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Many recent experiments of angular resolved photoemission spectroscopy
(ARPES) have confirmed the existence of saddle points (van Hove singularity or v.H.s.)
close to the Fermi level in five different copper oxide compounds by three different
groups, in Stanford\ in Argonne2 and in Wisconsin3 These observations have been made
in the following compounds Bi1SrlCu06 (Bi 2201), Bi1Sr1CaCu10g (Bi 2212),
YBalCu307 (Y123), YBalCu40g (Y124) and Ndl_xCexCU04+8 (NCCO). These
experiments establish a general feature in very high Te superconductors cuprates
(Te ~ 90 K) van Hove singularities are present close to the Fermi level. This is probably
not purely accidental and we think that any theoretical model must take into account these
experimental facts. The origin of high Te in the cup rates is still controversial and the role
of these singularities in the mechanism of high Te superconductivity is not yet established,
but we want to stress that the model of 2D itinerant electrons in presence of V.H.
singularities in the band structure has already explained a certain number of experimental
facts, i.e. high Te's, anomalous isotore effect4, marginal Fermi liquid effects5 and the very
small values of the coherence length , It was also been shown that the singularity is in the
middle of a wide band and that in these circumstances, the Coulomb repulsion /..l is
renormalized and /..l is replaced by a smaller number, the effective electron-phonon
coupling is Aeff= A - /..l* and remains positive7 We think that this fact explains the very
low Te observed in Sr2Ru04, where a very narrow band has been determined by ARPES8

We have shown by using a weakly screened electron-phonon interaction that we
obtain a strong gap anisotropl,

We then compute the density of states (D.O,S,) of quasiparticle excitations in the
superconducting state, in the frame work of this model. We also study the effect of
doping, i.e. of the distance between the Fermi level EF and the singularity ES10

We apply this result to the calc~lation of twnneling characteristics and of the
electronic specific heat CSIO,1l ' .

We also study the influence of doping on the screening length and on the
calculation ofTe. We thus explain why the maximum Te is not observed when EF- Es = 0,

. We finally study the influence of doping, i.e. EF - Es, on the normal state properties
and Interpret some properties of the so-called pseudogapl2
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Labbe-Bok4 have computed the band structure for the bidi..rnensiona!CU02 planes
of the cuprates, considered as a square lattice (quadratic phase). The simplest band
structure we can take for a sqwlle lattice is :

r. -
~k = - 2ttcosKxa + coskys.J

where t is an interaction with nearest neighbours This gives a square Fermi surface with
saddle points, or v.Hs, at [0, l:cl ] positions of the Brillouin zone, and a logarithmic
D.O.S. with a singularity : n(~) = nj InlD / (~-~s)1 ' where D = 16t is the width of the
singularity and ~s the singularity energy leveL The v.R.s. corresponds to half filling. We
know that is not a good representation of the high Tc cuprates because for half filling (one
electron per copper site) they are antiferromagnetic insulators. We think that the Fermi
level is at v.R.s. for a doping level corresponding to 20 % of holes in each CU02 plane or
OAO filling of the first Brillouin zone (B.Z). This can be achieved by taking into account
the repulsive interaction between second nearest neighbours (s.n.n.) and the effect of the
rhomboedric distorsion. For the repulsive interaction with s.n.n. the band structure
becomes:

~k = - 2t[ cos kxa + cos kya] + 4at cos kxacos kya

where at is an integral representing the interaction with s.n.n .. The singularity occurs for
~ = -4at, there is a shift towards lower energy. The Fermi surface at the v.R.s. is no
longer a square but is rather diamond-shaped. More detailed calculations can be obtained
in reference 6, taking also into account the rhomboedric distorsion.

The Labb6-Bok4 formula was obtained using the following assumptions:
1- the Fermi level lies at the van Hove singularity
2- the RCS. approximations:
- The electron-phonon interaction is isotropic and so is the superconducting gap A
- The attractive interaction Vp between electrons is non zero only in an interval of energy
±liwo around the Fermi level where it is constant. When this attraction is mediated by
emission and absorption ofphonons, <Do is a typical phonon frequency.

