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ABSTRACT

We use an itinerant electron approach to describe the physical properties of high Tc
cuprates. This approach is justified by many recent photoemission experiments which
show a metallic Fermi surface (F.S.) and the presence of van Hove singularities close to
the Fermi level. Other experiments, such as inelastic neutron scattering show that
antiferromagnetic correlations disappear or become very weak in samples where Tc is
maximum.

We review the van Hove scenario, which explains high Tc, anomalous isotope effects,
low values of the coherence length, NMR Knight shift of TLi. We take into account the
Coulomb repulsion and show that a weakly screened electron-phonon interaction
explains the observed gap anisotropy.

1. Introduction

It is now well accepted that the origin of cuprate superconductivity is to be found
in the CuO, planes which are weakly coupled together in the ¢ direction, so that their
electronic properties are nearly two dimensional. For low oxygen content (no doping) all
copper ions in this plane are Cu** ions, the material is an antiferromagnetic insulator due
to strong electron-electron repulsion on the same copper site. With additional
oxygenation or doping, holes are introduced in the CuO, planes and the compound
becomes conducting and superconducting for T < Tc. The maximum Tc is achieved when
the hole content is around 16 % per Cu atom. The physical mechanism leading to high Tc
superconductivity in the cuprates is still controversial. One of the main questions is the
following : are electron-electron correlations still dominant for 16 % doping!, or is an
itinerant electron approach valid? ? In this paper we shall review the itinerant electron
model and compare its results with experiments.

Many recent experimental results are in favour of this Fermi liquid approach.
Angular resolved photoemission spectroscopy (ARPES) has been performed by three
different groups in Stanford3, Argonne? and WisconsinS in five different compounds
Bi,Sr,CuO, (Bi 2201), Bi,Sr,CaCu,04 (Bi 2212), YBa,Cu;0; (Y123), YBa,Cu Oy
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(Y124) and Nd,_,Ce, CuO4,5 (NCCO). The general result is that, in the normal state, all
these compounds show metallic-like Fermi surfaces (F.S.) (large F.S. occupying the
major part of the area of the Brillouin zone). For small doping, the F.S. is composed of
small hole pockets. All these findings agree well with band structure calculationst, i.e.
an itinerant electron model.

On the other hand, inelastic neutron scattering shows strong antiferromagnetic
(A.F.) correlations? in YBa,Cu;0q,, for x < 0.7. However, when x varies between 0.9
and 1, the AF. correlation length &, decreases strongly in the superconducting states
and £a/a ~ 1 for x = 1, a is the laltice parameter. The intensity of magnetic contributions
in the normal state also decreases strongly®. The normal state pseudogap in the
excitations has also been probed by various experimental techniques : N.M.R,, transport
and puSRY. All these experiments show that the pseudogap goes to zero for optimal
doping (corresponding to maximum Tc). It is difficult to imagine that antiferromagnetic
correlations (A.F.C.) are responsible for superconductivity in the cuprates, and that
these A .F.C. disappear or become very weak when Tc is maximum.

In this paper we shall review what we call the van Hove scenario, i.e. an
itinerant electron model with the additional assumption that the Fermi level lies close to
a v.H. singularity (v.H.s.) when Tc is high. We shall review 1) the band structure of the
cuprates, 2) the calculation of Tc in the framework of the v.H. scenario!? and its
consequences, 3) we shall take into account the Coulomb repulsion between electrons
and show that renormalization effects still exist in wide bands!!, 4) we compute the
coherence length and show that we obtain the correct value, 154, using experimentally
determined parameters, 5) we show that the measured Knight shift in the nuclear
magnetic resonance of 7Li in YBaCuO can be explained by a logarithmic density of
states and finally 6) we explain the observed gap anisotropy using a weakly screened
electron-phonon interaction.

2. Band Structure of the Cuprates

The simplest band structure we can take for a square lattice is
&y =—2t(coskya + coskya) 2.1)

where t is an interaction with nearest neighbours; this gives a square Fermi surface, and
the v.H.s. corresponds to half filling (figure 2-1). We know that this is not a good
representation of the high Tc cuprates because, for half filling (one electron per copper
site), they are antiferromagnetic insulators. We think that the Fermi level is at the v.H.s.
for the doping corresponding to maximum Tc, i.e. 16 % of holes per Cu in each CuO,
plane or 0.42 filling of the first Brillouin zone (B.Z.). This can be achieved by taking
into account the repulsive interaction between second nearest neighbours and the effect
of the rhomboedric distortion!2,
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Fig. 2-1 : Density of states n(g) and Fermi surface for a band given by Eq. (2.1).

