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We study the response, to a small electric field, of a doped semiconductor or an optically excited
electron-hole plasma, as a function of carrier density and temperature. We limit the discussion to
the case of nonpolar semiconductors such as Ge and Si and include the screening of the electron-
phonon interaction by the carriers, which are considered as classical as well as degenerate. We show
that the behavior of the relaxation time 7(n) is much more complex than a simple increase due to
electron-phonon interaction screening. For optical phonons, 7 goes through a maximum, which is
reached in the degenerate limit, and finally decreases when the density » continues to increase. For
acoustical phonons we predict that, with increasing n, 7 goes first to a maximum, then decreases to
a minimum, reached for n ~10'° cm? in the case of Ge at 20 K, and finally increases again for very
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large densities and low temperatures.

I. INTRODUCTION

The development of extremely short and intense laser
pulses’’? has motivated various studies on the energy
transfer from the electromagnetic field to the lattice via
the dense electron-hole plasma created by the laser pulse.
In particular, the carrier density dependence of the energy
relaxation time! via phonon emission has been investigat-
ed when the carriers are not in thermal equilibrium with
the lattice. The variation of this energy relaxation time
has also been studied in doped semiconductors?~> when
the carriers are heated by a large electrical field.

In this paper we study the carrier-density dependence of
the momentum relaxation time when the carriers are in
thermal equilibrium with the lattice. The carriers will be
considered in the classical as well as the degenerate limits.
Although the Boltzmann-equation approach® is quite
standard for the calculation of the electric current, we will
recall it briefly in order to trace the origin of the density
dependence in the degenerate limit: This limit has been
essentially studied for metals when the number of free
electrons is a few times more the number of atoms while
these two numbers do not correlate in semiconductors.
We will include the screening of the electron-phonon in-
teraction which has a different form’ for doped semicon-
ductors and optically excited electron-hole plasma.

The main results obtained in this paper are the follow-
ing. If one first neglects the screening, the relaxation time
7 calculated for nondegenerate electrons does not change
with the increasing density of carriers; in the degenerate
limit it decreases essentially because of the increase of the
carrier velocity. At very high density, 7 finally increases
and tends to infinity because of quantum phase-space re-
striction in the case of scattering with acoustical phonons,
while such restrictions do not appear for nonpolar optical

J

a 0
Aﬁk.(_e)g: 4
o€, m 273

35

phonons. This variation of the relaxation time with densi-
ty qualitatively remains the same when the screening of
the electron-phonon interaction is included: It gives of
course an overall increase of 7 in the nondegenerate as
well as in the degenerate case, but this increase is smaller
than the decrease due to the carriers velocity, in the quan-
tum limit. Moreover, as seen in a previous work,’ the
screening of the electron-phonon interaction gives a siz-
able effect only for doped semiconductors with intermedi-
ate densities: it remains of the order of 1 for a very dilute
or very dense electron gas as well as for an electron-hole
plasma at any density. These behaviors of 7(n) are rather
different from the common belief that the electron-
phonon collision time should simply decrease when the
carrier density increases.

In Sec. II, we recall briefly the Boltzmann formalism
and write an integral equation valid in the classical limit
as well as in the degenerate case. In Sec. III, we solve it
exactly for nonpolar optical phonon, when the screening
of the electron-phonon interaction is not included. A
similar calculation for acoustical phonon is done in Sec.
IV, while in Sec. V we discuss the modifications which
appear if one takes into account the screening of the
electron-phonon interaction. Section VI is a discussion of
the previous results using the numerical parameters of
germanium.

II. BOLTZMANN EQUATION

The Boltzmann equation® has been extensively studied
in the classical limit for semiconductors and in the quan-
tum limit for metals. We will recall briefly the main steps
of the formalism.

