J. Bouvier, J. Bok

Laboratoire de Physique du Solide UPR 5 CNRS ESPCI, 10, rue Vauquelin - 75231 Paris cedex 05

INTRODUCTION

Many recent experiments of angular resolved photoemission spectroscopy (ARPES) have confirmed the existence of saddle points (van Hove singularity or v.H.s.) close to the Fermi level in five different copper oxide compounds by three different groups, in Stanford¹, in Argonne² and in Wisconsin³. These observations have been made in the following compounds : Bi₂Sr₂CuO₆ (Bi 2201), Bi₂Sr₂CaCu₂O₈ (Bi 2212), YBa₂Cu₃O₇ (Y123), YBa₂Cu₄O₈ (Y124) and Nd_{2-x}Ce_xCuO_{4+ δ} (NCCO). These experiments establish a general feature : in very high T_e superconductors cuprates $(T_c \sim 90 \text{ K})$ van Hove singularities are present close to the Fermi level. This is probably not purely accidental and we think that any theoretical model must take into account these experimental facts. The origin of high T_{c} in the cuprates is still controversial and the role of these singularities in the mechanism of high T_e superconductivity is not vet established, but we want to stress that the model of 2D itinerant electrons in presence of v.H. singularities in the band structure has already explained a certain number of experimental facts, i.e. high Tc's, anomalous isotope effect⁴, marginal Fermi liquid effects⁵ and the very small values of the coherence length⁶. It was also been shown that the singularity is in the middle of a wide band and that in these circumstances, the Coulomb repulsion µ is renormalized and µ is replaced by a smaller number, the effective electron-phonon coupling is $\lambda_{eff} = \lambda - \mu^*$ and remains positive⁷. We think that this fact explains the very low T_e observed in Sr₂RuO₄, where a very narrow band has been determined by ARPES⁸.

We have shown by using a weakly screened electron-phonon interaction that we obtain a strong gap anisotropy⁹.

We then compute the density of states (D.O.S.) of quasiparticle excitations in the superconducting state, in the frame work of this model. We also study the effect of doping, i.e. of the distance between the Fermi level E_F and the singularity E_S^{10} .

We apply this result to the calculation of tunneling characteristics and of the electronic specific heat $C_8^{10,11}$.

We also study the influence of doping on the screening length and on the calculation of T_c . We thus explain why the maximum T_c is not observed when E_F - $E_S=0$.

We finally study the influence of doping, i.e. $E_F - E_S$, on the normal state properties and interpret some properties of the so-called pseudogap¹².

CALCULATION OF T., THE LABBE BOK FORMULA

Labbé-Bok⁴ have computed the band structure for the bidimensional CuO_2 planes of the cuprates, considered as a square lattice (quadratic phase). The simplest band structure we can take for a square lattice is :

$$\xi_{k} = -2t \left[\cos k_{x} a + \cos k_{y} a \right]$$

where t is an interaction with nearest neighbours. This gives a square Fermi surface with saddle points, or v.H.s., at [0, $|\pi|$] positions of the Brillouin zone, and a logarithmic D.O.S. with a singularity : $n(\xi) = n_1 \ln |D / (\xi - \xi_s)|$, where D = 16t is the width of the singularity and ξ_s the singularity energy level. The v.H.s. corresponds to half filling. We know that is not a good representation of the high T_c cuprates because for half filling (one electron per copper site) they are antiferromagnetic insulators. We think that the Fermi level is at v.H.s. for a doping level corresponding to 20 % of holes in each CuO₂ plane or 0.40 filling of the first Brillouin zone (B.Z.). This can be achieved by taking into account the repulsive interaction between second nearest neighbours (s.n.n.) and the effect of the rhomboedric distorsion. For the repulsive interaction with s.n.n. the band structure becomes:

$$\xi_{k} = -2t \left[\cos k_{x} a + \cos k_{y} a \right] + 4\alpha t \cos k_{x} a \cos k_{y} a$$

where αt is an integral representing the interaction with s.n.n.. The singularity occurs for $\xi = -4\alpha t$, there is a shift towards lower energy. The Fermi surface at the v.H.s. is no longer a square but is rather diamond-shaped. More detailed calculations can be obtained in reference 6, taking also into account the rhomboedric distorsion.

The Labbé-Bok⁴ formula was obtained using the following assumptions :

1- the Fermi level lies at the van Hove singularity

2- the B.C.S. approximations :

- The electron-phonon interaction is isotropic and so is the superconducting gap Δ .

- The attractive interaction V_p between electrons is non zero only in an interval of energy $\pm \hbar \omega_0$ around the Fermi level where it is constant. When this attraction is mediated by emission and absorption of phonons, ω_0 is a typical phonon frequency.

In that case, the critical temperature is given by

$$k_{\rm B}T_{\rm c} = 1.13D \exp\left[-\left(\frac{1}{\lambda} + \ln^2\left(\frac{\hbar\omega_0}{D}\right) - 1.3\right)^{1/2}\right]$$
(1)

where $\lambda = (1/2) n_1 V_p$ is equivalent to the coupling constant.

A simplified version of formula (1), when $\hbar\omega_0$ is not too small compared to D, is :

 $k_B T_c = 1.13 D \exp(-1/\sqrt{\lambda})$

The two main effects enhancing Tc are

1- the prefactor in formula (1) which is an electronic energy much larger than a typical phonon energy $\hbar\omega_0$.

 $2-\lambda$ is replaced by $\sqrt{\lambda}$ in formula (1) in comparaison with the BCS formula, so that in the weak coupling limit when $\lambda < 1$, the critical temperature is increased. In fact it gives too high values of T_c, we shall see later that this is due to the fact that we have neglected Coulomb repulsion between electrons. Taking this repulsion into account we shall obtain values for T_c which are very close to the observed one.

As it is however, this approach already explains many of the properties of the high T_c cuprates near optimum doping.

- The variation of T_c with doping

The highest T_c is obtained when the Fermi level is exactly at the v.H.s.. For lower or higher doping the critical temperature decreases. That is what is observed experimentally¹⁰.