With the repulsive interaction with second nearest neighbours (s.n.n.), the band
structure becomes:

€; =~2((coska+cosk,a)+4atcosk acosk,a 2.2)

where at is an integral representing the interaction with s.n.n.. The singularity occurs
for €=—4aut, i.e. there is a shift towards lower energy. The Fermi surface at the v.H.s.
is no longer a square but is rather diamond-shaped (figure 2-2). For o = 0.1, this
corresponds to a 46 % filling of the B.Z.

n(eg)

1 >
>

—4t(l-a) -4a  4(l+a) Bk

Fig. 2-2 :Density of states n(€) and Fermi surface for a band given by Eq. (2.2).
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With a thomboedric distortion, the band structure is then
g =—21(1+P)cosk,a-2tcosk,a (2.3)

where Pt represents the difference in the interaction with first neighbours in the x and y
directions. The effect is now that the singularity is split in two (figure 2-3).

n(eg)
A

U

9

A Y ~n

—2Pr 2P " gy
—4r-2p¢ 4t + 2Pt

Fig. 2-3 : Density of states n(e) and Fermi surface for a band given by Eq. (2.3).

We may combine both effects and, with o = 0.1 and p = 0.1, the first singularity is at
41 % of filling and the second at 51 % (figure 2-4). The second one has no physical
meaning because near half filling electron-electron interaction opens a gap.
Superconductivity is observed only when the Fermi level lies in the vicinity of the first
v.H.s..

n(eg)

V

&

€

Fig. 2-4 : Density of states n(e) for a band given by Eq. (2.2) and (2.3) witha = 0.1 and p=0.1.
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Many more elaborate band structure calculations have been done for the
cuprates!Z13. Most of them confirm the two dimensional character of the electronic
structure of these compounds in the CuO, planes. They all find saddle points with
singularities in the D.0O.S. more or less near the Fermi level. A recent calculation of the
band structure of the mercury cuprates!4 finds the Fermi level exactly pinned at the
v.H.s. for the doping corresponding to the maximum Tc, thus confirming our simple
model. '

Recently, several experiments have been reported that measure the properties of
the Fermi surface in the high Tc cuprates, especially for Bi 21223.5 and YBaCuO 1237
and 1248415, The technique used is angle-resolved photoemission spectroscopy
(ARPES), which requires a careful preparation of the surface. All the results which were
obtained confirm the existence of a v.H.s. (or flat band, or saddle point) at the Fermi
level for optimum doping. We present in figure 2-5 the results obtained by Dessau et
all6 for Bi 2122. Figure 2-5 represents the energy of the electron measured from the
Fermi level versus & for three directions in the Brillouin zone I'Y, YM and M I'. A
square B.Z. is used : Y is the center of the square, I' the corner and M the middle of a
side. Measurements are made only near regions A and B. Region A corresponds to the
maximum of Fermi velocity. From the experimental results we find vg,, = 3.107 co/s.
Region B corresponds to the v.H.s. and to a zero Fermi velocity. For comparison we put
the curve representative of formula (2.1) on the same figure (in small dots). We see that
the experimental band is flatter than that given by Eq. (2.1), but we take our formula
(2.1) as a first approximation. By comparison with experiment, we find t =0.20 eV or
0.25 eV and for the band width W=8t=1.6or2 eV.

Energy (eV)
! 2T~ measurements of Dessau et al
, /7 N\,
05 = 7 N
f \ . .
A L Ve N B extrapolation by Dessau et al
1] 2 NS, ot e
- / SO our mode}
0,5 7 ) I (O
1L 1 Bi2122
r Y M r -

Fig.2-5 : Energy of the electrons measured from the Fermi level versus k
for three directions in the Brillouin zone.
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Density of states (D.0.S.)
We know that near the v.H.s. the D.0.S. is logarithmic
* 2.4
n(e) = n ln—D—] (24)

in which the values of D* and n, are determined from the band structure. From the
simple model given by Eq. (2.2), we find!? :

ny = 8/(n2 D*) per spin, per unit cell,
and

D* = 16 t Vi1-a®/4. We remark that D* is larger than the band width 8t. We
know that whatever the exact band structure in 2D, the DOS is constant near the band
edges (+#/2) and logarithmic near the v.H.s.. We shall thus take the following
approximation :