In that case, the critical temperature is given by

k,1; =113Dexp[-(± + In'(";;') -13)"'] (1)

where A = (1/2) n1 Vp is equivalent to the coupling constant.

A simplified version offormula (1), when n<Do is not too small compared to D, is:

k nT, = 1.13D exp( -1/ Ii:)
The two main effects enhancing Tcare

1- the prefactor in formula (1) which is an electronic energy much larger than a typical
phonon energy n<D 0 .

2- A is replaced by .fi in formula (1) in comparaison with the BCS formula, so that in the
weak coupling limit when ,I,d, the critical temperature is increased. In fact it gives too
high values of Tc, we shall see later that this is due to the fact that we have neglected
Coulomb repulsion between electrons. Taking this repulsion into account we shall obtain
values for Tc which are very close to the observed one.

As it is however, this approach already explains many of the properties of the high Tc

cuprates near optimum doping.



- The variation ofTe 'with doping
The highest Te is obtained when the Fermi le'-el is exactly at the v.H.s .. For lower or

higher doping the critical temperature decreases. That is what is observed
experimentaI!ylo.
- The isotope effect

Labbe and Bok4 showed using formula (1), that the isotope effect is strongly reduced
for high Te cuprates. Tsuei et al13 haye calculated the variation of the isotope effect with
doping and shown that it explains the experimental observations.
- Marginal Fermi liquid behaviour

In a classical Fenni liquid, the lifetime broadening 111: of an excited quasiparticle goes
as f.2 The marginal Fermi liquid situation is the case where liT goes as !;. Theoretically
marginal behaviour has been established in two situations (a) the half-filled nearest-
neighbour coupled Hubbard model on a square lattice and (b) the Fermi level lies at a v.H.
singularity13 Experimental evidence of marginal Fermi liquid behaviour has been seen in
angle resolved photoemission14

, infrared datal5 and temperature dependence of electrical
resistivity16 Marginal Fermi liquid theory, in the frame work ofv.H.s. predicts a resistivity
linear with temperature T. This was observed by Kubo et al16 They also observe that the
dependence of resistivity goes from T for high Te material to T2 as the system is doped
away from the Te maximum, which is consistent with our picture; in lower Te material the
Fenni level is pushed away from the singularity

As soon as 1959 Bogolubov et all7 have shown that the electron-electron repulsion
plays a central role in superconductivity. Assuming a constant repulsive potential Vkk, ==Ve

from a to EF they find that Te is given by.
-1

Te == To exp [--]
I. -l-l *

With !l==NoVe and !l*== !l (2)
1 + !lln EF / ro0

Cohen and AndersonI8 assumed that for stability reasons !l is always greater than Ie.
Ginzburgl9 gave arguments that in some special circumstances !l can be smaller than Ie.
Nevertheless if we take !l ~ Ie, superconductivity only exists because !l* is of the order of
!lI3 to !lI5 for a Fermi energy of the order of 100 Ii 0)0' It is useless to reduce the width of
the band W (EF ==W/2 for a half-filled band) because Ie and !l vary simultaneously and !l*
becomes greater if E

F
is reduced, thus giving a lower Te. Superconductivity can even

disappear in a very narrow band if t"-!l * becomes negative.
We have shown7 that nevertheless high Te can be achieved in a metal containing almost

free electrons (Fenni liquid) in a broad band, with a peak in the D.O.S. near the middle of
the band.

Taking a D.O.S., which is a constant no between energies - W/2 and W/2, (the zero of
energy is at the Fermi/teVelra~is n(~) = nl InlD / ~I+ no between -D and +D we find for
Te, the following formula.

kBTc = D eXP[0819+~-.JF] where
2 nl

F=(~+0819)2 +(lnliroo)2 _2_~(noln2281iroo _ .J
nl D nl D V - Vc



V,

[
nl ( D)1 W j1+ Vc - ln~- + noIn-~--
2 nro 0 2nro 0

We can have a few limiting cases for this formula: nl = 0 : no singularity. We find the
Anderson-Morel formula. Vc = 0 and no= 0 : this gives the Labbe-Bole formula.

There are many effects enhancing Tc
'A -11* is reduced by the square root, down to ~AI - ~ll * when nl is large enough.

