E > ES the carrier orbits are hole-like and for E < ES they

are electron-like, giving opposite contributions to RH. We are able to fit all experimental results for a wide range of hole

doping (ph0) (0:09 < ph0 < 0:30), and to fit the universal curve. For us kBT0 is simply EF � ES, where EF is the Fermi level

varying with the doping.
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1. Introduction

Many measurements of the Hall effect in vari-

ous high Tc cuprates have been published [1–5].
The main results are the following:

(i) at low temperature T , RH � 1=ph0e, where ph0
is the hole doping, when T increases RH

decreases, and for highly overdoped samples

becomes even negative [1];
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(ii) these authors are also able to define a temper-

ature T0, where RH changes its temperature

behaviour, and such RHðT Þ=RHðT0Þ versus

T =T0 is a universal curve for a large doping do-
main (from ph0 ¼ 0:10 to 0.27).

We show that we can explain these results by

using the band structure for carriers in the CuO2

planes. In particular, the existence of hole-like

and electron-like constant energy curves, which

give contributions of opposite sign to the Hall

coefficient RH. The transport properties explore a
range of energy kBT around the Fermi level,

when T is increased more and more carriers are

on the electron-like orbits, resulting in a decrease

of RH.
ed.
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2. Calculation of the Hall coefficient

The constant energy surfaces of carriers in the

CuO2 planes are well described by the following

formula:

Ek ¼ �2tðcosKxaþ cosKyaÞ þ 4t0 cos kxa cos kya

þ EF � ES þ 4t0 ð1Þ

where t is the transfer integral between the first

nearest neighbours, t0 between the second nearest

neighbours, a the lattice parameter, k the wave
vector, ES the energy of the saddle point (Van

Hove singularity, VHS) and EF is the Fermi level,

which varies with the doping [6]. These electronic

structures have been intensively studied by angular

resolved photoemission (ARPES) in BSCCO [7],

and more recently by Ino et al. [8] in LSCO, for a

wide range of Strontium doping. From ARPES,

experimental values for t and t0 are obtained. It is
very clearly seen [8] that the Fermi level crosses the

saddle points, at ES, (VHS) for a hole doping of

ph0 � 0:22. For E > ES the orbits are hole-like, and

for E < ES they are electron-like.

To compute the Hall coefficient we use the

formula obtained by solving the Boltzmann

equation. In the limit of low magnetic fields B,
perpendicular to the CuO2 plane, lB � 1, where l
is an average mobility of the carriers, RH is given

by

RH ¼ rxy

r2
xx

1

B
ð2Þ

where rxy and rxx are the components of the con-

ductivity tensor. We follow the approach given by

Ong [9]:

rxy ¼
Z Emax

Emin

�
� of0

oE

�
rxyðEÞdE ð3Þ

where f0 is the Fermi Dirac distribution function,

Emin and Emax are the bottom and the top of the

band, and rxyðEÞ is rxy computed on a constant

energy surface.
For metals, where kBT � EF, rxy is usually

chosen as rxy ¼ rxyðEFÞ, computed on the Fermi

surface only, this is done by Ong [9]. In our case,

kBT is not small compared to EF � ES, so when T
increases the electron-like orbits as well as the
hole-like orbits are populated. The electron-like

orbits give a negative contribution to RH, so that

RH decreases with temperature. This is our original

approach to the problem. To compute RH, we use

the following method: we compute first rxyðEÞ
using the Ong approach. The idea is to draw the~l
curve swept by the vector ~l ¼~vksk as ~k moves

around the constant energy curve (CEC). Then rxy

reduces to

rxy ¼
2e3

�h2
AlB ð4Þ

where Al is the area enclosed by CEC, in the ðlx; lyÞ
plane. There may be secondary loops in the ~l
curve. When the CEC is non-convex, the ~l curve

presents several parts where the circulation are

opposite (see Ref. [9, Fig. 2]). Then the effective

density of carriers that must be taken in computing

rxy is n0e ¼ Cne for the electron-like orbits, with

C < 1, and p0h ¼ ph for the hole-like orbits, because
for the hole-like orbits we can see that the CEC

have no non-convex parts. Finally we obtain for
the Hall coefficient:

RH ¼ V
e

ph � b2n0e
ðph þ bðph0 � phÞÞ2

ð5Þ

where b is the ratio of the average mobilities of the

carriers on the electron- and hole-like orbits. That

is the mean value of hs=mi, where s is the relaxa-

tion time and m the effective mass. V is the volume

of the unit cell. We adjust the Fermi level so that

the total number of carriers ph0 remains constant.
To compute C, we must know the scattering

mechanisms and evaluate C. C was computed by

Ong [9] assuming a constant~l, but this is not valid
in our case because~l is very small near the saddle

points (hot spot), both vk and mainly the relaxa-

tion time sk are small at this point. So we estimated

a much smaller value of C, around C ¼ 0:2 for E
near ES and going to C ¼ 1 when E approaches
Emin. We choose a function CðEÞ, varying from