- aconstant D.O.S. ny between - /2 and +W /2,
D

- a logarithmic peak » = n, In|=| between - D and + D.
£

Near the v.H.s. this is equivalent to formula (2.4) with D*=D exp(ng/n;). The
constants D, ng and n; are not independent. The total number of states in the band is
fixed. We have one orbital state (i.e. two spin states) per copper atom so that

ny W+ 2nl D=1
ng is also given by the effective mass at the band edge.
For example, for W =2eV (t=0.25eV), we obtain ng = 0.3 states/eV/Cu atom and
n; =0.2 which gives D=0.9 eV. We shall also make calculations with D = 0.3 eV,
corresponding to a much narrower v.H.s., as observed experimentally.

3. The Labbé-Bok Formula

This formula was obtained? using the following assumptions :
1- The Fermi level lies at the van Hove singularity,
2- The B.C.S. approximations :
-The electron-phonon interaction is isotropic and so is the superconducting gap A.
-The attractive interaction V|, between electrons is non-zero only in an interval of
energy thw, around the Fermi level where it is constant. When this attraction is
mediated by emission and absorption of phonons, @y is a typical phonon frequency.
In that case, the critical temperature is given by :

kBE=l.13Dexp[—\/i—+ln2(h—gﬂ)—1.3} (3.1)

where A =nV, /2.
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A simplified version of formula (3.1), when /i, is not too small compared to D, is :
kT, =113Dexp(-1/ 1)

The two main effects enhancing Tc are :

1- The prefactor in formula (3.1) is an electronic energy much larger than a typical
phonon energy .

2- A is replaced by v in formula (3.1). In the weak coupling limit, when A<l, the
critical temperature given by formula (3.1) is very high. In fact it gives too high
values of Tc. We shall see later that this is due to the fact that we have neglected
Coulomb repulsion between electrons. Taking this repulsion into account, we shall
obtain values for Tc which are very close to the observed ones.

As it is however, this approach already explains many of the properties of the high
Tc cuprates near optimum doping.

- The variation of Tc with doping. The highest Tc is obtained when the Fermi level
is exactly at the v.H.s.. For lower or higher doping, the critical temperature
decreases. That is what is observed experimentally!8.

- The isotope effect. Labbé and Bok? showed using formula (3.1), that the isotope
effect is strongly reduced for high Tc cuprates. C.C. Tsuei et al!9 have calculated
the variation of the isotope effect with doping and shown that it explains the
experimental observations (figure 3-1).

0.6 T T T T
A, O, mExperiment
Ly a H ¥
Bes Theory
04 |
123

.\\\K<j$<bu |
2 o N
. NN

20 40 60 80
Te (K)

Fig. 3-1 : Isotopic effect in La;CuOy4 (214) and YBaCuO (123).
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- Marginal Fermi liquid behaviour :

In a classical Fermi liquid, the lifetime broadening 1/t of an excited quasi-particle
goes as €2. The marginal Fermi liquid situation is the case where 1/t goes as €.
Theoretically, marginal behaviour has been established in two situations : (a) for
the half-filled nearest-neighbour coupled Hubbard model on a square lattice and
(b) when the Fermi level lies at a v.H. singularity!®. Experimental evidence of
marginal Fermi liquid behaviour has been seen in angle-resolved photoemission29,
infrared data?! and temperature dependence of electrical resistivity22. Marginal
Fermi liquid theory, in the framework of v.H.s. predicts a resistivity linear with
temperature T. This was observed by Kubo et al?2. They also observe that the
temperature dependence of the resistivity goes from T, for a high Tc material to
T2 as the system is doped away from the Tc maximum, which is consistent with
our picture; in lower Tc material, the Fermi level is pushed away from the
singularity (figure 3-2).

T T T T T T T A
3k TI,80,Culg, 3 - Zg_
=0
E
—_ - /=
E
13
€ -4 .
r~—
o
a = -
1
a
—
= sl -
[=d
2
-6 I; -1
- 1 1 | I |
t.o 1.5 2.0 2.5

log (T/K)

Fig. 3-2 : Resistivity p versus temperature. For the highest Tc compounds p varies linearly with T;
for low Tc compounds, the variation is quadratic, from ref [22].