As 'A - 11* < I the critical temperature is strongly increased because this factor appears in
an exponential. The prefactor before the exponential is D, the singularity width instead of
hOJo . We expect D > hro 0 . For instance D may be of the order of 0.5 eV and hro 0 about a
few 10 meV (D/hroo of the order of5 to 10).

We have made some numerical calculations using formula (3) to illustrate the
effect of Coulomb repulsion. We used two values of D : D = 0.9 eV corresponding to
t = 0.25 eV and a much more smaller value D = 0.3 eY. These calculations show that the
Coulomb repulsion does not kill superconductivity in the framework of the L.B. model.
The general rule for high Tc in this model is to have a peak in the density of states near the
middle ofa broad band to renormalize the effective repulsion 11. For a narrow band, W, or
D, is small, Tc decreases very rapidly as seen in figure (1). A recent case has been
observed in Sr2Ru04 with a narrow band and Tc is small8

.

Tc (K)
200

.Figure 1 : Effect of the width of the singularity D on Tc. no and the total nwnber of electrons per unit cell
are maintened constant with this set of parameters. Then W = 2 eV, no = 0.3 eV/states/Cu, nl = 0.21D.
In all these cases the calculations are made so that the total nwnber of states of the band is one by Cu
atom.
Then 110 W + 2 nl D =1, and A= (110 + nl) Vp. In all these cases hOJo = 0.05 eV and 'A = 0.5.

Bouvier and Bok9 have shown that using a weakly screening electron-phonon
interaction, and the band structure of the CuOz planes four saddle points: an anisotropic
superconducting gap is found.



We use the rigid band model, the doping is represented by a shift De = EF - Es of
the Fermi level. This band structure is

~k =-2t[cosk,a+coskya]-De (4)

The Fermi level is taken at ~k= 0 .
We use a weakly screened attractive electron-phonon interaction potential:

-lgql2
Vklc' =---< 0

q2 + q5

where g(q) is the electron phonon interaction matrix element for q = k'-k and qo is the
inverse of the screening length.

We use reduced units X = k,a, Y = kya, Q = qa, u = ~, 0 = ~
2t 2t

We use the RCS. equation for an anisotropic gap:

I1Afor k,a = 1t, kya = °
118for k a = k a = ~

, y 2

We solve equation (5) by iteration. We know from group theory considerations,
that Vkk'having a four-fold symmetry, the solution 11k has the same symmetry. We then
may use the angle <1>between the ° axis and the k vector as a variable and expand 11(<1»
in Fourrier series

11(<1»=110 + 111 cos(4<1>+<P,) +112 cos(8<1>+<P2)+'.. (7)
We know that <PI= 0, because the maximum gap is in the directions of the saddle

points. We use the first two terms. The first step in the iteration is obtained by replacing
""k by ""av = ""0 in the integral of equation (5). We thus obtain, for the two computed
values' 11A = 11Max = 110 + ""1 and"" B = 11min = 110 - ""1 , the following expression.

Uma., "", (T) (~u2 + uiAT))
""A,B(T)=Aeff f ~ a\ I(AB)(U) tanh du (8)

u. u2-'-u2(T) , kBT/t
nun 1 av

with r {u = x~ dx' (qoa)2
A.8 () J 1/ 2 2 (9)

\ o[1-[(o-u)-cOsx,]2t QA,B+(qoa)

where U"",,= - !iroc , UMa, = + tl(i)c, uav(T) = ""av(T) x~ = acoIo - u)
2t 2t 2t ~ 2

roc is the cut off frequency. For the following part of this work we will keep the value of
t,(Oc = 60 meV for the Bi2212 compound, a characteristic experimental phonon energy.

This choice respects our approximation for Vkk'



·. For the choice of t, the transf,<;;rintegral com:es from the photoemission experiments ant
is t = 0.2 eV as explained in reference9

- qoa is adjusted, it is the Thomas Ferrill approximation for small q's,

- Aeff is adjusted so as to find the experimental value of ,1Maxand ,1min and "'Ie find ,
reasonable value of about 0.5. Aeff is the equivalent of A-~l· in the isotropic 3D, Be
modeL

In fact the values of qoa and Aeff must depend of the doping level De. Thi,

calculation will be done later. Here qoa = 0 12 and Aeff= 0.665.