CðESÞ to 1 for CðEminÞ
CðEÞ ¼ 1� aðE � EminÞn

a ¼ 1� CðESÞ
ðES � EminÞn

; with n ¼ 1

n0e, ph are given by the following formulae:
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n0e ¼
Z ES

Emin

AeðEÞCðEÞ
�
� of0

oE

�
dE ð6Þ

ph ¼
Z Emax

ES

AhðEÞCðEÞ
�
� of0

oE

�
dE ð7Þ

Ae ¼ Al is the area enclosed by the electron-like

surfaces for E < ES, Ah ¼ A1 is the area enclosed

by the hole-like surfaces for E > ES. Emax is

determined in order to only take into account the

holes added to the lower half-band. So we obtain
for T ¼ 0 K the number of free hole carriers ph0 for
the Hall number nH ¼ V =ðRHeÞ ¼ ph0. The scat-

tering mechanism being probably the same for the

electron and the hole orbits, which are very similar

along the ð1; 1; 0Þ direction, then we assume b ¼ 1.
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3. Results

The results of our calculations and their com-

parison with the experimental results are given in

Figs. 1–4.

When the authors of the experimental results

give only the concentration x of doping atoms, and

the critical temperature Tc we have to evaluate the

actual hole doping ph0 using the universal phase
diagram of Tc versus hole doping for high Tc
superconductors [10].
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Fig. 1. Symbols: experimental RHðT Þ given by Matthey et al. [4]

in GdBa2Cu3O7�d. Full lines: theoretical fits. Theoretical hole

doping level ph0 ¼ 0:10, 0.12 and 0.16 for the experimental

Tc ¼ 53:1, 62.7 and 84.6 K, respectively. The calculations are

made with: t ¼ 0:18 eV, t0 ¼ 0:04328 eV, 2t0=t ¼ 0:48,

CðESÞ ¼ 0:2.

Fig. 2. (a) Universal law RHðT Þ=RHðT0Þ versus T=T0 for various
hole doping levels, from 0.09 to 0.18. (b) Calculated T0,
2kBT0 ¼ EF � ES, compared with the experimental T0 given by

Matthey et al. [4].
For the theoretical results of Figs. 1–3 we use

the following parameters: t ¼ 0:18 eV, t0 ¼ 0:04328
eV, 2t0=t ¼ 0:48, CðESÞ ¼ 0:2. These values of t and
t0 mean that the shape of the Fermi surfaces

changes when we cross the critical doping

ph0 � 0:22. This is also seen in the photoemission

curves reported by Ino et al. [8].
In Fig. 2, we can see the representation of the

universal law RHðT Þ=RHðT0Þ versus T=T0, where T0
is defined experimentally by the fact that RH be-

comes almost constant above this temperature

[1–4]. In our model this temperature is given by

2kBT0 ¼ EF � ES, this shows that this universal

behaviour is due to the 2D band structure, in
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Fig. 3. Filled circles: experimental nHðT Þ ¼ V =ðRHeÞ given by Wuyts et al. [2] in YBa2Cu3Ox. Dashed lines: theoretical fits. (a)

x ¼ 6:50, theoretical hole level¼ 0.09; (b) x ¼ 6:65, theoretical hole level¼ 0.11; (c) x ¼ 6:75, theoretical hole level¼ 0.13; (d) x ¼ 6:85,

theoretical hole level¼ 0.16. The calculations are made with: t ¼ 0:18 eV, t0 ¼ 0:04328 eV, 2t0=t ¼ 0:48, CðESÞ ¼ 0:2, then we obtain the

same universal law as in Fig. 2a, expressed in nHðT Þ=nHðT0Þ.
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Fig. 4. Filled circles: experimental RHðT Þ given by Hwang et al.