4. The Coulomb Repulsion between Electrons

As early as 1962, Anderson and Morel?3 have shown that the electron-electron
repulsion plays a central role in superconductivity. Assuming a constant repulsive
potential Vi = Ve from 0 to E, they find that Tc is given by :
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1 “.n
Tc=Toexp| - -
-H

: K
th =N,V d —
W K 07c an " I+ p In(Ep/o,)

M.L. Cohen and P. W. Anderson?* assumed that for stability reasons p is
always greater than A. V. Ginzburg?> gave arguments that in some special
circumstances p can be smaller than A. Nevertheless, if we take p > A,
superconductivity only exists because p* is of the order of u/3 to p/5 for a Fermi energy
of the order of 100 wg. It is useless to reduce the width of the band W (Eg = W/2 for a
half-filled band) because A and p vary simultaneously and p* becomes greater if E is
reduced, thus giving a lower Tc. Superconductivity can even disappear in a very narrow
band if A-p* becomes negative.

We have shown!! that, nevertheless, high Tc can be achieved in a metal
containing almost free electrons (Fermi liquid) in a broad band, with a peak in the
D.0O.S. near the middle of the band.

Taking a D.O.S,, equal to a constant n, between energies - W/2 and +W/2, (the
zero of energy is at the Fermi level) with the additional singularity

n(e)=n, lnID* /e I + my between -D and +D we find for Tc, the following formula :

kpT = 2exp|:0.819+—n-0-—ﬁ:| 4.2)
2 n '
where
P oy ¥ 2 2.28h 1
. 1)}
F= n—0+0.819 +(1n——(—n—°) -2 = —1nyn ¢ %
nl D nl D Vp—VC
N V.

[

= 5 -
1+V, a ln—D- +ngln ud
2 rl(l)o 2’10)0

We can have a few limiting cases for this formula :
1) n; =0 : no singularity. We find the Anderson-Morel formula.
2) V.= 0and ny=0: this gives the Labbé-Bok formula.

There are many effects enhancing T : .

A —p* is reduced by the square root, down to fA,—p+ when n; is large
enough. As A — p* <1, the critical temperature is strongly increased because this factor
appears in an exponential.
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Fig. 4-2 : Influence of the number of electrons in the singularity n;, on the critical temperature Tc.

80

40 - B LTPORS RRLLLTT PSR 7

Ve/Vp

Fig. 4-1 : Effect of Coulomb repulsion on Tc. The following numerical values have been used :

(solid line) D=0.9eV, ny = 0.3 states/eV/Cu atom, W =2 eV, n; =02,
(dotted line) D=0.3 eV, ng = 0.3 states/e V/Cu atom, W = 3 oV, n; =0.16.

0,05 0,10 0,15 0,20
n, (states/eV/Cu)

0,00

The numerical values are the same as in figure 4-1, and with ng=(1-2n;)/W,and Ve = Vp.

Te (K)
240 . v T T v T T

180

120+

60t

Fig. 4-3 : Influence of the band width W on Tc. The numerical values are :
(solid line) D = 0.44/W ,ny = 0.6/W ,n| =0.4/W, Vp = W/2 and Vc =Vp,
(dotted line) D=10.3 eV ,ny=0.9/W , n; = 0.05/D, and V¢ = Vp.

Te (K)
200 r T T ; . . . .

150

100

50

0 4 1 2 1 A H " 1
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D (eV)

Fig. 4-4 : Effect of the width of the singularity D on Tc. ny and the total number of electrons
per unit cell are maintained constant with this set of parameters.
Then W =2¢eV,n;=0.3 eV/states/Cu , n, = 0.2/D.
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In all these cases the calculation are made so that the total number of states of the band is one by Cu atom.

Thenng W+2n; D=1,and A =(ng+n; ) Vp. Inall these cases iy = 0.05eV and A =0.5.
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The prefactor before the exponential is the singularity width D, instead of ho,.
We expect D > fiwg. For instance D may be of the order of 0.5 eV and ©, about a few
10 meV (D/hw of the order of 5 to 10).

We have made some numerical calculations using formula (4.2) to illustrate the
effect of Coulomb repulsion. We used two values of D : D =0.9 eV corresponding to
t=0.25 eV and a much smaller value D = 0.3 eV. These calculations are illustrated by
figures 4-1 to 4-4.