In figure (2), we present the variation of the various gaps ClMax,Clminand Clavwitl
temperature at optimum doping, i.e. for a density of holes of the order of 0.20 per CuD
plane, as seen before6 We take in that case De = 0 and we find Tc = 91 K and at
anisotropy ratio a = ClMa.x/Clmin= 4.2 and for the ratios of 2tl/kB T c the following values:

2ClMax = 6 2Clav = 37 2Clmin = 14
kBTo ., kBTo ., kBTo .

This may explain the various values of 2tl/kB Tc observed in experiments. Tunnelin)
spectroscopy gives the maximum ratio and thermodynamic properties such as A(T
(penetration depth) gives the minimum gap.
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Figure 2 : Variation of the various gaps toMa,. t.min and to" versus the temperature. at the optimUl
doping. i.e D. = EF - E, = 0 in our model. With the following parameters. t = 0.2 eV, nro 0 = 60 me'
qoa = 0 12. A,n'= 0.665. The critical temperature found is T, = 90.75 K
square symbol = L'."-la, diamond symbol = t.,v up triangle symbol = t.m"

In figure (3) we present the same results, ClMax,Clmin,Clayas a function of
De = EF - Es (in meV).

In figure (4) we plot the variation of the anisotropy ratio a = ClMaJClminversus D
in figure (5) the critical temperature To versus D< and in figure (6) the various ratic
2LVkB Tc versus De.



We observe of course that Tc and the gaps decrease with De or dx. The agreement
with experimeneo is very good figure (7). We obtain a new and interesting result which is
the decrease of the anisotropy ratio ('J. with doping. This is confirmed by recent results on
photoemission21

,22 where a maximum gap ratio 2.1Max/kBTc = 7 is observed at optimum
doping with Tc = 83 K and 2.1Max/kBTc = 3 for an overdoped sample with Tc = 56 K, with
a small gap .1min=0-2 meV for the both Tc, for a Bi2212 compound.
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Figure 3 : Variation of the various gaps ~M= ~min, ~av versus the doping, D. =Ef-E" at T = OK
square symbol = ~Max diamond symbol = ~av up triangle symbol = ~min
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Figure 6 : Variation of the various rations 2L'JkB Tc versus the doping De = EF-E,
square symbol = 2AM•.x/kBTc diamond symbol = 2Aav/kBTc up triangle symbol = 2Arnin/kBTc
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Figure 7 : Comparison of the variation of Tc versus the doping dx calculated in our model (filled circles)
and the experimental results of Koike et al ref (20) (open circles).

We have calculated the density of states of quasiparticle excitations in the
superconducting state of high Te 10,11 cuprates using the model of anisotropic gap that we
have recently developed9,10
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~gu~e 8 : The best fit of the conductance measured by tunneling spectroscopy on BSCCO, N-I-S
Junction, by Renner and Fischer (Fig. (10) of Ref. [23]). solid line: fitted curve with dMax = 27 meV,
dmin = II meV, t = 0.18 eV, r = 0.5 meVat T = 5 K,dashed line: experimental curve.



Here the D.O. S. is computed using the formula :
1 BA

n(E)=-- (10)
2n2 DE

where A is the area in k space between two curves of constant energy of the quasiparticle
excitation Ekgiven by: E; =~;+ Lli (11)

where ~k is the band structure (eq. (4». We use the same procedure and the same
expression of Llkas before.

Figure (8) represents the variation of the D.O.S. as a function of E for T = 0 K.
This is similar to the experimental conductance (dI/dV versus the voltage V) of a N-I-S
junction here we show the measurement made by Renner and Fisher3 on a BSCCO

. sample. AMax is located at the maximum peak and Llminat the first shoulder after the zero
bias voltage, figure (9). But for different values of EF-Es, we see a new maximum
emerging, which is a signature of the van Hove singularity and a dip between this
maximum and the peak at LlMax. This dip is seen experimentally in the STM tunneling
experiments of Renner et a123

, figure (10), and in photoemission measurements24
.