- The isotope effect

Labbé and Bok⁴ showed using formula (1), that the isotope effect is strongly reduced for high T_c cuprates. Tsuei *et al*¹³ have calculated the variation of the isotope effect with doping and shown that it explains the experimental observations.

- Marginal Fermi liquid behaviour

In a classical Fermi liquid, the lifetime broadening $1/\tau$ of an excited quasiparticle goes as ϵ^2 . The marginal Fermi liquid situation is the case where $1/\tau$ goes as ϵ . Theoretically marginal behaviour has been established in two situations (a) the half-filled nearest-neighbour coupled Hubbard model on a square lattice and (b) the Fermi level lies at a v.H. singularity¹³. Experimental evidence of marginal Fermi liquid behaviour has been seen in angle resolved photoemission¹⁴, infrared data¹⁵ and temperature dependence of electrical resistivity¹⁶. Marginal Fermi liquid theory, in the frame work of v.H.s. predicts a resistivity linear with temperature T. This was observed by Kubo et al¹⁶. They also observe that the dependence of resistivity goes from T for high T_c material to T² as the system is doped away from the T_c maximum, which is consistent with our picture; in lower T_c material the Fermi level is pushed away from the singularity

INFLUENCE OF THE COULOMB REPULSION

As soon as 1959 Bogolubov et al¹⁷ have shown that the electron-electron repulsion plays a central role in superconductivity. Assuming a constant repulsive potential $V_{kk'} = V_c$ from 0 to E_F they find that T_c is given by :

$$T_{e} \cong \text{To exp}\left[\frac{-1}{\lambda - \mu^{*}}\right]$$

With $\mu = \text{NoV}_{e}$ and $\mu^{*} = \frac{\mu}{1 + \mu \ln E_{F} / \omega_{o}}$ (2)

Cohen and Anderson¹⁸ assumed that for stability reasons μ is always greater than λ . Ginzburg¹⁹ gave arguments that in some special circumstances μ can be smaller than λ . Nevertheless if we take $\mu \ge \lambda$, superconductivity only exists because μ^* is of the order of $\mu/3$ to $\mu/5$ for a Fermi energy of the order of 100 $\hbar \omega_0$. It is useless to reduce the width of the band W ($E_F = W/2$ for a half-filled band) because λ and μ vary simultaneously and μ^* becomes greater if E_F is reduced, thus giving a lower T_c . Superconductivity can even disappear in a very narrow band if $\lambda - \mu^*$ becomes negative.

We have shown⁷ that nevertheless high T_c can be achieved in a metal containing almost free electrons (Fermi liquid) in a broad band, with a peak in the D.O.S. near the middle of the band.

Taking a D.O.S., which is a constant n_0 between energies - W/2 and W/2, (the zero of energy is at the Fermi level) and is $n(\xi) = n_1 \ln |D/\xi| + n_0$ between -D and +D we find for T_e , the following formula :

$$k_{B}T_{c} = \frac{D}{2} \exp\left[0.819 + \frac{n_{0}}{n_{1}} - \sqrt{F}\right] \qquad \text{where}$$

$$F = \left(\frac{n_0}{n_1} + 0.819\right)^2 + \left(\ln\frac{\hbar\omega_0}{D}\right)^2 - 2 - \frac{2}{n_1}\left(n_0\ln\frac{2.28\hbar\omega_0}{D} - \frac{1}{V_p - V_c^*}\right)$$
(3)

$$V_{c}^{*} = \frac{V_{c}}{1 + V_{c} \left[\frac{n_{1}}{2} \left(\ln \frac{D}{\hbar \omega_{0}} \right)^{2} + n_{0} \ln \frac{W}{2\hbar \omega_{0}} \right]}$$

We can have a few limiting cases for this formula : $n_1 = 0$: no singularity. We find the Anderson-Morel formula. $V_c = 0$ and $n_e = 0$: this gives the Labbé-Bok formula.

There are many effects enhancing T_c

 $\lambda - \mu^*$ is reduced by the square root, down to $\sqrt{\lambda_1 - \mu_1^*}$ when n_1 is large enough.

As $\lambda - \mu * < 1$ the critical temperature is strongly increased because this factor appears in an exponential. The prefactor before the exponential is D, the singularity width instead of $\hbar\omega_0$. We expect $D > \hbar\omega_0$. For instance D may be of the order of 0.5 eV and $\hbar\omega_0$ about a few 10 meV (D/ $\hbar\omega_0$ of the order of 5 to 10).

We have made some numerical calculations using formula (3) to illustrate the effect of Coulomb repulsion. We used two values of D : D = 0.9 eV corresponding to t = 0.25 eV and a much more smaller value D = 0.3 eV. These calculations show that the Coulomb repulsion does not kill superconductivity in the framework of the L.B. model. The general rule for high T_c in this model is to have a peak in the density of states near the middle of a broad band to renormalize the effective repulsion μ . For a narrow band, W, or D, is small, T_c decreases very rapidly as seen in figure (1). A recent case has been observed in Sr₂RuO₄ with a narrow band and T_c is small⁸.

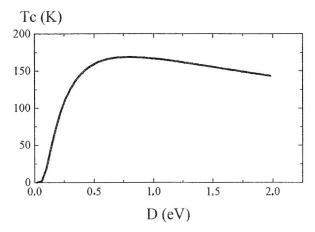


Figure 1 : Effect of the width of the singularity D on T_c . n_0 and the total number of electrons per unit cell are maintened constant with this set of parameters. Then W = 2 eV, $n_0 = 0.3 \text{ eV/states/Cu}$, $n_1 = 0.2/D$. In all these cases the calculations are made so that the total number of states of the band is one by Cu atom.

Then $n_0 W + 2 n_1 D = 1$, and $\lambda = (n_0 + n_1) Vp$. In all these cases $\hbar \omega_0 = 0.05 \text{ eV}$ and $\lambda = 0.5$.

GAP ANISOTROPY

Bouvier and Bok^9 have shown that using a weakly screening electron-phonon interaction, and the band structure of the CuO₂ planes four saddle points: an anisotropic superconducting gap is found.