These calculations show that the Coulomb repulsion does not kill
superconductivity in the framework of the Labbé-Bok (L.B.) model. The general rule
for high Tc in this model is to have a peak in the density of states near the middle of a
broad band to renormalize the effective repulsion p.

5. Coherence Length and Anisotropy Effects

The relation between the Fermi velocity vg and the intrinsic coherence length &,
is, in the framework of the B.C.S. theory, £,=Avp/m A. This is valid for a spherical
Fermi surface where v is constant.

If we take for vf, the maximum value measured by Dessau et al, ve=3.107 cm/s,
we find with the B.C.S. formula &, = 30 A while the experimental value is between 10
and 15 A. Actually, these calculations do not take into account the fact that the singular
points corresponding to vp =0 have an important statistical weight. The density of states
is given by :

_ 1 dk, dk;
n(S)dE = J‘FW—
where I is a constant energy surface and dk, and dk; are the tangential and orthogonal
components of dk. If, following B.C.S., we construct a wave packet of width 24, the
average Fermi velocity becomes :

2A | dk
hVF - +{l’ I
2n? fn(e)de
-A
with the energy band given by Eq. (2.1) and the Fermi level at the singularity, we find :
_ 2V2 nat
AVp=
1+In(16¢/A)
or
V oy n vaax
F 1+1In(16/ A) (5.1)

In formula (5.1) all parameters vg,,, t and A have been measured experimentally; with
the following numerical values, Vgy,ay = 3.107 cm/s, 8t=1.5eV, A =20 meV, we find
Ve =1.5 107 cm/s and £y = 15 A. We insist that this observed value is obtained without
any adjustable parameter.
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G. Deutscher et al26 measured by point contact spectroscopy a value of vy which
is twice the value that we used. They attribute the difference obtained in these two
experiments to renormalization effects due to electron-phonon and electron-electron
coupling. These renormalization effects are discussed in a recent paper by G. Deutscher
and P. Noziéres?’.

6. Magnetic Susceptibility and Knight Shift of ’Li in YBCO

Bok and Labbé, using their model?, have also predicted that the magnetic
susceptibility of itinerant electrons follows a logarithmic law versus temperature28 :

8po Mp D =’
(D= 211 +—
Xl.c,( ) nz D n 2kBT 12 (6.1)

where pg = 4n 107 in SI units, and pg is the Bohr magneton.
Recently K. Sauv et al?930 have measured the Knight shift AK of the ’Li RMN
line in Li-doped YBaCuO, and have observed the law :

AK:aXie (T)"'B X0=aln-71:+b (62)

where Y, represents the other contributions to the magnetic susceptibility which are
temperature independent (core electrons, diamagnetic contributions, etc); o and B are
given by :

Hp & B

o =—1—H(0) and Bz;l—l—Hgf)
where HL%” is the hyperfine field experienced by the Li nucleus.

Here the Li atom is assumed to be located in the CuO, planes and, so, can play
the role of a local probe for the 2D itinerant electrons in these planes.

K. Sauv et al, have studied the RMN Knight shift for several low doping x of Li,
with x between 0.0062 and 0.019, with no change in the oxygen concentration of
7.01 £ 0.02. Then we can calculate a relative equivalent shift of the Fermi level from the
singularity3! :

_Ep-E, 6.3)

)

for each value of x, and determine the variation of AK or (j ¢(T) with the following
formula:

1 . 8 D'
X,.e(r)=5i‘-°Bﬂk,,Tsmhunz—D.[1, lnﬁ+12:| (6.4)
B
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+o0 | +0 lnlyl
where [, = | ————dy, == — 1
: _‘L cosh y'+coshu v h _-[ocoshy’+coshu
with u=—M<<l s y=-£— , Y'=y-96
kgT kT

and where B is the applied magnetic field29.30,

Like in the experimental results we find that in this range value of x, neither the
slope a, nor the ordinate at the origin b vary, cf figure 6-1. Moreover, the slope a is
fitted without adjustable parameters. The width of the singularity D* comes from the
ARPES measurements3?; and from Eq. (6.2), we may also write :

By
o=
Holly
where Bris the effective field acting on the nucleus Li; we obtain Bf=4.6 Tesla in the
range values usually found for the Li atom in various compounds33.