For the calculation of the conductance, we use the following formula
dI +«> [Of ]- = CNo fNs(E) ----!Q..(E - V) dE
dV --«l BV

where fFD is the usual Fermi-Dirac function; I and V are the current and voltage, C a

constant proportional to l'If, the square of the barrier transmission, No the D.O.S. of the
normal metal that we assume constant, and Ns(E) the previously calculated D.O.S. in the
anisotropic superconductor.
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Figure 9 : Variation of the D.o.S. versus the energy c, for T = 0 K, that is similar at a NIS junction, for
different values of the doping D = EF - E" i.e. 0, 10,20,30,40,60 and 70 meV with r = 0.1 meVand
r' = 5 meVin the model ofref[ll]
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Figure 10 : (a) Curves of the conductance calculated for a N-I-S junction. Solid line: in the
superconducting state at T = 5 K with ~Max = 22 meV, ~min = 6 meV, r = 0.1 meV, t = 0.2 eV and
D. = -60 meV, r = 5 meV. Dashed line: in the normal state at T = 100 K with ~Max = ~min = 0 meV,
r = 0.1 meV, t = 0.2 eV and D. = -60 meV, r = 5 meY. (b) For comparison we show Fig. (7) of Ref.
[23]. The maximum of the normal state conductance (or D.O.S.) at negative sample bias is well
reproduced.

The purpose of this chapter is to evaluate the influence of the v.H.s. and the
anisotropy of the gap on the specific heat calculated in the mean field RC.S.
approximation, i.e. we do not take into account the fluctuations near the critical
temperature Te. There are a great number of experiments measuring Cs. To compare our
c~culations to experiments, we must subtract the part due to fluctuations. These kind of
adjustment have been made by various authors by using the fact that thermodynamic
fluctuations are symmetric about Te and can be easily evaluated above Te

25,26 Also we do
not. take into account the magnetic fluctuations in low temperature, nor the pair-breaking
Which may exist in overdoped sample. By the usual way, we obtain for C. : .
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We use the values of Ck and ~k (~Max (T, De) and ~min (T, De» given by formula (8) and
(4,11) to evaluate the two integrals of (13) numerically. Near Te we have a very good
agreement between the calculated values and the following analytical formula:

( )
112

~Max,min== ~M'X,mio(T == 0) 1.7 I-(T I TJ

We see that the slopes a~2/ or do not depend on doping which simplifies the calculation
of the second integral offormula (13). The results are presented in figures (11) and (12)
where we plot Cs and ~C/CITe versus T for various doping levels De.
We can make the following observations:

1- The jump in specific heat varies with doping ~C/CITe is 3.2 for De = 0 and 1A8
for De = 60 meV compared to IAI, the RCS. value for a isotropic superconductor, with
a constant D.O.S., No in the normal state. The high value of ~C/CITe is essentially due to
the v,Hs when it coincides with the Fermi level and the highest value of the gap ~k. With
doping, the v.Hs moves away from EF and ~C/CITe decreases toward its RCS. value.

2 - There is also a difference in the specific heat CNin the normal state. For a usual
metal with a constant D.O.S. No, 'YN == CN IT is constant and proportional to No. Here we
find 'YN == a In(1 IT) + b for 0 :;;D :;;30 meV where a and b are constant. For De = 0 this

behaviour has already been predicted by Bok and Labbe in 198727 The specific heat
CN(T) explores a domain of width kaT around the Fermi level EF. So for De« kaTe, the
variation of'YNabove Te is logarithmic. For De > 30 meV, at high temperature T - Te > De,
the R L law is observed, but for lower temperatures 'YNincreases with T and passes
through a maximum at T*, following the law : T* (meV) = 0.25 De (meV) or
T* (K) = 2.9 De (meV).