[1], in polycrystalline La2�xSrxCuO4, for x ¼ 0:15, 0.18, 0.20,

0.22, 0.25. Dashed lines: theoretical fits, the theoretical hole

levels as the same as the experimental. The calculations are

made with: t ¼ 0:23 eV, t0 ¼ 0:06 eV, 2t0=t ¼ 0:52, CðESÞ ¼ 0:1.
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which the shift EF � ES is connected to the hole

doping. This is very natural in our approach, be-

cause the factor ðEF � ESÞ=kBT enters the Fermi–

Dirac distribution.
We see that the agreement of our fits with the

experiments are excellent. There is a small dis-

crepancy between the values of our theoretical RH

and the experimental values. We think that this is

due to the inhomogeneities in the material and to

the way to carry out the RH measurements. This

can may be explained by the evaluation of the

experimental volume V . We use in our calculation
the unit cell volumes:

VLSCO ffi 189� 10�30 m3 for LSCO

and

VYBCO ffi 174� 10�30 m3 for YBCO
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The experimental value of RH is determined by the

geometrical aspect of the sample (the thickness in

particular). This value is evaluated assuming that

the current flow is homogeneous throughout the

sample, this is not always true. We find a dis-
crepancy between 1.5 and 2 in the case of YBCO

[2] and GdBCO [4], a larger discrepancy is found

in the case of LSCO [1]. In this later case, the

authors find different RH results for the same

doping, with various compounds (single crystals

and thin films).

Anyway, adjusting our values for RH, at low

temperature, we can fit many experimental results,
for the three different compounds. We also use a

rigid band model, where the bandwidth does not

change with the doping. This is not exactly the case

as shown in the photoemission experiments [8], but

the effect is small and does not change our con-

clusions.

From overdoped to lightly underdoped sam-

ples the upturns (in nH) or downturns (in RH), at
low temperature, in the experimental curves are

due to the occurrence of the superconductivity

transition.
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Fig. 5. Theoretical curves of RHðT Þ showing the effect of C
with, from the top to the bottom, the values: )0.2, )0.1, )0.05,
0, +0.1, +0.2. The calculations are made with: t ¼ 0:23 eV,

t0 ¼ 0:0553 eV, 2t0=t ¼ 0:48, VYBCO ffi 174� 10�30 m3, for a

theoretical hole doping¼ 0.22.
4. Theoretical results and discussion

We use a theoretical band structure closed to
the observed experimental one, but not in the fine

details. We take a rigid band structure not varying

with the doping, but we know that this variation

occurs. Here we make our study with the ratio of

transfer integrals of transfer closed to 2t0=t ¼ 0:48
in order to obtain this special doping ph0 � 0:22
when EF ¼ ES as in our previous studies, leading

to convincing results [6].
In Figs. 1–4, we give the best fits with the

parameters that we need for this. The value of C
maybe is too big because with our choice of t and t0

the curvatures of the CEC are not so pronounced

as in reality.

But the aim of this paper is to demonstrate that

the temperature dependence of the Hall coefficient

is due to the effect of the distribution of the hole
carriers in the electron-like energy levels and in the

hole-like energy levels with increasing tempera-

ture. The results of our model do not change
appreciably if we change slightly our set of

parameters.

C itself could change with the doping when the

band structure varies. Near the optimum hole

doped and overdoped systems C could decrease

due to bigger curvatures of the CEC. In Fig. 5, we
show the effect of the decreasing of C for a slightly

overdoped system. This accounts for the behav-

iour of RHðT Þ in the optimum and slightly over-

doped samples, where RHðT Þ is very flat and its

value is very low closed to zero, and even can goes

under zero at low or high temperature [1–3,5].

Theoretically this is due to the proximity of EF

and ES.
As the curvatures of the orbits increase, C goes

from positive to negative value. This leads to very

low (even negative) values to higher positive values

at low T , for RHðT Þ in the optimum and overdoped

samples.

In Fig. 6, we show the theoretical RHðT Þ curves
for a set of doping, using the same fit parameters

as in Fig. 5, letting CðESÞ ¼ 0. We can see that the
general behaviour of RHðT Þ is kept.

For very underdoped samples, near the metal–

insulator transition our approach is no longer

valid. We propose an explanation for the down-

turns observed in RHðT Þ [3,5] based on the locali-

zation of the carriers above an energy Eloc, due to
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Fig. 7. A localization level ðElocÞ is introduced in the model to

take into account the proximity of the metal–insulator transi-

tion is very underdoped sample. The calculation are made for a

hole doping of 0.05, with: t ¼ 0:18 eV, t0 ¼ 0:04328 eV,

2t0=t ¼ 0:48, CðESÞ ¼ 0, VYBCO ffi 174� 10�30 m3.
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the proximity of the metal–insulator transition (see

Fig. 7).

From the bottom to the top of the Fig. 7

Eloc � EF varies from the infinity, that means no
localization, to +22 meV, effective localization. We

see that a strong maximum appears when the

localization increases. This is due to the loss of
localized particles, Which do not contribute to

transport.
5. Conclusion

In conclusion we find that the electronic

structure of CuO2 planes, with hole-like and

electron-like orbits can explain the values of RH

for the high Tc cuprates in the normal state and its

temperature behaviour, this conclusion is rein-

forced by the fact that we obtain a representation

of the experimental universal law RHðT Þ=RHðT0Þ
versus T=T0.
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