The linearized Boltzmann equation for the distribution
function f of electrons in presence of an electric field &
reads

[ &k (= | My |2l = fi)+ [ My | 1= FO1} )
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For electron-phonon scattering, the matrix element

M, _, ; is composed of an absorption and an emission
8

term

| My | 2= A4,[ny8(E +#iwg — Ey:)
+(ng+18(Ey +fiwg —Ei)] . (2)
number

ng is the usual occupation

ng=n_(fiwg, /kpT) with

ny(x)=(e*x1)7, (3)

phonon

fiw, is the phonon energy, T is the common lattice and
electron temperature, E; is the electron energy, and
E,=#%%2/2m where m is an effective electron mass.
k=k'tq. The coefficient 4, has the form

2
o p Eq? for acoustical phonon ,

Ag=" 2N Mo, X

~2
D, for nonpolar optical phonon .

(4)
N 4 is the number of atoms per unit volume and M their
mass, E { or 51 are the screened deformation potentials.
In a previous work,” we showed that E; or D, differs
from the bare deformation potential by a screening factor
2 2
Sigh =11 (s)
9" +9qs
g is the screening wave vector, which is the sum of the
contributions of electrons and the holes in the case of
an electron-hole plasma: qgc :qe2 —}—q,f with

g2=(4me*/e)n/EF),

E} being kpT or %Epe, the electron Fermi energy de-
pending on whether the electron gas is degenerate or not.
In the case of acoustical phonons, the parameter s equals
E}/E, for n-doped semiconductor and is usually very
small as the bare deformation potential E, is of the order
of 10 eV, while s=(E, —FE,)/E, is of the order of 1 for
an optically excited electron-hole plasma, E, being the
hole bare deformation potential. For nonpolar optical
phonons, s=(D;—D,)/D, for an electron-hole plasma,
while s=0 for a doped semiconductor (the term sgZ
comes from the Coulomb potential due to the change of
charged impurities, and in optical modes, the density of
the ions does not change).

fx appearing in Eq. (1) is the unknown distribution
function, f¢ is the equilibrium one. One can first check
that, in the limit of small electric field &, the angular
dependence of fy is exactly k-&; so that, to lower order in
&, the Boltzmann equation (1) transforms into an integral
Eq. (7) for the unknown function 7(E} ) defined as

(Ep)
Fe=fO 21— ) — ey TR TR ©)
m kBT
1%
1— = ANV —f2) My i |?
Sx (27T)3f Se) [ My |
X[ B — £ 5B @)

Although the function 7(E) introduced in Eq. (6) has the
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dimension of a time, we want to stress that this is not a
relaxation-time approximation.

The integration of Eq. (7) is particularly easy as
k=k’'*tq is constant in the integration; one can then
transform the three-dimensional (3D) variable k’ into sca-
lar variables k' and g with d3k’'=(27/k)k’dk’q dg and
the condition |k —q | <k’ <k +g; the first integration,
over k', is then trivial due to the & function appearing in
Mkk’.

Before going further, it is useful at this stage to intro-
duce dimensionless variables and appropriate temperature-
like quantities in order to see clearly the dependence of
the resulting conductivity relaxation time in the various
parameters. Let us use K, K’, and Q instead of k, k', and
q defined as

ﬁ2k2
2:—“5
kg T kT’ ®

m is the electron mass and u its chemical potential. The
phonon energy will be written as fiw, =kpTy; for opti-
cal phonons, w, is essentially constant, i.e., Tg~T,p,
while for acoustical phonons, w,~qVs, so that
TQ:2Q(TT5)‘/ 2, Ts being related to the sound velocity
Vg as

A typical value of Ty is 0.1 K, i.e., T is extremely small
compared with the other temperaturelike parameters ap-
pearing in the problem.

One can rewrite the function 7(E; ) appearing in Eq. (7)
in terms of a dimensionless function ¢, and a constant 7,
having the dimension of a time

HE ) =7op(K?) . (10)

From Eq. (4) and (7), 7 is given by

2 2 ey (T3 /TANT /T ) AT /T, (an
0

a=0 for optical phonons and % for acoustical phonons.
T 4 is related to the density of the atoms n 4 by

kgT 4= #/2m)37%n )" . (12a)
We define similarly a temperature 7', related to the elec-
tronic density n by

kpT,=#/2m)3mn)*3 . (12b)

Note that, in semiconductors, T, is always much smaller
than T4, while for metals they are similar. T, is related
to the deformation potentials. For acoustical phonons, we
have set kT4, =E(m /M)'?, while for optical phonons,
Tgp is defined as kg T4, =D (#/Maw,)'/2.