Because of the difficulty to extract exactly Cs from the experimental data, we will
compare only the general features to our calculation. We see that the doping has a strong
influence on Te and all the superconducting properties, so we assume that its role is to
increase the density of holes in the CU02 planes. To compare our results on the effect of
doping on C, with experiments, we have chosen the family of the ThBa2Cu06+s , studied
by Loram et ai, fig. (9) of ref [28], because they are overdoped samples, with only one
CU02 plane. The family YBa2Cu306+x is underdoped for x < 0.92 and for x> 0.92 the
chains become metallic and play an important role. However, recent results by Loram et
al, fig. (2a) of the ref [29] on Calcium doped YBCO, YO.8Cao.2Ba2CU307-0, which are
overdoped two dimensionnal systems, show a very good agreement with our results. We
notice the displacement and the decrease of the jump in specific heat Cs with doping. The
jump ~C/CiTe = ~'YI'YITe = 1.67 28, and 1.60 29 greater than the RCS. value IAl for a
metal with a constant DOS. We find theoretically this increase in our model due to the
logarithmic v,Hs .. The symmetrical shape of the peak ofCs, at low doping level, is due to
the critical fluctuations. A subtraction of these fluctuations25,26 gives an asymmetrical
shape. For high doping levels the classical RC.S. shape is found.

For De = 0, we find that 'YNis not constant but given by the logarithmic law27 :
'YN == a In(l / T) + b. When De increases, the law changes, 'YNpasses through a maximum
for a value of T, T·. This behaviour is clearly seen in the YBCU06+xfamill8. We explain
the high value ~C/qTe = 2.5 for x = 0.92 in the YBCO family, and we find also the
predicted variation of T*.



Our model, neglecting magnetic fluctuations gives an Arrhenius law for C, at low
temperature with a caracteristic energy which is ~min. We see that such a law is observed
in YBaCu06.92 and for ThBa2Cu06 at optimum doping.

EFFECT OF SCREENING ON THE GAP ANISOTROPY AND THE SPECIFIC
HEAT

In the preceding parts we have taken qoa = 0.12 and the effective coupling
constant Aeff= 0.665in order to fit the experimental values of the gap observed by ARPES
and tunneling spectroscopy. We also have stressed the importance of qoa in the value of
the anisotropy ratio a = ~M.J~min. We shall now study in more details the influence of qoa

d h I R -_T (dln~C) (14)on a an on t e s ope:
e dT T;Te

where ~C = Cs(T) - Cs(O),C,(O) is computed for ~k = 0 (normal state).
This slope R is available from many experiments for 2D superconductors.

The calculation use equation (5) where qoa is included in Vkk'.

For this study, we adjusted our values of Aeff to obtain a constant critical
temperature of 90.75 K and an average gap of ~av = 14.50 ± 0.15 meV. This
approximation is valid in the limit of weak screening (qoa < 02).The results are presented
in figure (13).

The specific heat is computed using formula (13). The results are presented in
figures (14) and (15) for ~C / CITeand the slope R. The RC.S. values for an isotropic

s-wave superconductors are 1.43 for ~C / CiTeand 2.62 for R.

Comparison with experiments:
There are no direct experiments to measure a as a function of qoa. The

photoemission experiments measure the anisotropy as a function of doping, so qoa and
EF-Es vary simultaneously. But there is a decrease in a when the doping is varying21,22
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On the other hand, there are a large number of measurements of specific
heat26,28,29,3o.The extraction of the electronic contribution to the total specific heat is
rather difficult. A subtraction of the phonon part and of the influence of fluctuations near
T' ~

e IS necessary. The slope R has been evaluated by Marcenat et al for YBa2Cu306.92.
Experimental results have also been obtained by Junod et apo and Loram et aP8 for
ThBa2Cu06 with a Te of 85 K. For YBCO the value obtained experimentally by is
R == 6 ± 1 higher than our computed value. But YBCO is a special case with chains and
3D character. TbBa2Cu06 is a 2D material and the measured R is 4 ± 0.5 very close to
our calculated value 3.5 < R < 4 for reasonable values of qoa.



In conclusion, our model explains anomalous values of ,1C / CiTe and R observed

in 2D cuprates when the Fermi level is close to the van Hove singularity.

Several experiments on photoemission, NMR and specific heat have been analyzed
using a normal state pseudo-gap31. In fact, all what is needed to interpret these data is a
density of state showing a peak above the Fermi energy. To obtain the desired D.O.S.
several authors31 introduce a pseudogap in the normal state. This seems to us rather
artificial, the above authors themselves write that the physical origin of this pseudogap is
not understood.