Once more, we see that the existence of the v.H.s. explains the temperature

logarithmic law of the magnetic susceptibility, observed experimentally,

320 1 m x=0.019 0O x=0.016 ® x=0.009
4 0 x=0.0072 + x=0.0062 -

e -
E 280
Q
£ -
=
& 240

200 -

-5.8 -5.4 -5.0 -4.6 ' -4'.2

Ln (1/T(K))

Fig. 6-1 : Variation of the Knight shift AK in ppm with In(1/T).
Full line : calculation; symbol : experimental points.
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7. Gap Anisotropy

We take a classical electron-electron interaction potential Vi between two

electron states of wave vector k and k' respectively, via electron-phonon coupling.
From B.C.S.34 this matrix element may be written :

2 (hmq)z (7.H

where k'~ k =g is the phonon wave vector, ngr is the square of an electron-phonon
interaction matrix element, e;.; = € —€; is the electron energy difference and g s
the phonon frequency; q, is a screening vector, g ! is the screening length. In the
cuprates, the important phonons are the optical ones, so we take the usual
approximation, Wg = Wg= constant.

The interaction between electrons is attractive Ve < 0, as long as the energy

variation [e,| is less than #wg. In most models, the last term of Eq. (7.1) is taken as -1.
In our case, this is even more justified since the important contributions to A will come
from states of vector k near the saddle points taken on the Fermi surface, that is for
energy differences close to zero. A. A. Abrikosov35 has used the same approximation.

We first solve the problem at zero temperature, T = 0 K ; in this case the B.C.S.
equation giving the gap Ay reads :

T (7.2)
2% ek + M% '
2
with V. =- lgql <0 and -hwep <gye <+hog
kk gl
and Eq. (7.2) may be rewritten, replacing the sum by an integral :
1 Vl-c-l;’ Al;’ ' '
Ar‘g” ) dkc’, dk', (713)

It is useful to introduce tangential and normal coordinates dk, and dk ; dk, is
tangential to the constant energy curve I and dk, is normal to this curve,
we obtain :

_dk,
dk, dk, =L de d, (7.42)

but
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hlv El = de so that
dk,
LI h
de l"kl 2ta \/sinzkxa + sinzkya (7.4b)
for € = constant and Eq. (2.1)
we find
V2 dk, Jz———r'
dk, = EX ;njc:; sin“k,a +sink a (7.4¢)
and finally
] Y
sink,a = |:l - (57 - cosk,a) ] (7.4d)

by combining Eq. (7.2), (7.3) and (7.4) we obtain for the gap :

hog )
dk’x a (qaa) Al(‘

A =7\eﬂ' _[dEJ‘ 2 }é ( a)2+( a)z .\/52 Y

0 F[1- (/20 -cosk, o)t (09 + @) el 5,

(1.5)

Aeff is a numerical parameter with no dimension; it includes an effective interaction V,
an average density of states N/n2t, and a renormalized Coulomb repulsion p*.

Eq. (7.5) is an integral equation which is not easy to solve. But we know from
symmetry considerations, that A; will have a fourfold symmetry; we can expand it in a
Fourier series of the form :

Ay =B, +ACOSAD +.... (7.6)

where ® is the angle between k, and k.

We solve Eq. (7.5) by iteration, we first replace in the integral A, by its average
value A, then compute A, introduce A, in the integral, etc.

We shall present here only the first two steps : calculation of Ay and A, a
detailed calculation will be given in a forthcoming paper. To compute Ay and A, we
use the following procedure. Let us first take ka at point A (0,r) (see figure 7-1).

Ap = Braximum = 8o + 84

then at point B (% s %)
AB = Aminim\lm = AO - Al
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Fig. 7-1 : Square Fermi surface and the interesting points (A, A', B, B').