1. Model and basic equations

We use the rigid band model, the doping is represented by a shift $D_e=E_F$ - E_s of the Fermi level. This band structure is

$$\xi_{k} = -2t \left[\cos k_{x} a + \cos k_{y} a \right] - D_{e}$$
(4)

The Fermi level is taken at $\xi_k = 0$.

We use a weakly screened attractive electron-phonon interaction potential :

$$V_{kk'} = \frac{-|g_q|^2}{q^2 + q_0^2} < 0$$

where g(q) is the electron phonon interaction matrix element for $\vec{q} = \vec{k}' - \vec{k}$ and q_0 is the inverse of the screening length.

We use reduced units: $X = k_x a$, $Y = k_y a$, Q = qa, $u = \frac{\xi}{2t}$, $\delta = \frac{D_e}{2t}$ We use the B.C.S. equation for an anisotropic gap :

$$\Delta_{\vec{k}} = \sum_{k'} \frac{V_{kk'} \,\Delta_{k'}}{\sqrt{\xi_{k'}^2 + \Delta_{k'}^2}} \tag{5}$$

We compute $\Delta_{\vec{k}}$ for two values of \vec{k} : Δ_A for $k_x a = \pi$, $k_y a = 0$ (6) Δ_B for $k_x a = k_y a = \frac{\pi}{2}$

We solve equation (5) by iteration. We know from group theory considerations, that $V_{kk'}$ having a four-fold symmetry, the solution Δ_k has the same symmetry. We then may use the angle Φ between the 0 axis and the \vec{k} vector as a variable and expand $\Delta(\Phi)$ in Fourrier series

$$\Delta(\Phi) = \Delta_0 + \Delta_1 \cos(4\Phi + \phi_1) + \Delta_2 \cos(8\Phi + \phi_2) + \dots$$
(7)

We know that $\phi_1 = 0$, because the maximum gap is in the directions of the saddle points. We use the first two terms. The first step in the iteration is obtained by replacing Δ_k by $\Delta_{av} = \Delta_0$ in the integral of equation (5). We thus obtain, for the two computed values : $\Delta_A = \Delta_{Max} = \Delta_0 + \Delta_1$ and $\Delta_B = \Delta_{min} = \Delta_0 - \Delta_1$, the following expression :

$$\Delta_{A,B}(T) = \lambda_{eff} \int_{u_{min}}^{u_{max}} \frac{\Delta_{av}(T)}{\sqrt{u^2 + u_{av}^2(T)}} I_{(A,B)}(u) \tanh\left(\frac{\sqrt{u^2 + u_{av}^2(T)}}{k_B T / t}\right) du$$
(8)

$$I_{A,B}(u) = \int_{0}^{x_{o}} \frac{dx'}{\left[1 - \left[(\delta - u) - \cos x'\right]^{2}\right]^{\frac{1}{2}}} \frac{(q_{o}a)^{2}}{Q_{A,B}^{2} + (q_{o}a)^{2}}$$
(9)

where $u_{\min} = -\frac{\hbar\omega_c}{2t}$, $u_{Max} = +\frac{\hbar\omega_c}{2t}$, $u_{av}(T) = \frac{\Delta_{av}(T)}{2t}$, $x'_o = a\cos\left(\frac{\delta-u}{2}\right)$

 ω_c is the cut off frequency. For the following part of this work we will keep the value of

 $\hbar\omega_c = 60$ meV for the Bi2212 compound, a characteristic experimental phonon energy. This choice respects our approximation for V_{kk'}. - For the choice of t, the transfer integral comes from the photoemission experiments and is t = 0.2 eV as explained in reference⁹.

- q₀a is adjusted, it is the Thomas Fermi approximation for small q's,

- λ_{eff} is adjusted so as to find the experimental value of Δ_{Max} and Δ_{min} and we find reasonable value of about 0.5. λ_{eff} is the equivalent of λ - μ^* in the isotropic 3D, BC model.

In fact the values of q_0a and λ_{eff} must depend of the doping level D_e . Thi calculation will be done later. Here $q_0a = 0.12$ and $\lambda_{eff} = 0.665$.

2. Results

In figure (2), we present the variation of the various gaps Δ_{Max} , Δ_{min} and Δ_{av} with temperature at optimum doping, i.e. for a density of holes of the order of 0.20 per CuO plane, as seen before⁶. We take in that case $D_e = 0$ and we find $T_e = 91$ K and an anisotropy ratio $\alpha = \Delta_{Max}/\Delta_{min} = 4.2$ and for the ratios of $2\Delta/k_BT_e$ the following values :

$$\frac{2\Delta_{\text{Max}}}{k_{\text{B}}T_{\text{c}}} = 6., \quad \frac{2\Delta_{\text{av}}}{k_{\text{B}}T_{\text{c}}} = 3.7, \quad \frac{2\Delta_{\text{min}}}{k_{\text{B}}T_{\text{c}}} = 1.4$$

This may explain the various values of $2\Delta/k_BT_c$ observed in experiments. Tunneling spectroscopy gives the maximum ratio and thermodynamic properties such as $\lambda(T)$ (penetration depth) gives the minimum gap.

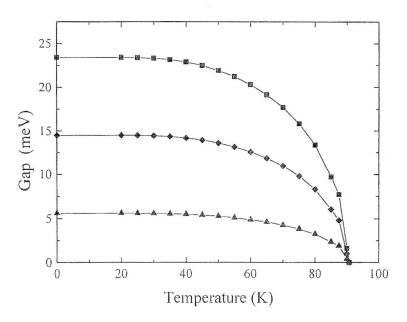


Figure 2 : Variation of the various gaps Δ_{Max} . Δ_{min} and Δ_{av} versus the temperature, at the optimum doping, i.e $D_e = E_F - E_s = 0$ in our model. With the following parameters, t = 0.2 eV, $\hbar \omega_c = 60 \text{ meV}$ $q_0 a = 0.12$, $\lambda_{eff} = 0.665$. The critical temperature found is $T_c = 90.75 \text{ K}$ square symbol = Δ_{Max} diamond symbol = Δ_{av} up triangle symbol = Δ_{min}

In figure (3) we present the same results, Δ_{Max} , Δ_{min} , Δ_{av} as a function of $D_e = E_F - E_s$ (in meV).