The function ¢ is the solution of an integral equation
deduced from Egs. (7) and (3):
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T

&, corresponds to phonon absorption and ¢ _ to phonon
emission. The integration over Q is such that K, Q, and
(K?+ TQ/T)I/2 form a triangle. The screening factor (5)
reads, with dimensionless variables, §(Q):(Q2+SQ§C)/
(Q?+Q2) where the screening wave vector gives
T3
ch = ? , (14)

T* being % T, or T for a degenerate or a nondegenerate
electron gas, respectively; and T is the effective rydberg
(kgTo=me*/2#%2).

Once the integral equation (13) is solved, as it will be
done in Secs. II and III, the electric current is simply ob-
tained from J =Ne*7E /m with

iQWdKK4<p(K2)n+(x)n+(—x)
[ aK K2n,(x)

T=27 (15)

In the classical limit, n . (—x)~ 1, and the leading contri-
bution in the integral comes from K ~ 1, so that

In the quantum limit (7 << T, ), the leading part in the in-
tegral (15) comes from x ~0 and the effective collision
time reads

+ o0
—TZTof_w¢>(X+T,,/T)n+(x)n+(~x)dx . (17)

III. NONPOLAR OPTICAL PHONONS

The resolution of Eq. (13) is extremely simple in the
case of nonpolar optical phonon (T =T,,, a=0) when
the screening is neglected. Using the variable
V=1—(Q*+T,,/T)/2K?, one finds that the second term
of the bracket of Eq. (13) gives exactly zero as the integral
over V is odd [this can also be seen directly on Eq. (7): as
Ay, ng, and E;. are constant, the integration of k-k’ over
k' produces zero]. The remaining unknown function
@(K?) can be taken out from the integral equation (13)
and the exact solution of the Boltzmann equation is sim-
ply in that case:

1 K+ T/ ny(—x —Top/T)
2¢(K?) eloo’T_ 4 n,(—x)
(K*—Top /)" *0(K*— T, /T)
+
1_‘2~T()r,/r
—x +To,/T
XA T /D) (18)
n+(—x)

The first term of Eq. (18) corresponds to phonon absorp-
tion and the second term to phonon emission. We want to
emphasize that Eq. (18) is also the exact solution for a de-
generate plasma and inelastic scattering.

In the classical limit, n  (—x)=~1; Eqgs. (15) and (18)

7‘2%7’0me4¢(1<2)€ ) g (16)  give for the effective collision time,
37 o
J
_ 4 T, /T To/T  Kie—K o K K?
73 i Tole ™ =1 fo (K24 T /T)l/zdk+ fT /T (g2 172, Top/T; g2 1/2dk (19)
™ +Top o/ T (K24 Ty /T2 e " (K2 —T o /T)

The first integral comes from electrons with energy that is
smaller than the phonon one and which can only absorb
phonons. For T «<T,, they are the ones which contri-
bute to the collision processes, as the electrons with energy
larger than the phonons are negligible; one then finds that
the first integral of Eq. (19) is of the order of ( T/Top)l/2
while the second one is exponentially small. For
T >>T,p, the electrons can equally emit and absorb pho-
nons; the second integral is then of the order of one while
the first one is negligible.

