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We show that ribbed elastic strips under tension present large spontaneous curvature and may close into
tubes. In this single material architectured system, transverse bending results from a bilayer effect induced
by Poisson contraction as the textured ribbon is stretched. Surprisingly, the induced curvature may reverse
if ribs of different orientations are considered. Slender ribbed structures may also undergo a nontrivial
buckling transition. We use analytical calculations to describe the evolution of the morphology of the
ribbon and the transitions between the different experimental regimes as a function of material properties,
geometrical parameters, and stretching strain. This scale-independent phenomenon may help the
manufacturing of tubular textured structures or easily controllable grippers at small scale.
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Textures on soft surfaces are ubiquitous in both natural
and manmade systems. They grant enhanced chemical
properties to the surfaces, such as wetting [1] and adhesion
[2–4], produce structural colors [5], or provide control on
tribology [6,7]. Such textures are, however, prone to buckle
and to crease when the substrate is submitted to stress [8–
10]. Although generally undesired, such morphological
instabilities have been harnessed for micropatterning [11],
mechanical characterization [12], or design of flexible
electronics [13]. Here, we show that rib structures on a
strip made of a single material lead to significant transverse
bending upon stretching. The orientation and the magnitude
of the induced curvature surprisingly depends on the
orientation of the ribs. These simple structures may thus
be viewed as examples of flexible metamaterials [14], i.e.,
structures in which microarchitecture induces unconven-
tional properties through simple traction and/or compression
(e.g., twist [15], textures [16], or transverse curvature [17]).
Common strategies for programming the bending of a

slender structure rely on combining two layers of different
materials into a bilayer. The layers react with different
expansion or swelling to a given stimulus (e.g., humidity for
pine cones [18] or hygromorph structures [19–21], temper-
ature for thermostats [22], interdiffusion for silicon poly-
mers [23]), inducing a lengthmismatch between both layers.
As the layers are assembled together, a stress gradient is
generated across the thickness and the structure sponta-
neously bends, the longer layer being at the outer part of the
structure. Bilayer effects have been intensively studied since
the pioneering works of Stoney [24] and Timoshenko [22].
They are, for instance, essential in recently developed
technologies such as soft robotics grippers [25–28].

Here, we introduce a simple strategy to produce con-
trollable curvature by stretching soft textured ribbons.
Rubber ribbons are patterned with transverse walls of
the same material (Fig. 1). The key point is that, upon
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FIG. 1. Stretching of textured ribbons. (a) Sketch of a portion of
the ribbon of width l (top). Cross section of the corrugated ribbed
strip with membrane thickness t, walls of height h and width w
separated by distance d (bottom). (b) Experimental setup: a laser
sheet intercepts the ribbon (stretched along the ey direction) in
order to measure its curvature. (c) Ribbon with increasing
imposed strain ε0: the ribbon progressively bends along its
transverse direction and eventually rolls itself into a tube.
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traction, the width of the ribbon decreases by Poisson
effect, whereas the walls, oriented perpendicularly to the
traction direction, are barely affected by the stretching of
the membrane on which they sit. The resulting mismatch in
width induces an effective bilayer effect, and the ribbon
rolls itself into a tubular shape whose curvature increases
with the imposed strain ε0 (Fig. 1(c) here and Movie 1 in
the Supplemental Material [29]).
We first focus on walls oriented normally to the traction

direction. Adapting Timoshenko’s reasoning, we obtain an
analytical prediction in the linear regime and compare it
with our experiments over a wide range of geometrical
parameters. We deduce the optimal size and density of
the walls on a ribbon of a given thickness, providing the
maximum curvature-over-stretch ratio. We then extend the
theory to tilted walls and predict the surprising inversion of
the induced curvature for a critical inclination angle. We
finally observe that walls may buckle as the ribbon is
stretched; we describe compressive stresses in the texture
and derive analytically the onset of buckling of the ribs.
The textured strips are made of silicone elastomers (Elite