In figure (4) we plot the variation of the anisotropy ratio $\alpha = \Delta_{Max}/\Delta_{min}$ versus D. In figure (5) the critical temperature T_c versus D_e and in figure (6) the various ratio $2\Delta/k_BT_c$ versus D_e. We observe of course that T_c and the gaps decrease with D_c or dx. The agreement with experiment²⁰ is very good figure (7). We obtain a new and interesting result which is the decrease of the anisotropy ratio α with doping. This is confirmed by recent results on photoemission^{21,22} where a maximum gap ratio $2\Delta_{Max}/k_BT_c = 7$ is observed at optimum doping with $T_c = 83$ K and $2\Delta_{Max}/k_BT_c = 3$ for an overdoped sample with $T_c = 56$ K, with a small gap $\Delta_{min} = 0-2$ meV for the both T_c , for a Bi2212 compound.

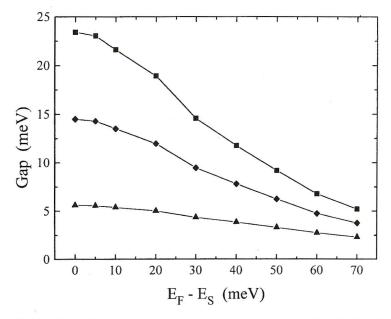
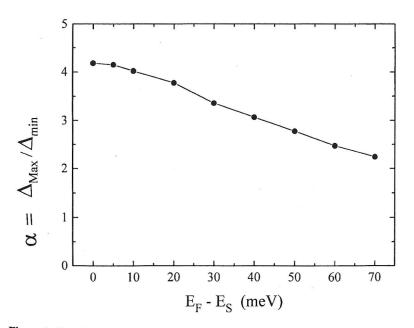
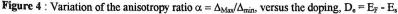


Figure 3: Variation of the various gaps Δ_{Max} , Δ_{min} , Δ_{av} versus the doping, $D_e = E_F - E_s$, at T = 0Ksquare symbol = Δ_{Max} diamond symbol = Δ_{av} up triangle symbol = Δ_{min}





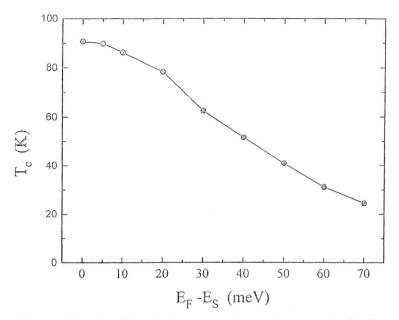
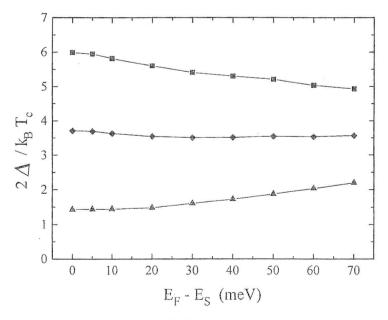


Figure 5 : Variation of the critical temperature T_c versus the doping $D_e = E_F - E_s$



 $\begin{array}{ll} \mbox{Figure 6}: Variation \mbox{ of the various rations } 2\Delta/k_{\rm B}T_{\rm c} \mbox{ versus the doping } D_{e} = E_{\rm F}-E_{\rm s} \\ \mbox{ square symbol} = 2\Delta_{\rm Max}/k_{\rm B}T_{\rm c} \mbox{ diamond symbol} = 2\Delta_{\rm av}/k_{\rm B}T_{\rm c} \mbox{ up triangle symbol} = 2\Delta_{\rm min}/k_{\rm B}T_{\rm c} \end{array}$

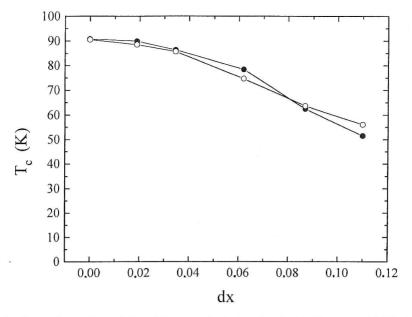


Figure 7 : Comparison of the variation of T_c versus the doping dx calculated in our model (filled circles) and the experimental results of Koïke et al ref (20) (open circles).

DENSITY OF STATES AND TUNNELING SPECTROSCOPY

We have calculated the density of states of quasiparticle excitations in the superconducting state of high $T_c^{10,11}$ cuprates using the model of anisotropic gap that we have recently developed^{9,10}

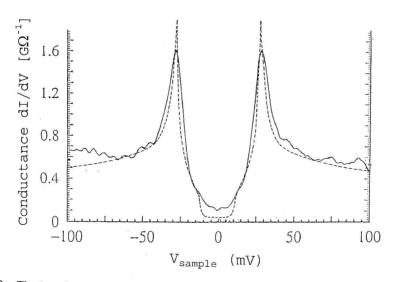


Figure 8 : The best fit of the conductance measured by tunneling spectroscopy on BSCCO, N-I-S junction, by Renner and Fischer (Fig. (10) of Ref. [23]). solid line : fitted curve with $\Delta_{Max} = 27$ meV, $\Delta_{min} = 11$ meV, t = 0.18 eV, $\Gamma = 0.5$ meV at T = 5 K, dashed line : experimental curve.

Here the D.O.S. is computed using the formula :

$$\mathbf{n}(\mathbf{\varepsilon}) = \frac{1}{2\pi^2} \frac{\partial \mathbf{A}}{\partial \mathbf{\varepsilon}} \tag{10}$$

where A is the area in k space between two curves of constant energy of the quasiparticle excitation ε_k given by : $\varepsilon_k^2 = \xi_k^2 + \Delta_k^2$ (11) where ξ_k is the band structure (eq. (4)). We use the same procedure and the same expression of Δ_k as before.

Figure (8) represents the variation of the D.O.S. as a function of ε for T = 0 K. This is similar to the experimental conductance (dI/dV versus the voltage V) of a N-I-S junction here we show the measurement made by Renner and Fisher²³ on a BSCCO sample. Δ_{Max} is located at the maximum peak and Δ_{min} at the first shoulder after the zero bias voltage, figure (9). But for different values of E_F - E_s , we see a new maximum emerging, which is a signature of the van Hove singularity and a dip between this maximum and the peak at Δ_{Max} . This dip is seen experimentally in the STM tunneling experiments of Renner et al²³, figure (10), and in photoemission measurements²⁴.