]

Farle T O[T /T, +Tyy)]'"2

n% (—x)n (x)

Using Egs. (11) and (19), one finds for the asymptotic
behavior of the effective collision time in the classical lim-
it

# Té sup(T'%Tof?)

? ~kB T/34/2 eTop/T_ 1 . (20)

In the quantum limit, the effective collision time results
from the behavior of ¢(x +T,/T) for x~0. Using Egs.
(17) and (18), one finds

+ oo
Xf_w dx T JT

(21

ny(—x —Top/T)+60(Ty —Tople ® n (—x + Top/T(Ty — Top) /(T + Top)1/>
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For T,, << T, the denominator in the integral (21) is of
the order of n_ (—x) so that the whole integral is of the
order of 1. For T << T, the denominator is of the order
of 1 or 14 e* depending if T, is larger or smaller than
T,, but in both cases the integral is still of the order of 1.
So that finally the collision time in the quantum limit is

# T (T,+Ty)"?

~RB
Tj/z eTOP/T_ 1

(22)

?—
The asymptotic behaviors of 7 in the classical and

quantum limits, Eq. (20) and (22), can be written in a con-
densed form

# Ti (Top+T+T,)"?

‘—~k
— 3/2 Too/T i
Top Ty e o1

(23)

which very simply shows that the effective relaxation time
for electron—optical-phonon collisions contains a phonon
distribution term and an effective electron velocity
T'2, T,)% or T’ resulting from the electron-phonon
collision. Without the screening of the electron-phonon
interaction, 7,, stays constant when the electron densny
increases, up to the degenerate limit; for T, ~n2">> T,p

and 7, the collision time starts to decrease as
T, '2~n='7 due to the increase of the electron veloci-

ty.
IV. ACOUSTICAL PHONONS

As in a usual experimental situation, the temperature is
much larger than T5~0.1 K, the acoustical-phonon ener-
gy kBTQ:kBZQ(TTS)l/2 is always much smaller than
the electron one and can be neglected in front of it
[Ts <<sup(T,T,)= TQ/T<<K2 or Q?%]. But the pho-
non energy might be larger than kzT in the extreme
quantum limit 9[TQ 200TT) s> T=T, >>T2/T5
as Q~(T,/T)'? in the quantum limit], so that in this
domain Ty,/T will have to be kept in front of
x=K*-T,/T.

It is useful, at this stage to introduce a new variable
z=Ty /T which allows one to rewrite the integral equa-
tion (13) in a closed form

3
(—x)= —— T
THTYTRK | T
2
+A zn+ —x —z)
< J T
2 22° 2
PK?)— |[1— 2 P(K“+2z)

(24)

with A=4K(Ts/T)""2. We have not set @(K?+z)
~@(K?) although z <<K? as ¢ depends a priori on K?
and x, and z can be larger than x (as for a very dense elec-
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tron gas). We have to consider the following two cases.

(1) For T?>> Tssup{T,T,}, A is small and z will also
be smaller than x ~ 1 in the quantum limit so that one can
set @(K?42z)~@(K?). The integral equation (25) is in
that case immediately solved, and one finds

32
T
Ts

+A 274 1

L1 2zt 1
—A )\2 162—1‘

p(K?) 8K

~2K(T/Ts)"V? . (25)

As K~1 or (T,/T)"? for a nondegenerate or a degen-
erate electron gas, respectively, this gives for the asymp-
totic behavior of the average collision time, using Eq. (11),

# T4 T

= ~kg
7 CTY? Ts

——sup{T'2,T)"?} . (26)

(2) The preceding solution assumes that the average
phonon energy stays smaller than kg7. This is no more
the case in the extreme quantum limit, when
T, >>T?/Ts; z cannot then be neglected in front of x,
and one has, for the first time, to really solve an integral
equation in order to get the function ¢. The problem is
the same as the one solved by Bloch for metals,'° and an
exact solution can also be found in this case to leading or-
der in T, Ts/T?, although most text books use in the very
low temperature limit the unnecessary trick of an expan-
sion close to the impurity collision-time value.

In this limit, A is very large. As the integral (25) is con-
vergent, one can extend its bounds to infinity. Moreover
one is tempted to drop z2/A? in front of one as the distri-
bution functions for electron and phonon ensure z~1. If
one does that, A disappears from the integral equation, but
@ seems to be defined within an arbitrary additive con-
stant which would lead to a highly unphysical arbitrary
collision time. In fact, there is no finite solution to the in-
tegral equation (24) for A strictly infinite: this is easily
checked if Eq. (24) is multiplied by n_ (x) and integrated
over x. The left-hand side produces one, while the right-
hand side

2

© +
f+ dz|—zzl—T f dxn (x)n  (—x —2z)
— © e — - 0

X[@(x)—@(x +2)] (27)

equals zero [to see this, one changes x +z into x’ and z
into —z in the part with ¢@(x +z) and one notes that
e ?—1| =e~%|e*—1]|].