We have shown that by using a band structure of the form :

~K =-2t[coskxa+coskya]-.De

where De = EF - Es, we may interpret the results obtained in the normal metallic state. We
have computed the Pauli spin susceptibility12 using the following formula:

~ ~l +00

Xp=_o _B In(E)(fFD(E+~BB)-fFD(E-~BB))dE (15)
B -00

The results fit well the experiments. We find a characteristic temperature T* where the
variation of X

P
versus T goes through a maximum. We may express De as a variation of

doping op = p-po, po being the doping for which EF = Es, po = 0.20 hole/copper atom in
the CU02 plane. Figure (16) represents the various experimental points taken from figure
(5) of reference [31] where the authors plot EglkBTcMax versus p. We see that what the
authors call pseudogap is exactly our EF-Es, the distance from the Fermi level to the peak
in the D.O.S ..

We have also computed the electronic specific heat C. in the normal statelO using
the same o'O.S .. We find that y = CJT goes through a maximum with temperature T, at a
value T* as found experimentally by Cooper and Loram32. In figure (17) we compare our
computed T* with the experimental one (ref. [32]), the agreement is excellent.
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Figure 16 : De = EF - Es divided by kBTeMAX(TeMAX= 110 K) versus the variation of the density of hole,
calculated from the band structure of the formula (4) : solid line. The different symbols are the same as in
the fig. (5) of the ref. [31]), they represent the values of the so-called normal pseudogap divided by
kBTeMAX(Eg/ kBTeMAX)obtained from NMR on different compounds.
Our calculations are made with a transfer integral t = 0.25 eV, 8p is taken as zero for p = 0.20.



300

Q 200~
*f--< 100

o
-0.15 0.00

Op
Figure 17 : The temperature, T*, where the calculated Xp (dashed line) and the specific heat (solid line)

go through a maximum, versus 8p. For comparaison we show the results presented in fig. (27) of ref. [32],
the symbols are the same. (solid squares : from thermoelectric power, circles : from specific heat,
triangles: from NMR Knight shift data).

In conclusion, we are able to interpret the NMR and specific heat data in the
normal metallic state without invoking a pseudogap, but simply by taking into account the
logarithmic singularity in the D.D.S ..

We explain the shift between the observed experimental optimum Tc, where
p = 0.16 instead of 0.20, and the expected optimum Tc from our theory, i.e. where De =0,
by the fact that in first time in our gaps calculations we have not taking into account the
variation of the 3D screening parameter qoa in function of De. These calculations are in
progress and show the competition between the effect of the position of the v.H.s. and the
value of qoa for getting the optimum Tc, this competition depends on the compound.
When the overdoping increases, i.e. the density of free carriers increases, then qoa
increases too, and in our model this leads to a decrease in Tc. It is why for De = 0 , or
dx = 0.20, we have not the optimum Tc, and why the logarithmic law for XP is found in
the overdoped range12 In the underdoped range in respect of the observed optimum Tc,

(i.e. density of free carriers decrease), qoa decrease too, but the Fermi level go too far
away the singularity to obtain high Tc. By this way our results agree completely with the
experimental observations.

Note that our model is valid only in the metallic state. It has been shown by
Boebinger et aP3 that LaSrCuO for example undergoes a metal-insulator transition in the
underdoped regime, fonction of temperature in the normal state. Of course our model is
not valid for these very low doping levels.

We have shown the importance of the van Hove singularity in the interpretation of
the physical properties of the cuprates high Tc superconductors (HTSC). The v.H.s. is
essential to obtain high Tc and therefore in the coupling mechanism. In the framework of
that scenario we explain a main characteristic: the anisotropic gap. Y.H.s. account for
several experimental features seen in conductance, specific heat, Pauli susceptibility and so
on. Last the shift of Fermi level from singularity level explains the so-called pseudogap
and the behaviour ofHTCS versus doping.

h
The physic of HTSC, seeing all these convincing results, have to take into account

t e v.B.s ..
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