For the calculation of the conductance, we use the following formula

$$\frac{\mathrm{dI}}{\mathrm{dV}} = \mathrm{CN}_{0} \int_{-\infty}^{+\infty} \mathrm{N}_{\mathrm{S}}(\varepsilon) \left[-\frac{\partial f_{\mathrm{FD}}}{\partial \mathrm{V}}(\varepsilon - \mathrm{V}) \right] \mathrm{d\varepsilon}$$
(12)

where f_{FD} is the usual Fermi-Dirac function; I and V are the current and voltage, C a constant proportional to $|T|^2$, the square of the barrier transmission, N₀ the D.O.S. of the normal metal that we assume constant, and N_s(ϵ) the previously calculated D.O.S. in the anisotropic superconductor.

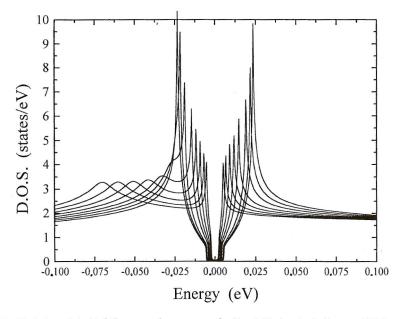


Figure 9 : Variation of the D.O.S. versus the energy ε , for T = 0 K, that is similar at a NIS junction, for different values of the doping $D = E_F - E_s$, i.e. 0, 10, 20, 30, 40, 60 and 70 meV with $\Gamma = 0.1$ meV and $\Gamma' = 5$ meV in the model of ref [11]

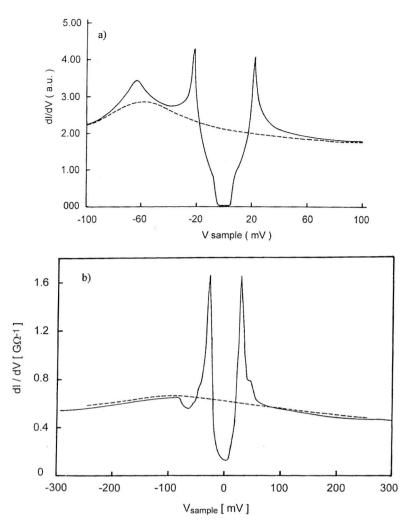


Figure 10 : (a) Curves of the conductance calculated for a N-I-S junction. Solid line: in the superconducting state at T = 5 K with $\Delta_{Max} = 22$ meV, $\Delta_{min} = 6$ meV, $\Gamma = 0.1$ meV, t = 0.2 eV and $D_e = -60$ meV, $\Gamma' = 5$ meV. Dashed line : in the normal state at T = 100 K with $\Delta_{Max} = \Delta_{min} = 0$ meV, $\Gamma = 0.1$ meV, t = 0.2 eV and $D_e = -60$ meV, $\Gamma' = 5$ meV. (b) For comparison we show Fig. (7) of Ref. [23]. The maximum of the normal state conductance (or D.O.S.) at negative sample bias is well reproduced.

SPECIFIC HEAT

1. Theoretical calculation

The purpose of this chapter is to evaluate the influence of the v.H.s. and the anisotropy of the gap on the specific heat calculated in the mean field B.C.S. approximation, i.e. we do not take into account the fluctuations near the critical temperature T_e. There are a great number of experiments measuring C_s. To compare our calculations to experiments, we must subtract the part due to fluctuations. These kind of adjustment have been made by various authors by using the fact that thermodynamic fluctuations are symmetric about T_e and can be easily evaluated above T_e^{25,26}. Also we do not take into account the magnetic fluctuations in low temperature, nor the pair-breaking which may exist in overdoped sample. By the usual way, we obtain for C_s:

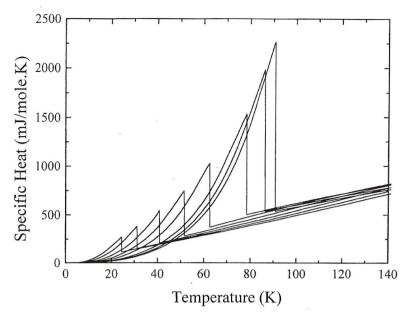


Figure 11 : The calculated specific heat versus the temperature for the different value of the doping $D_e = E_F - E_s = 0, 10, 20, 30, 40, 50, 60$ and 70 meV.

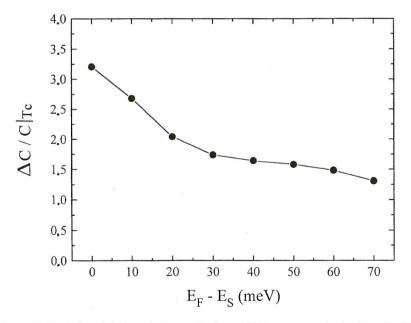


Figure 12 : Variation of the jump in the specific heat, $\Delta C/C|_{Te}$, versus the doping $D_e = E_F - E_S$.

$$C_{s}(T) = \frac{2}{k_{B}T^{2}} \sum_{k} \frac{\exp(\varepsilon_{k} / k_{B}T)}{\left(1 + \exp(\varepsilon_{k} / k_{B}T)\right)^{2}} \varepsilon_{k}^{2} - \frac{1}{k_{B}T} \sum_{k} \frac{\exp(\varepsilon_{k} / k_{B}T)}{\left(1 + \exp(\varepsilon_{k} / k_{B}T)\right)^{2}} \frac{\partial \Delta_{k}^{2}(T)}{\partial T} \quad (13)$$

We use the values of ε_k and Δ_k (Δ_{Max} (T, D_e) and Δ_{min} (T, D_e)) given by formula (8) and (4,11) to evaluate the two integrals of (13) numerically. Near T_e we have a very good agreement between the calculated values and the following analytical formula :

$$\Delta_{\text{Max,min}} = \Delta_{\text{Max,min}} \left(T = 0 \right) 1.7 \left(1 - \left(T / T_c \right) \right)^{1/2}$$

We see that the slopes $\partial \Delta^2 / \partial T$ do not depend on doping which simplifies the calculation of the second integral of formula (13). The results are presented in figures (11) and (12) where we plot C_s and $\Delta C/C|_{Tc}$ versus T for various doping levels D_e.