The above discussion shows, in fact, simply that the
only possible solution for ¢ when A goes to infinity is an
infinite constant, for the determination of which the term
in z2/A? has to be kept. Using a similar procedure as the

one used for Eq. (27) and setting ¢~aA? to the leading or-
der in A, Eq. (24) gives

(28)
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T(Ty) — — — Acoustical phonons
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FIG. 1. Variation of the momentum relaxation time 7 with

2/3)

density x =T, /T (x varies as n“/°). The variation with x is

given in various parts of the curve.

ie, a~(T, /D", Ts/T)*"?* as K=(T,/T)"/2. One final-
ly obtains for the effective collision time in the extreme
quantum limit.

i ~kp(T3, /TY*NT/Ts)T,"X(T*/T,Ts)* . (29)
-

The asymptotic behaviors for T «<T,, T,<<T <<
(T,Ts)'?, and (T,Ts)'/? << T given in Egs. (27) and (30)
can be condensed in order to give for the electron-
acoustical phonon collision time a single expression

# Té T

— ~kp
o T3/2 T

1
TsT,
T?

——(T +T,)"? 5. (30

i

If one compares Eq. (30) with the similar expression (23)
for the electron—optical-phonon collision time, one finds
again an effective electron velocity part (T2, T,”%). T/?
appeared in Eq. (23) as the collision with an optlcal pho-
non could significantly change the electron velocity, while
this is never the case for acoustical phonons because the
velocity of sound is small compared to the average elec-
tron velocity. The term in T /T is the memory of the
phonon distribution; and the last term is a quantum
phase-space restriction which takes place when the pho-
non energy kp(T,Ts)'/? is larger than kpT: there is no
exponentially small term due to the phonon distribution
function as the electron energy is still larger than the pho-
non one and phonon emission is always possible, except
for phase-space restriction in the electron gas.

Equation (30) shows that the electron—acoustical-
phonon scattering probability first rises when the density
is increased above the degenerate limit, up to a maximum
value of the order of kp poTz/Ti/sz/z, reached for
T, ~T?/Tyg; then the collision time starts to increase due
to the phase-space restriction. The variation of #/7 with
density is shown in Fig. 1.

V. EFFECT OF SCREENING
We have seen in Sec. II that if one takes into account

the screening of the electron-phonon interaction, a screen-
ing factor

Q) =[(Q*+50%)/(Q*+ Q%))

appears in the integral equation (13) for ¢. This will lead
roughly to the division of ¢ by a factor §2(Q§ff) where
Q.sr is an effective transfer momentum which is of the or-
der of the electron momentum K, i.e., sup{1,(T,/T)?,
(TOP/T)VZ}, the term in (TOP/T)“2 appears of course
only for a collision with optical phonons.

In the case of an electron-hole plasma, the parameter s
is of the order of one so that S (Q?) stays close to one no
matter what Q% is and the screening will not significant-
ly change the results of Secs. III and IV.

For doped semiconductors, s is small and the screenlng
factor will strongly modlfy the prevxous results if Q% is
much smaller than QSC as S is then Q%c/ Qsc instead of
one. From Egs. (13) and (14), one finds that the effect of
screening leads one to multiply the electron-phonon col-
lision probability #/7 by

Q:ff sup{ Tz’ Tr%’ Tc2>p }sup{ Tz’ Tr%}
(o) ToT,

(31)

if this quantity is less than one (TQ is the rydberg defined
in Sec. II). As sup{T27T?}>T; and sup{T? T,%,T2 }
>T,T or T,T,,, one immediately finds that Qeff/Qsc is
larger than T /T, and Top/ Ty no matter what T, is; so
that if Ty <T,T,p, Qeff / Q sc 1s always larger than one and
the screening of the electron-phonon interaction will give
a negligible change to the effective collision time, no
matter what the electron energy is. This is, in particular,
the case for a hot doped semiconductor when the thermal
energy is larger than the rydberg.