Double 8 or 22 from Zhermack, Dragonskin 10 from
Smooth-On) by mixing equal quantities of catalyst and
base liquids. The mixture is then poured into a 3D printed
mold with the desired geometric parameters. After curing,
the ribbon has a rest length L, a width l, and a base
thickness t with L ≫ l ≫ t. It is textured with walls of
height h and thickness w. The walls are regularly spaced by
a distance d and are oriented perpendicularly to the ribbon
direction [Fig. 1(a)]. We define the density of textures as
ϕ ¼ w=ðdþ wÞ. The ribbon is clamped into a traction test
machine and stretched to a strain ε0 ¼ ΔL=L [Fig. 1(b)].
The curvature of the ribbon is measured far from the fixed
ends of the ribbon, shining a laser sheet with an oblique
incidence. The deflections of the laser line are proportional
to the local out-of-plane displacements of the ribbon (see
the Supplemental Material [29]).
To rationalize the transverse bending observed upon

stretching (Fig. 1(c) here and Movie 1 in the Supplemental
Material [29]), we make the following simplifying assump-
tions: (i) the boundary layer over which the base of the
walls is stretched by the substrate is small compared to the
height of the walls and can thus be neglected (i.e., h ≫ w),
(ii) the base of the ribbon is stretched homogeneously with
a strain ε0 despite the local reinforcements induced by the
presence of the walls (this assumption is valid when
t ≫ w), and (iii) the walls are sufficiently close to one
another to avoid any significant curvature difference
between the portions of the ribbon covered or not by a
wall. We consider a homogenized version of the membrane
composed of a first layer (the base of the ribbon) stretched
with a strain ε0 and a second layer (the walls) that is
unstretched. Stretching the first layer induces a transverse
contraction that compresses the second layer in the direc-
tion normal to the applied traction. The curvature and the

position of the neutral plane can be derived by minimizing
the elastic energy in this textured ribbon with respect to
these two unknowns (see the Supplemental Material [29]).
Within the linear framework of Hookean elasticity, we
obtain the following expressions for the normalized curva-
ture κ̃ ¼ κt and the transverse strain ξ ¼ ϵxxðz ¼ 0Þ at the
membrane midsurface:

κ̃ ¼ 6h̃ðh̃þ 1Þϕ
1þ 4h̃ϕþ 6h̃2ϕþ 4h̃3ϕþ h̃4ϕ2

νε0; ð1Þ

ξ ¼ −
1þ 3h̃ϕþ 6h̃2ϕþ 4h̃3ϕ

1þ 4h̃ϕþ 6h̃2ϕþ 4h̃3ϕþ h̃4ϕ2
νε0; ð2Þ

where ν is the Poisson ratio of the elastomer (ν ¼ 1=2
throughout this article) and h̃ ¼ h=t is the dimensionless
wall height. The equation for the curvature is equivalent to
Timoshenko’s formula for bilayers [22], where the wall
density ϕ replaces the ratio of Young moduli in both layers.
The exact same equations may be derived using classical
laminate theory [30], considering the membrane as an
isotropic layer and the walls as another orthotropic layer
transmitting stresses and loads only in the direction of the
walls (see the Supplemental Material [29]). Figure 2(a)
shows that the measured curvature varies linearly with the
applied strain ε0, in agreement with the model. The
curvature of the ribbon may thus be easily controlled by
adjusting the amount of stretching. Our theoretical pre-
diction matches quantitatively the measured curvatures, as
shown in Fig. 2(b), even for large strains, beyond the limit
of validity of the theory. In Fig. 2(c), κ̃=ε0 is plotted as a
function of the two relevant geometrical parameters ϕ and
h̃. Maximizing this ratio, we obtain the optimal geometry of
the textures ðh̃ → 1=2;ϕ → 1Þ, which corresponds to a
ribbon of thickness hþ t with regularly spaced cuts of
depth h. Such an ideal configuration is however more
challenging to manufacture and may be prone to rupture
due to stress singularities at the tip of the slits (see a near
optimal design ðh̃ ¼ 1=2;ϕ ¼ 0.88Þ in Fig. S3 in the
Supplemental Material [29]). For a more moderate wall
density of ϕ ¼ 1=2, experimental measurements of stretch-
induced curvature match quantitatively the theoretical
prediction [Fig. 2(d)]. We interpret the small overestimation
of the curvature as a consequence of the stretching of the
base of the walls, which has been neglected in our idealized
model. This effect is more pronounced when the aspect
ratio of the walls h=w is small [light green dots in Figs. 2(a)
and 2(b)]. More generally, the optimal dimensionless height
h̃ for a given density ϕ reads