We can make the following observations :

1- The jump in specific heat varies with doping $\Delta C/C|_{Te}$ is 3.2 for $D_e = 0$ and 1.48 for $D_e = 60$ meV compared to 1.41, the B.C.S. value for a isotropic superconductor, with a constant D.O.S., N₀ in the normal state. The high value of $\Delta C/C|_{Te}$ is essentially due to the v.H.s when it coincides with the Fermi level and the highest value of the gap Δ_k . With doping, the v.H.s moves away from E_F and $\Delta C/C|_{Te}$ decreases toward its B.C.S. value.

2 - There is also a difference in the specific heat C_N in the normal state. For a usual metal with a constant D.O.S. N_0 , $\gamma_N = C_N / T$ is constant and proportional to N_0 . Here we find $\gamma_{_N} = a \ln(1/T) + b$ for $0 \le D \le 30$ meV where a and b are constant. For $D_e = 0$ this behaviour has already been predicted by Bok and Labbé in 1987^{27} . The specific heat $C_N(T)$ explores a domain of width k_BT around the Fermi level E_F . So for $D_e << k_BT_e$, the variation of γ_N above T_e is logarithmic. For $D_e > 30$ meV, at high temperature $T - T_e > D_e$, the B. L. law is observed, but for lower temperatures γ_N increases with T and passes through a maximum at T^* , following the law : T^* (meV) = 0.25 D_e (meV) or T^* (K) = 2.9 D_e (meV).

2. Comparison with experiments

Because of the difficulty to extract exactly Cs from the experimental data, we will compare only the general features to our calculation. We see that the doping has a strong influence on T_c and all the superconducting properties, so we assume that its role is to increase the density of holes in the CuO₂ planes. To compare our results on the effect of doping on C_s with experiments, we have chosen the family of the $Tl_2Ba_2CuO_{6+\delta}$, studied by Loram et al, fig. (9) of ref. [28], because they are overdoped samples, with only one CuO₂ plane. The family YBa₂Cu₃O_{6+x} is underdoped for x < 0.92 and for x > 0.92 the chains become metallic and play an important role. However, recent results by Loram et al, fig. (2a) of the ref. [29] on Calcium doped YBCO, Y0.8Ca0.2Ba2Cu3O7-8, which are overdoped two dimensionnal systems, show a very good agreement with our results. We notice the displacement and the decrease of the jump in specific heat Cs with doping. The jump $\Delta C/C|_{Tc} = \Delta \gamma/\gamma|_{Tc} = 1.67^{28}$, and 1.60²⁹ greater than the B.C.S. value 1.41 for a metal with a constant DOS. We find theoretically this increase in our model due to the logarithmic v.H.s. The symmetrical shape of the peak of Cs, at low doping level, is due to the critical fluctuations. A subtraction of these fluctuations^{25,26} gives an asymmetrical shape. For high doping levels the classical B.C.S. shape is found.

For $D_e = 0$, we find that γ_N is not constant but given by the logarithmic law²⁷: $\gamma_N = a \ln(1/T) + b$. When D_e increases, the law changes, γ_N passes through a maximum for a value of T, T^{*}. This behaviour is clearly seen in the YBCuO_{6+x} family²⁸. We explain the high value $\Delta C/C|_{Te} = 2.5$ for x = 0.92 in the YBCO family, and we find also the predicted variation of T^{*}. Our model, neglecting magnetic fluctuations gives an Arrhenius law for C_s at low temperature with a caracteristic energy which is Δ_{min} . We see that such a law is observed in YBaCuO_{6.92} and for Tl₂Ba₂CuO₆ at optimum doping.

EFFECT OF SCREENING ON THE GAP ANISOTROPY AND THE SPECIFIC HEAT

In the preceding parts we have taken $q_0 a = 0.12$ and the effective coupling constant $\lambda_{eff} = 0.665$ in order to fit the experimental values of the gap observed by ARPES and tunneling spectroscopy. We also have stressed the importance of $q_0 a$ in the value of the anisotropy ratio $\alpha = \Delta_{Max}/\Delta_{min}$. We shall now study in more details the influence of $q_0 a$ on α and on the slope : $R = T_c \left(\frac{d \ln \Delta C}{dT}\right)_{T=T_c}$ (14)

where $\Delta C = C_s(T) - C_s(0)$, $C_s(0)$ is computed for $\Delta_k = 0$ (normal state). This slope R is available from many experiments for 2D superconductors.

The calculation use equation (5) where $q_0 a$ is included in $V_{kk'}$.

For this study, we adjusted our values of λ_{eff} to obtain a constant critical temperature of 90.75 K and an average gap of $\Delta_{av} = 14.50 \pm 0.15$ meV. This approximation is valid in the limit of weak screening (q₀a < 0.2). The results are presented in figure (13).

The specific heat is computed using formula (13). The results are presented in figures (14) and (15) for $\Delta C/C|_{T_c}$ and the slope R. The B.C.S. values for an isotropic s-wave superconductors are 1.43 for $\Delta C/C|_{T_c}$ and 2.62 for R.

Comparison with experiments :

There are no direct experiments to measure α as a function of q_0a . The photoemission experiments measure the anisotropy as a function of doping, so q_0a and E_F - E_s vary simultaneously. But there is a decrease in α when the doping is varying^{21,22}.

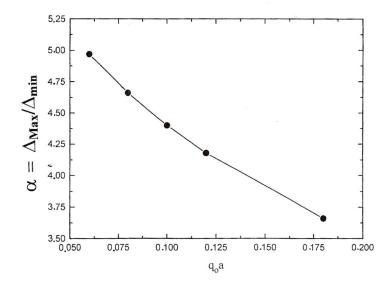


Figure 13 : The anisotropy ratio $\alpha = \Delta_{Max} / \Delta_{min}$ versus the screening parameter $q_0 a$.