‘ For A, the vector k' must describe all the contour AA'A"A™ but we see that this
is twice the contour AA'A", For large values of q, the integral is very small, so as a first

approximation, we neglect large q values and integrate only from A to B and multiply
by two; we thus obtain :

u,
"t A
Apax =2, JP L I (u)du
max = “eff . ]uzﬂ‘g 4 o (7.73)

with  I,(u)= f &' 2(g,9)’

°[1‘(u—cosx')2]}{ 2x% +(g,a) ‘ (7.70)

Upp, ’ A A
Apin=A, G [ () du
/8 {l ]uz +u§ B . (7.8a)
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x, ., 2
with 1,,(u)=f dx 2(g,)

: (7.8b)
TR— ) O

where x' =K'y a, x', =arccos(u/2) ,u=e/2t,u,=A/2t,u, = hoy/2t

Aefr in these integrals is the isotropic part of the electron-phonon interaction; it
is of the order of 0.5. These results allow a first qualitative comparison between Apnax
and Ap,. In the integrals 1,(u) and Ig(u), the dominant contributions are those for
which the velocity v goes to zero, i.e. the limit x' = 0. We see that the multiplicative
factor is 1 (q=0) in the case of 15 and of the order of 1/6 to 1/7 in the other case

(q = A a)' We see that the physical origin of the gap anisotropy comes from the fact

that, in certain directions, there are saddle points where |v,|— 0 and Ay is large and
other directions for which |v,] is always finite and Ay is smaller. At finite temperature
T, Eq. (7.7-7.8) are replaced by Eq. (7.9).

(1.9)

A =4 TV——-A"(T) gy k] L2280,
(max,min) = Meff ) u2+u3(T) (4.8) kgT /1t

We evaluate numerically A, and A using the two integral Eq. (7.7) and (7.8).
To do that, we have to choose two parameters : the phonon frequency wq and the
transfer integral t. We could consider them as adjustable parameters to find the values of
Bpax =20 £ 3meV, A, =5+ 5 meV and Te = 86 + 2K observed experimentally36 for
Bi 2212. For YBa,Cu;0;., or YbBa,Cu;0;_, single crystals tunneling effects show a
two-gap structure3’; with values for the maximum gap between 26 and 30 meV and for
the minimum gap between 0.5 and 11 meV. Other recent tunneling spectroscopy
measurements on Bi 221238 found A, = 29.5 + 4meV for Tc = 92.3 K.

But, on the contrary, we have taken wg and t from experimental measurements
and we show that we obtain correct values for A and Tc. So our model contains no
adjustable parameter, but leads to a low value of qqa; we discuss this point in the last
part of this work,

The interaction term t has been estimated theoretically by band structure
calculations6. We prefer experimental determinations. From ARPES measurements32:39
t is estimated to be between 0,20 and 0,25 eV.

For the choice of hwy, many authors have determined several frequencies of
phonon modes which should play a major role in the superconductivity mechanism. The
involved modes are mainly the breathing modes of the Cu-Og complex, with an
important implication of the apical oxygen. Here we mention these modes for the most
known HTSC. For example in La,CuQ,, optical measurements have determined the
oxygen breathing mode frequencies?® in the range 400-640 cm! ; G. Deutscher et al26
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have measured the phonon spectrum by point contact spectroscopy and they found
many involved phonons between 160 c¢m-! and 480 cm!. For YBa,Cu;0,%!, these
important modes are in the range 340-610 cm™'. In this compound, the 340 ¢cm! mode
frequency seems to play a particular role42. Then, in Bi,;Sr,CaCu,04, the mode
frequencies?3 assigned to the axial phonon (//c) and involved in an electron-phonon
interaction are 445 cm! and 594 cm*! ; other phonons seem to play an important role,
like the 587.2 em! mode frequency due to the phonons in the Bi-O plane and the
645.2 cm!, associated with those in the Cu-O plane#4. ‘

Moreover, we know that the mode frequencies are screened by the carriers and
renormalised in the interaction. Therefore, we have chosen for hayg in our calculations,
an arbitrary average phonon of 480 cm™! or 60 meV, which is in the range 160-640 cm-!,

We have tried other values for hwg of the same order of magnitude, and we have
observed no significant change in the results. This observation confirms the anomalous
isotope effect already observed and explained in these materials2.

The numerical results are presented in table I : we see that there is a good
agreement between our computation and the experimental values. The set of parameters
(t=0.20 eV, hwg =60 meV) has been chosen on figure 7-2, where we plot the gap
A(D) as a function of the angular coordinate @, using the first two terms in the Fourier
expansion

A(D) = Ay + A cosdd
with Ag=14meV and A/ =8meV , for Tc=885K (solid line); and with
Ag=12.5meV and A, = 7.5 meV , for Tc = 78.5 K (dashed line).