For Ty > T and T,p, the screening factor decreases the
collision probability only at intermediate electron density,
as, from Eq. (31), one sees that Q% /0% is larger than one
for T, very small or T, very larger. Tables I(a), I(b), and

TABLE 1. Relative magnitudes of various quantities in dif-
ferent Q.¢r/Q;. regimes.

4 T,
@ 1 r_ " 1
TOTn TO
1/3
| L T T, T,
T,
T3, T? T} T,
(b) 1 —e_ | " 1
T()Tn TOTn TO
I
1/3
T3, T3,
—% T T To T,
T, TT, o 0
T3 T,
© 1 % 1
Tn TO TO
4 7
T == T T T,
To Op 0
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_— Optical phonons
——— Acoustical phonons
....... Without screening
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FIG. 2. Variation of 7 with x when the temperature T is
smaller than the optical-phonon temperature T, and than TY.

I(c) give the screening contribution to the electron-phonon
collision probability for T, < T, (To,/To) <T < T, and
T<(Tf;p/ T,), the case of acoustical phonons being the
one where T, does not appear, i.e., Table I(a).

If one adds these screening factors to the unscreened ex-
pressions of the collision times given in Eqgs. (23) and (30)
for optical and acoustical phonons respectively, one does
not expect any significant change for an electron-hole
plasma in any case and for doped semiconductors if the
rydberg is less than the thermal energy or the optical pho-
non one. When the screening significantly modifies the
previous results, i.e., for To>T and T,,, the resulting
variations of the variations of the effective collision times
are shown in Fig. 2 for acoustical phonons, and optical
phonons if T, < T, and in Fig. 3 for optical phonons if T
is less than T, but larger or smaller than Tf,p /Ty [Figs.
3(a) and 3(b), respectively].

Tp O ()
'T'OP(Tn) ---------- Unscreened
Screened l
12
| OO SO oo
| |
T2 !
e T
| | | |
| It | 1 -
(Eﬁ)‘“ T Ty I ol /T
TTo T T
A2 (0)
Top(Tn) (0) :21/2 TR
i
1 |r T312x?,2
e Vioplo |
= |
}TTO | |
| | |
| | |
| | |
| 12 1 I >
L R S A1
T T T

FIG. 3. Variation of 7 due to optical-phonon scattering in
the two following regimes: (a) Tﬁp /To<T < Ty, (b)
T<T3/To< Top
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In the case of acoustical phonon, for T > T, the effec-
tive collision time 7(7T,) first increases up to a maximum
value of the order of 7(0)(T /T,) reached when the elec-
tron gas starts to be degenerate and then decreases to a
minimum value of the order of F(0)(T/Ts)'/? reached
when the acoustical-phonon energy is of the order of k3T,
and phase-space restrictions appear.

For optical phonons, when T < T, 7(T) first increases
with density to reach a maximum value of the order of
T(ONTo,/Ty) reached in the degenerate limit when the
electron energy equals the optical-phonon ones and the
emission of phonons becomes possible; then the effective
collision time keeps decreasing when the density increases.

In all these calculations we did not include intervalley
scattering. This can be done along the same lines.

VI. NUMERICAL VALUES FOR GERMANIUM

We discuss the density dependence of the electron-
phonon scattering time in the specific case of germanium.
The numerical values of the parameters introduced in the
preceding sections are for this material:!!

m=0.2m, ,
Ty =430 K ,
D=4.8 eV/A,
E,=9.5eV,

Vs=5.3x10"m/s,
ny=4.4x102%cm=—3,
M,=12x10" kg .

This gives the following for the various temperaturelike
parameters used previously:

Ts=0.19 K ,
T,=2.4%10°K,
To=130K ,

T4pop=2-1x10"K ,
Topac=1.3x10°K .