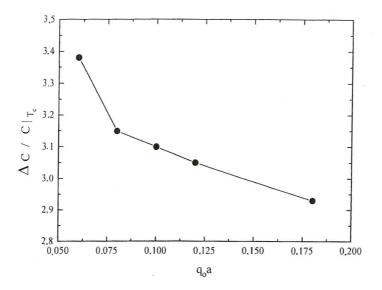


Figure 14 : The specific heat jump at T_c, $\Delta C / C|_{T_c}$ versus the screening parameter q₀a.

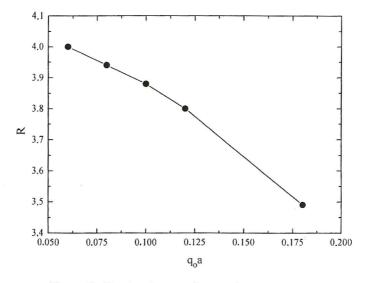


Figure 15 : The slope R versus the screening parameter q_0a .

On the other hand, there are a large number of measurements of specific heat^{26,28,29,30}. The extraction of the electronic contribution to the total specific heat is rather difficult. A subtraction of the phonon part and of the influence of fluctuations near T_c is necessary. The slope R has been evaluated by Marcenat *et al*²⁶ for YBa₂Cu₃O_{6,92}. Experimental results have also been obtained by Junod *et al*³⁰ and Loram *et al*²⁸ for $Tl_2Ba_2CuO_6$ with a T_c of 85 K. For YBCO the value obtained experimentally by is $R = 6 \pm 1$ higher than our computed value. But YBCO is a special case with chains and 3D character. $Tl_2Ba_2CuO_6$ is a 2D material and the measured R is 4 ± 0.5 very close to our calculated value 3.5 < R < 4 for reasonable values of q_0a .

In conclusion, our model explains anomalous values of $\Delta C / C|_{T_e}$ and R observed in 2D cuprates when the Fermi level is close to the van Hove singularity.

VAN HOVE SINGULARITY AND "PSEUDO-GAP"

Several experiments on photoemission, NMR and specific heat have been analyzed using a normal state pseudo-gap³¹. In fact, all what is needed to interpret these data is a density of state showing a peak above the Fermi energy. To obtain the desired D.O.S. several authors³¹ introduce a pseudogap in the normal state. This seems to us rather artificial, the above authors themselves write that the physical origin of this pseudogap is not understood.

We have shown that by using a band structure of the form :

$$\xi_{\rm K} = -2t \left| \cos k_{\rm x} a + \cos k_{\rm y} a \right| - D_{\rm e}$$

where $D_e = E_F - E_s$, we may interpret the results obtained in the <u>normal metallic state</u>. We have computed the Pauli spin susceptibility¹² using the following formula :

$$\chi_{p} = \frac{\mu_{o} \mu_{B}}{B} \int_{-\infty}^{+\infty} n(\varepsilon) \left(f_{FD}(\varepsilon + \mu_{B}B) - f_{FD}(\varepsilon - \mu_{B}B) \right) d\varepsilon$$
(15)

The results fit well the experiments. We find a characteristic temperature T* where the variation of χ_p versus T goes through a maximum. We may express D_e as a variation of doping $\delta p = p - p_0$, p_0 being the doping for which $E_F = E_s$, $p_0 = 0.20$ hole/copper atom in the CuO₂ plane. Figure (16) represents the various experimental points taken from figure (5) of reference [31] where the authors plot E_g/k_BT_{eMax} versus p. We see that what the authors call pseudogap is exactly our $E_F - E_s$, the distance from the Fermi level to the peak in the D.O.S..

We have also computed the electronic specific heat C_s in the normal state¹⁰ using the same D.O.S. We find that $\gamma = C_s/T$ goes through a maximum with temperature T, at a value T* as found experimentally by Cooper and Loram³². In figure (17) we compare our computed T* with the experimental one (ref. [32]), the agreement is excellent.

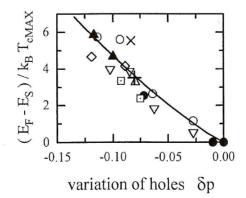


Figure 16 : $D_e = E_F - E_S$ divided by $k_B T_{eMAX}$ ($T_{eMAX} = 110$ K) versus the variation of the density of hole, calculated from the band structure of the formula (4) : solid line. The different symbols are the same as in the fig. (5) of the ref. [31]), they represent the values of the so-called normal pseudogap divided by $k_B T_{eMAX}$ ($E_g / k_B T_{eMAX}$) obtained from NMR on different compounds.

Our calculations are made with a transfer integral t = 0.25 eV, δp is taken as zero for p = 0.20.

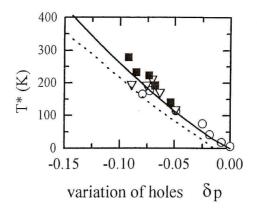


Figure 17 : The temperature, T*, where the calculated χ_p (dashed line) and the specific heat (solid line) go through a maximum, versus δp . For comparaison we show the results presented in fig. (27) of ref. [32], the symbols are the same. (solid squares : from thermoelectric power, circles : from specific heat, triangles: from NMR Knight shift data).

In conclusion, we are able to interpret the NMR and specific heat data in the <u>normal metallic state</u> without invoking a pseudogap, but simply by taking into account the logarithmic singularity in the D.O.S.

We explain the shift between the observed experimental optimum T_e , where p = 0.16 instead of 0.20, and the expected optimum T_e from our theory, i.e. where $D_e = 0$, by the fact that in first time in our gaps calculations we have not taking into account the variation of the 3D screening parameter q_0a in function of D_e . These calculations are in progress and show the competition between the effect of the position of the v.H.s. and the value of q_0a for getting the optimum T_e , this competition depends on the compound. When the overdoping increases, i.e. the density of free carriers increases, then q_0a increases too, and in our model this leads to a decrease in T_e . It is why for $D_e = 0$, or dx = 0.20, we have not the optimum T_e , and why the logarithmic law for χ_p is found in the overdoped range¹². In the underdoped range in respect of the observed optimum T_e , (i.e. density of free carriers decrease), q_0a decrease too, but the Fermi level go too far away the singularity to obtain high T_e . By this way our results agree completely with the experimental observations.