The black dots represent the experimental values for several samples as
published by Shen et al’6, and Hong Ding et al®, The agreement seems very good
considering the experimental accuracy of ARPES measurements and the
approximations made in our theory. Figure 7-3 gives the variation, with temperature T,
of the average gap 4 (14 meV at T=0K), the maximum gap Ay (22 meV at
T =0K), the minimum gap A_;, (6 meV at T=0K). Here we obtain a Tc value of
88.5 K, close to the experimental one. .

We find that 220 - 3.7 (very close to the BCS value), 24 =5.8 and 28min _ 1.6
kyT. kpT; sk

This explains perhaps the different values observed in various experiments.
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Table | : Several sets of parameters for the calculated gap, for hwg =60 meV and with two choices for

the transfer integral : t = 0.20 eV (Table 1-a) and t = 0.25 eV (Table I-b).

TABLE l-a
fiwg=60meV | t=020eV
902 heft 8A meV | B meV | 40 mev Te (K) 24¢/kpTe
0.18 0.570 22 6 14.0 88.5 3.7
0.12 0.785 22 5 13.5 84.4 3.7
0.13 0.370 20 7 13.5 84.5 3.7
0.08 1.100 22 4 13.0 81.5 3.7
0.23 0.450 20 6 13.0 82.0 3.7
0.05 1.670 22 3 12.5 78.5 3.7
0.15 0.620 20 5 12.5 78.5 3.7
TABLE I-b
hwo=60mev | t=025eV
902 Aeff AA meV [ 8B mev | 80 mev Te(K) | 249/kpTe
0.190 0.50 22 6 14.0 87.5 3.7
0.130 0.67 22 5 13.5 84.5 3.7
0.350 0.31 20 7 13.5 85.0 3.7
0.085 0.94 22 4 13.0 §1.5 3.7
0.250 0.39 20 6 13.0 82.0 3.7
0.045 1.60 22 3 12.5 71.5 3.7
0.165 0.53 20 5 12.5 78.5 3.7
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Fig. 7-2 : Angle-dependent calculated gap A(®) for two sets of parameters :
Ag=14meV, A; =8 meV, for Tc = 88.5 K (solid line), and Ag=12.5meV, A| = 7.5 meV, for
Tc =78.5 K (dashed line) ; experimental values from references [4] and [34] (black dots).
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Fig. 7-3 : Temperature-dependent maximum (full circle), average (full square) and minimum (full
triangle) gaps; for T = 0K, A,, = Ag= 14 meV, A = 8 meV , and for a Tc = 88.5 K.



190

8. Conclusion

We have calculated different properties of high Tc cuprates using an itinerant
electron model in a two dimensional periodic potential leading to van Hove
singularities. We assume, in addition, that the v.H.s. lie close to the Fermi level. This
last assumption has been confirmed by many photoemission (ARPES) experiments.

This enables us to predict high Tc, an anomalous isotope effect, a very short
coherence length, a Pauli susceptibility varying as In(1/T) and an anisotropic gap. We
have also taken into account the Coulomb repulsion and have shown that we get an
important renormalization effect, p* being of the order of p/d.

As regards the order parameter, we find for Bi 2212 for example, a minimum
gap of 6+ 2 meV and a maximum gap of 20 +£3 meV. We use only experimentally
determined parameters in our calculation, except for a rather low isotropic value of q,a
that is essential to obtain a large anisotropy. In these materials which are intermediate
between metals and ionic crystals, the Debye screening radius is not of atomic size as in
good metals, but much larger?s. The two dimensional character of these compounds is
also responsible for a poor screening. The mobile carriers move in planes, and so are
unable to screen out completely the electric field in the third dimension.

The gap values obtained theoretically agree very well with the values
determined by various experiments such as ARPES and tunnel effect. We thus obtain an
“extended s-wave" gap*5 and not a d-wave pair function. The order parameter is never
negative in our model. A.A. Abrikosov46 has shown however that if a short range
repulsive interaction (which can represent either some part of the Hubbard repulsion at
the copper sites or the interaction mediated by spin fluctuations) is added, then the order
parameter can vary in sign and become negative at points of the Fermi surface distant
from the singularity. The anisotropy of the dielectric constant should be taken into
account to obtain a more detailed description of the material,

Such an approach may reconcile all the observations leading sometimes to s-
wave and other times to d-wave symmetry of the order parameter.
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