ϕðh̃Þ ¼ 1=½h̃2ð2h̃þ 3Þ�; ð3Þ

represented by the solid black line in Fig. 2(c).
When the walls are not oriented along the width of the

ribbon but tilted by an increasing angle χ0 (Fig. 3 here and
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Movie 2 in the Supplemental Material [29]), we observe
that the curvature-over-stretch ratio decreases and even-
tually reverses above a critical tilting angle χc ≈ 35°. This
surprising feature commands an extended analytical treat-
ment. Qualitatively, stretching a smooth ribbon with a
strain ε0 induces a transverse contraction −νε0. Hence, a
tilted material line making an initial angle χ0 with the width
direction has a length l0 ¼ l= cos χ0 before stretching and
l ¼ l0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2χ0ð1 − νε0Þ2 þ sin2χ0ð1þ ε0Þ2

p
after stretch-

ing. The strain experienced by this material line thus reads
ϵl ¼ cos2 χ0ðtan2 χ0 − νÞε0 to the first order in ε0. This
strain vanishes for a specific orientation of the line
χc¼arctan

ffiffiffi
ν

p
≈35°. When χ0<χc (respectively, χ0>χc),

the line contracts (respectively, expands). Considering now
a wall on this tilted line, contraction (χ0 < χc) induces a
curvature with the walls on the outside, whereas elongation
(χ0 > χc) leads to the curvature of the structure with the
walls on the inside, as observed experimentally (Fig. 3 here
and Movie 2 in the Supplemental Material [29]).
Quantitatively, bending of the ribbon not only induces

bending of the wall but also twist. For the sake of
simplicity, we neglect the corresponding twisting energy
since the torsion constant J ∼ hw3 of the wall is much

smaller than the bending constant I ∼ h3w in the regime of
interest (h ≫ w). A derivation taking into account the
twisting of the wall is presented in the Supplemental
Material [29]. More importantly, the membrane may also
experience a global shear strain due to the presence of the
tilted walls. This additional effect is tackled in the
Supplemental Material [29]. Neglecting shear and assum-
ing a cylindrical configuration, the total elastic energy may
be computed both in the membrane and in the walls and
then minimized with respect to the curvature κ and the
transverse strain ξ of the membrane midsurface in the limit
of small strain (see the Supplemental Material [29]). The
normalized curvature finally reads as follows:

κ̃ ¼ 6h̃ðh̃þ 1Þϕcos4χ0ðν − tan2χ0Þ
1þ ϕcos4χ0ð4h̃þ 6h̃2 þ 4h̃3Þ þ ϕ2cos8χ0h̃

4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
fðχ0;h̃;ϕ;νÞ

ε0: ð4Þ

When χ0 ¼ 0, we retrieve Eq. (1). As observed in the
experiments [Fig. 3(d)], the curvature-over-stretch ratio at
small strains vanishes and changes its sign at the specific
orientation of the walls χc. Our simplified model [dashed
line in Fig. 3(d)] shows good agreement with the exper-
imental data, except for χ0 ≈ 60°. The agreement may be
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FIG. 2. Stretch-induced curvature. (a) Curvature κ as a func-
tion of the imposed strain ε0 for various strip geometries.
Green dots: t ¼ 2 mm; wall density ϕ ¼ 1=2; w ¼ 0.75 mm;
0.5 mm ≤ h < 3 mm; 0 ≤ ε0 ≤ 0.6. Yellow to blue dots:
t ¼ 0.5 mm; wall density ϕ ¼ 1=2; 0.5 mm ≤ w ≤ 1 mm;
1 mm ≤ h ≤ 5 mm; 0 ≤ ε0 ≤ 0.9. The ribbons are made indif-
ferently of two different silicone elastomers (Elite Double 8 and
22 from Zhermack) of respective Young’s modulus E ¼ 250 kPa
and E ¼ 650 kPa, and Poisson ratio ν ¼ 0.5. (b) Experimental
versus theoretical dimensionless curvature κ̃ ¼ κt. (c) Curvature-
over-strain ratio κ̃=ε0 [color with scale given by the ordinate axis
in plot (d)] as a function of the relative wall height h̃ ¼ h=t and
wall density ϕ ¼ w=ðdþ wÞ. The full line corresponds to the
optimal value of h̃ as a function of ϕ. (d) Curvature-over-strain
ratio as a function of h̃ for ϕ ¼ 0.5 [dashed line in (c)]. Triangles
are obtained by a linear fit of the experimental curves κ ¼ fðε0Þ
and the black line is the theory (Eq. (1)).
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FIG. 3. Varying the wall orientation. (a) Ribbon with walls tilted
by an angle χ0. (b) Stretched ribbons with walls of various
orientations χ0 and thus different transverse curvature directions.
(c) Dimensionless curvature κ̃ as a function of the applied strain ε0
for various angles χ0 (colors according to the angle χ0with the color
bar presented in (d); h ¼ 1 mm; t ¼ 1 mm; d ¼ w ¼ 0.28 mm).
Solid lines correspond to the theoretical model with shear [Eq. (5)].
(d) Curvature-over-strain ratio at small strain as a function of χ0.
Triangles are obtained by a linear fit of the first 6 experimental
points in graph (c). The dashed line is the theoretical prediction
[Eq. (4)] of the simplified model neglecting shear. The solid black
line corresponds to the full model accounting for shear (see the
Supplemental Material [29]). A quantitative agreement is obtained
for all angles without any fitting parameter.
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further improved by taking into account a global shear
strain in the membrane (solid line). Classical laminate
theory, associated with a rotation of the coarse-grained
plane-stress stiffness matrix of the walls, leads to the same
result (see the Supplemental Material [29]). Beyond the
linear behavior described in Eq. (4), the full nonlinear
curvature versus strain curve may be retrieved by
updating the actual angle χ in the deformed state.
Neglecting the shear, this actual angle approximately reads
χðε0; χ0Þ ¼ arctan ½ð1þ ε0Þ=ð1 − νε0Þ tan χ0�. The curva-
ture-strain curve finally reads

κ̃ ¼
Z

ε0

0

fðχðϵ; χ0Þ; h̃;ϕ; νÞdϵ; ð5Þ

where the function f is the linear coefficient relating the
dimensionless curvature κ̃ and the strain ε0 in Eq. (4). This
expression is plotted in Fig. 3(c) and shows good agreement
with the experimental data, even at large strains. For walls
oriented with an angle χ0 ¼ 30°, the curvature changes its
signs above the predicted critical strain (Fig. 3(c) here and
Movie 2 in the Supplemental Material [29]).
Our theory, however, fails to accurately predict the

response of the strips outside the asymptotic regime
described above, especially when t is not large compared
to w (Fig. S5 in the Supplemental Material [29]). Indeed,
the physical bond between the membrane and the walls is
overlooked in the model, which induces significant local
changes in the strain distribution in the membrane. Taking
this subtle effect into account would require a numerical
analysis, which is beyond the scope of the present work.
Beyond the global transverse bending of the strips, the