CONCLUSION

Note that our model is valid only in the metallic state. It has been shown by Boebinger *et al*³³ that LaSrCuO for example undergoes a metal-insulator transition in the underdoped regime, fonction of temperature in the normal state. Of course our model is not valid for these very low doping levels.

We have shown the importance of the van Hove singularity in the interpretation of the physical properties of the cuprates high T_c superconductors (HTSC). The v.H.s. is essential to obtain high T_c and therefore in the coupling mechanism. In the framework of that scenario we explain a main characteristic : the anisotropic gap. V.H.s. account for several experimental features seen in conductance, specific heat, Pauli susceptibility and so on. Last the shift of Fermi level from singularity level explains the so-called pseudogap and the behaviour of HTCS versus doping.

The physic of HTSC, seeing all these convincing results, have to take into account the v.H.s.

REFERENCES

- 1. Z. X. Shen, W.E. Spicer, D.M. King, D.S. Dessau, B.O. Wells, Science 267 (1995) 343.
- H. Ding, J. C. Campuzano, K. Gofron, C. Gu, R. Liu, B. W. Veal and G. Jennings. Phys. Rev. B 50 (1994) 1333.
- Jian Ma, C. Quitmann, R.J. Kelley, P. Alméras, H. Berger, G. Margaritondoni, M. Onellion. Phys. Rev. B 51 (1995) 3832.
- 4. J. Labbé and J. Bok, Europhys. Lett. 3 (1987) 1225.
- D. M. Newns, C. C. Tsuei, P. C. Pattnaik, and C. L. Kane. Comments Cond. Mat. Physics 15 (1992) 273.
- 6. J. Bok and L. Force. Physica C 185-189 (1991) 1449.
- 7. L. Force and J. Bok. Solid Stat. Comm. 85 (1993) 975.
- T. Yokoya, A. Chainini, T. Takashahi, H. Katayama-Yoshida, M. Kasai and Y. Tokura, *Physica C* 263 (1996) 505.
- 9. J. Bouvier and J. Bok, Physica C 249 (1995) 117.
- 10. J. Bok and J. Bouvier, to be published in Physica C.
- 11. J. Bok and J. Bouvier, Physica C 274 (1997) 1.
- J. Bok and J. Bouvier, "Comment on NMR evidence for a d-Wave Normal-State Pseudogap" submitted to *Phys. Rev. Lett.* (1997)

"The van Hove scenario of high T_c superconductors : the effect of doping" published in the *proceeding* of the GDR "Supraconducteurs" n° 1063, 23-25 juin 1997

- C.C. Tsuei, D.M. Newns, C.C. Chi et P.C. Pattnaik, *Phys. Rev. Lett.* 65 (1990) 2724. D.M. Newns, C.C. Tsuei, P.C. Pattnaik and C.L. Kane, *Comments Cond. Mat. Physics* 15 (1992) 273.
- 14. G.G. Olson et al, Phys. Rev. B 42 (1990) 381.
- 15. Z. Schlesinger et al, Phys. Rev. Lett. 67 (1991) 1657.
- 16. Y. Kubo et al, Phys. Rev. B 43 (1991) 7875.
- 17. N. Bogolubov, N. Tolmachev and D. Shirkov, "A new method in the theory of superconductivity" (1959) Cons. Bureau, NY.
- M.L. Cohen and P.W. Anderson in Superconductivity in d and f band Metals, edited by D.H. Douglass (A.I.P. New York) (1972).
- 19. V. Ginzburg, Comtemporary Physics 33 (1992) 15.
- 20. Y. Koike et al, Physica C 159 (1989) 105.
- 21. M. Onellion, R.J. Kelley, D.M. Poirier, C.G. Olson and C. Kendziora, preprint "Superconducting energy gap versus transition temperature in Bi₂Sr₂CaCu₂O_{8+x}"
- R.J. Kelley, C. Quitmann, M. Onellion, H. Berger, P. Almeras and G. Margaritondo, Science 271 (1996) 1255.
- 23. Ch. Renner and O. Fisher, Phys. Rev. B 51 (1995) 9208.
- 24. Y. Hwu, L. Lozzi, M. Marsi, S. La Rosa, M. Winuku, P. Davis, M. Onellion, H. Berger, F. Gozzo, F. Levy and G. Margaritondo, *Phys. Rev. Lett.* 67 (1991) 2573.
- 25. O. Riou, M. Charalambous, P. Gandit, J. Chaussy, P. Lejay and W.N. Hardy "Disymmetry of critical exponents in YBCO" preprint to be published in LT 21 proceedings.
- 26. C. Marcenat, R. Calemczuk and A. Carrington, "Specific heat of cuprate superconductors near T_c " published in "Coherence in high temperature superconductors" edited by G. Deutscher and A. Revcolevski World Scientific Publishing Company (1996).
- 27. J. Bok and J. Labbé, C.R. Acad. Sci Paris 305 (1987) 555.
- 28. J.W. Loram, K.A. Mirza, J.M. Wade, J.R. Cooper and W.Y. Liang, Physica C 235-240 (1994) 134.
- 29. J.W. Loram, K.A. Mirza, J.R. Cooper, J.L. Tallon. to be published in the *proceedings of M²S-HTSC-V*, Feb 28-Mar 4, 1997, Beijing, China.
- 30. A. Junod, A. Beringe, D. Eckert, T. Graf and J. Müller, Physica C 152 (1988) 495.
- 31. G.V.M. Williams, J.L. Tallon, E.M. Haines, R. Michalak, and R. Dupree, Phys. Rev Lett. 78 (1997) 721.
- 32. J.R. Cooper and J. W. Loram, J. Phys. I France 6 (1996) 2237
- 33. G.S. Boebinger, Y. Ando, A. Passner, T. Kimura, M. Okuya, J. Shimoyama, K. Kishio, K. Tamasaku, N. Ichikawa and S. Uchida, *Phys. Rev. Lett.* 77 (1996).