Using Eqgs. (23) and (30), the above parameters lead to the
following values for the relaxation times 7(0), at room
temperature ( 7=300 K), when the density is zero

Topl0)=10"""s, 7,(0)=0.5x10""s

in agreement with the usual values, of the classical limit.’

In the case of scattering with acoustical phonons the
minimum value of 7,., that we have predicted to occur at
T, ~T?*/Ts, should be reached for

n.~4x10%7T3 cm—3, (32)

this gives n,~3x10%cm™® at 7T=20 K but
n.~10% cm~3* at T=300 K, so that 7, mi, can never be
reached at room temperature, while the critical density for
low temperature should now be accessible to experiments.
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The corresponding minimum for the scattering time,
given in Eq. (31), is

Tac,min~4>< 10_9T_2 S. (33)

This gives 10~!!' s at 20 K. One can note that the de-
crease from the very low-density value 7,(0) of the
acoustical scattering time is not expected to give a
dramatic effect as

Tac,min/Tac(0)~( Ts/T)1/2 . (34)

This gives 0.1 at 20 K (and 2 1072 at 300 K; although
impossible to reach experimentally, this value gives an or-
der of magnitude of the possible decrease of 7,. when the
density increases at room temperature).

For T <T,, i.e., at low temperature, 7,. has a max-
imum in the case of doped semiconductors, due to the
screening of the electron-phonon interaction [see Table
I(a)]; this maximum is reached for T, ~ T and is such that

7-a\c,mm(/'rac(o)"‘ T/TO . (35)

This gives one order of magnitude change at 20 K. This
effect should be larger for a semiconductor with a smaller
effective rydberg ( T).

In summary, experiments on doped germanium at low
temperature (typically 20 K) should show, when the con-
centration of carriers is varied, first an increase of 7,. by
one order of magnitude, due to the screening of the
electron-phonon interaction, then a decrease by two orders
due to an increase of the average electron velocity, and fi-
nally again an increase of 7,. due to phase-space restric-
tions. For optically excited germanium, for which the
electron-phonon screening stays very small, the first in-
crease of 7,  is washed out.

In the case of scattering of optical phonons, the
electron-phonon interaction screening is not expected to
give a very large effect as T, > T, so that the collision
time 7,, should show a very shallow maximum. For car-
riers in the quantum limit, 7,, will simply decrease as
T, '/?~n~'/3 when the density increases above T, ~ T,y

Note that the preceding results are based on Egs. (23)
and (30) and Table I where only the asymptotic behaviors
in the leading parameters are stressed, and the numerical
factors of the order of 1 are dropped out. This allows one

to show simply the relation between the qualitative
behavior of 7(n) and the various physical effects as elec-
tron velocity, screening, and phase-space restrictions; but
if one wants to make a precise comparison with experi-
ment, one should trace these numerical factors back from
Eq. (13) and eventually solve this integral equation numer-
ically.

In this paper we have considered only e-p scattering.
In doped semiconductors, the scattering of impurities has
to also be considered at low temperature. In the range of
doping, where 7, is maximum, the scattering time of im-
purities 7igy, is small and may hide part of the increase of
Tac; BUt 7ip,, is independent of temperature and a careful
study of the mobility versus T should show the described
effect.

VII. CONCLUSION

We have shown that the density dependences of the
electron scattering time with acoustical phonons and opti-
cal phonons are much more complex than a simple in-
crease which would have resulted from the screening of
the electron-phonon interaction.

For optical phonons, 7,,(r) shows a maximum due to
electron-phonon screening and then decreases, in the
quantum limit, as the average electron velocity increases.

More interesting is the behavior of acoustical-phonon
scattering time. After a maximum as similar as the one
of Top, Tac Shows a minimum followed by a final increase
due to phase-space restriction in the extreme quantum
limit. This minimum can be reached experimentally for
dense carriers at very low temperatures (typically 20 K or
lower in germanium).

The maxima of 7., or 7,. are washed out when the
screening of the electron-phonon interaction is very small,
i.e., for optically excited semiconductors or for hot-doped
materials.
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