textures may undergo a buckling transition for certain
geometries above a critical strain (Fig. 4 here and Movie 4
in the Supplemental Material [29]) [31]. We focus here on
transverse ribs parallel to the ex direction (i.e., χ0 ¼ 0).
Because of the presence of the stretched membrane, the ribs
are under compression and not in a pure bending mode. The
transverse strain inside the ribs may be inferred from the
combination of Eqs. (1) and (2) and is geometrically given
by ϵxxðzÞ ¼ ξþ κz. The buckling of a thin wall on a
compressed foundation—or equivalently, the swelling of
a wall on a passive foundation—has been studied in the
context of swelling bilayers of gels [32]. Buckling is
expected to occur when the compressive strain reaches
ϵc ¼ −0.87w2=h2, and the wavelength λ at the onset of
instability is found proportional to h. In the present case,
however, the walls are additionally bent, which increases
the compression close to their base but reduces the
compression on the upper part of the walls. We assume
that the wall buckles when the top of the wall reaches the
critical compressive strain ϵc, i.e., when

ϵtopxx ¼ νε0
−1þ 3h̃2ϕþ 2h̃3ϕ

1þ 4h̃ϕþ 6h̃2ϕþ 4h̃3ϕþ h̃4ϕ2
¼ ϵc: ð6Þ

Remarkably, this strain vanishes when the height is optimal
for a given density [Eq. (3)]. If the height is larger than the
optimum value, the top of the walls is under tension and the
structure does not buckle. In the opposite case, the top of
the walls is under compression and the compressive strain
ϵtopxx increases linearly with ε0 until it reaches the critical
buckling strain ϵc. Figure 4 shows the configuration
diagram with the rescaled strain ε0=ϵc as a function of h̃
for ϕ ¼ 1=2. Our theory predicts quantitatively the tran-
sition to buckling for various wall sizes and aspect ratios
(Fig. 4). The wavelength of the instability classically scales
as h [32]. When the membrane is infinitely thick (i.e., when
h̃ ≪ 1), we retrieve the classical buckling threshold
−νε0 ¼ ϵc. As a consequence of buckling, the compressive
stresses in the ribs are partially relaxed and the induced
bending is less pronounced than predicted in our linear
theory [Eq. (1)].
We have demonstrated how spontaneous curvature can

be induced by stretching a textured ribbon. This curvature
results from the difference in Poisson contraction between
the ribbon and the textures and is well described by a
simple analytical model. Contrary to standard bilayers, this
effect is not caused by a contrast of material properties but
by geometry. A natural extension of this work would be to
program complex shapes by varying the orientation χ0 of
the walls along the ribbon. Nevertheless, the gradient of
curvature will be limited by a longitudinal persistence
length observed when the transverse curvature of a tubular
structure is modified [33–35]. Although we focused
on macroscale structures, the mechanism is scale-
invariant. Many techniques, including soft lithography
and two-photon laser writing or etching, are readily
available to manufacture textured ribbons at microscales.
For micrometer thin structures of 1 mm width, for instance,
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FIG. 4. Wall buckling. (a) Walls for different geometries and
stretching ε0 in a nonbuckling (a) and a buckling (b–d) regime.
The lettering corresponds to the lettered symbols in the diagram.
(b) Diagram with the rescaled applied strain ε0=ϵc as a function of
the dimensionless height h̃ ¼ h=t for ϕ ¼ 1=2. The black lines
correspond to the expected buckling threshold [Eq. (6)]. Symbols
represent the geometry of the walls: triangles (h ¼ 3 mm;
w ¼ 0.75 mm); squares (h ¼ 5 mm; w ¼ 1 mm); circles
(h ¼ 1 mm; w ¼ 0.5 mm).
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a typical strain of a few percent is sufficient to close the
ribbon into a cylinder. At small scales, surface stresses
should be additionally taken into account [36]. Depending
on the orientation of the walls, the obtained tubes may have
textures either on the inside or the outside. Such structures
could be used for flow control in microfluidic devices or as
soft grippers. We therefore envision that the programmable
self-curving structures based on surface textures could
become a very simple tool to manufacture tubular structures
at small scale.
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