Comment on the "Evidence for a Self-Confined Plasma" in Laser Annealing

Aydinli, Lo, Lee, and Compaan¹ (ALLC) report the spectral dependence of the induced absorption of silicon on sapphire under intense laser illumination. They claim that these results are due to the existence of an electron-hole plasma with a density of 4×10^{22} cm⁻³, providing evidence for the self-confined plasma predicted by Van Vechten and Wautelet.² We think that this conclusion is erroneous for the following reasons:

(1) The optical properties of an e-h plasma with densities of the order of 4×10^{22} cm⁻³ do not fit at all the experimental results. The study³ of e-hdroplets in Si gives the average energy, for T $\ll T_{\rm F}$ the Fermi temperature, $\epsilon \simeq 5.3 \times 10^{-12} n^{2/3}$ $-11.2\times10^{-6}n^{1/3}$ where ϵ is in meV and n in cm⁻³ (the correlation energy being negligible at large n). So for $n = 4 \times 10^{22}$ cm⁻³, $\epsilon = 6.2$ eV, $E_F^e + E_F^h$ $\simeq 10 \text{ eV}!!$ (if one assumes the same effective mass) and $T_{\rm F} \sim 60\,000$ K which means that the plasma is cold even at the melting point. The resulting "optical gap" or threshold energy for bandto-band absorption should be at $E_0 = 11.5$ eV, in contradiction with the observed absorption which shows little shift compared to the one of Si with no excess e-h pairs. For 1.3 eV $< h\nu <$ 3.3 eV $\ll E_0$ the optical properties of such a dense plasma should be that of a metal.

(2) Our second point concerns the possibility of forming a 4×10²² cm⁻³ plasma which is confined in 0.07 μ m and which lasts the 70 nsec during which the high reflectivity is seen. The key point for the self-confinement found by Van Vechten and Wautelet rests on the hypothesis that in a dense plasma the electron-phonon interaction has disappeared as well as the Auger recombination. One usually believes that the e-h lifetime decreases with density as $(Cn^2)^{-1}$, with $C = 4 \times 10^{-31}$ cm⁶ s⁻¹ in Si, and saturates for $n > 10^{21}$ cm⁻³ at $\tau_0 \sim 6 \times 10^{-12}$ s because of screening. ALLC's pulse (W=1 J cm⁻², $\lambda = 485$ nm, $\tau = 8$ nsec) creates $F = 3.1 \times 10^{26}$ photons cm⁻² s⁻¹ (if one forgets the reflectivity). The maximum density in the confined region extending over $D = 0.07 \mu m$ verifies $F/D - Cn^3 = 0$, i.e., $n = 5 \times 10^{20}$ cm⁻³, much lower than the value of 4×20^{22} cm⁻³ quoted by the authors. (Note that this density does not vary very much with D.)

Moreover, a 4×10^{22} -cm⁻³ plasma can never last 70 ns. After the pulse, the time evolution of the plasma density is ruled by $dn/dt = -n/\tau(n)$,

where $\tau(n) \sim \tau_0 + 1/Cn$. So the density decreases from n_i to n in a time t given by

$$t = \tau_0 \ln \frac{n_i}{n} + \frac{1}{2Cn_i^2} \left(\frac{n_i^2}{n^2} - 1 \right);$$

starting from $n_i = 4 \times 10^{22}$ cm⁻³, $n = 4 \times 10^{20}$ cm⁻³ at t = 35 ps and $n = 5 \times 10^{18}$ cm⁻³ 70 nsec after the pulse! As we believe that electron-phonon interaction and Auger recombination exist, we⁴ cannot understand an e-h plasma density of 4×10^{22} cm⁻³ lasting 70 ns.

(3) Finally, the crystalline phase of covalent Si is no longer the thermodynamically stable phase of Si when the density of e-h is greater than 8 $\times 10^{21}$ cm⁻³ at 0 K. Heine and Van Vechten⁵ have shown that at such a density the transverse-acoustic modes go to zero frequency and the crystal becomes liquid at 0 K. For higher temperature one of us (J.B.)⁶ has estimated the critical density n_p for the melting of silicon. At 600 K, n_p = 3 $\times 10^{21}$ cm⁻³. So at 4×10^{22} cm⁻³, the stable phase is the liquid one.

In summary, we think that the experimental optical properties reported by the authors are not due to a dense e-h plasma for three main reasons. The absorption of a plasma with a density of 4×10^{22} cm⁻³ is that of a metal with a Fermi energy of 10 eV; such a high-density plasma cannot exist during 70 ns because of Auger recombination; and at densities higher than 8×10^{21} cm⁻³, the thermodynamically stable phase is the liquid one.

J. Bok

M. Combescot

Groupe de Physique des Solides de l'École Normale Supérieure F-75005 Paris, France

Received 17 July 1981 PACS numbers: 79.20.Ds, 73.60.Fw, 78.20.Dj

¹A. Aydinli, H. W. Lo, M. C. Lee, and A. Compaan, Phys. Rev. Lett. <u>46</u>, 1640 (1981).

²J. A. Van Vechten and M. Wautelet, Phys. Rev. B <u>23</u>, 5543 (1981).

³See, for example, M. Combescot and P. Nozières, J. Phys. C 5, 2369 (1972).

⁴M. Combescot, Phys. Lett. 85A, 308 (1981).

⁵V. Heine and J. A. Van Vechten, Phys. Rev. B <u>13</u>, ... 1622 (1976).

⁶J. Bok, Phys. Lett. <u>84A</u>, 448 (1981).