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Guided tearing: The ruler test
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The physical rules governing the tearing of a packaging or of a piece of paper are not completely elucidated
despite being common phenomena in daily life. Here, we investigate how the presence of a straight rigid object,
a ruler, guides the fracture of a thin sheet within a wide range of pulling directions. In the case of thin isotropic
brittle sheets, a simple geometrical analysis shows that fracture follows the direction of a tearing vector, which
differs significantly from the pulling direction. In addition to geometry, bending energy or material anisotropy
has to be implemented in the case of thicker or anisotropic sheets, to predict the direction of propagation. A
generalization of the Wulff-type construction introduced by Takei et al. [Phys. Rev. Lett. 110, 144301 (2013)]
accounts successfully for our experimental results.

DOI: 10.1103/PhysRevMaterials.5.025601

I. INTRODUCTION

Opening a packaging is generally a frustrating experience
as the fracture propagates along an undesired path. Pulling
away a strip of adhesive tape for instance leads to a pointy
shape, which is very inefficient in terms of unpacking [1–3].
In ductile sheets, plasticity may lead to complex shapes as
torn edges are irreversibly stretched, inducing longitudinal
out-of-plane oscillations [4–6]. In brittle thin sheets, con-
trolled model experiments show that tearing crack paths can
be surprisingly regular. Logarithmic spirals [7,8] and oscillat-
ing [9–12], converging [13], or hyperbolic [14,15] paths have
for instance been observed and described [16].

Because of the relative simplicity of experimental se-
tups, and the remarkable reproducibility of the crack path,
fracture in thin sheets stands as a good system to probe
fundamental questions on the selection of the direction of
propagation. In isotropic continuous propagation, it is ac-
cepted that fracture follows the direction that maximizes the
energy release rate [17,18]. However, in the more general
case of an anisotropic material, the question of the direc-
tion of propagation is still debated. Most manufactured films
are anisotropic, which strongly influences their tearing prop-
erties [19]. Here we will further test a natural extension
of the standard maximum-energy release rate criterion for
anisotropic sheets [14,20].

In practical tearing applications, we often require a fracture
to propagate in a given direction. A common solution consists
in guiding tearing with a ruler. Although tearing the free “leg”
of a notched sheet of paper is an intuitive operation, what are
the physical bases of this process? What is the force required
to tear the sheet? Does the crack always follow the ruler?
What is the most efficient way to control tearing in the case of
anisotropy of the fracture energy? We propose to address these

*Corresponding author: francisco.melo@usach.cl

questions through a model experiment where the material di-
rection of the specimen and the pulling direction of the free leg
can be controlled independently. This paper follows the same
framework developed for a trouser test configuration [14]
motivated by a seminal article by O’Keefe [21]. However, the
presence of the ruler modifies significantly the geometry since
the sheet laying under the ruler is forced to remain flat.

We first present the experimental setup and the geometrical
ingredients of the problem. We then predict through geomet-
rical arguments the direction of propagation of a crack and
the required pulling force for an isotropic sheet. Although this
geometrical description captures most of the fracture features,
we find that the crack path deviates from the prediction, and in
particular may depart away from the ruler in some cases. We
suggest that this deviation is due to anisotropy of the material,
and to the neglected elastic bending energy. We finally provide
a more general framework which accounts for these additional
physical effects.

II. GEOMETRY OF THE EXPERIMENT

The experiment aiming to mimic the common technique of
tearing guided with a ruler is as follows. We start by cutting
a rectangular sample in a sheet of polypropylene, as sketched
in Fig. 1(a). Because materials are generally anisotropic, we
will keep track of all orientations with respect to a fixed
“material axis” (MA). A notch is performed and a ruler is fixed
above half of the sample (above flap B). We denote by αr the
direction of the ruler (and notch) with respect to the material
axis. The film of polypropylene selected for this paper has
a low anisotropy arising from the elongation imposed to the
film during its manufacture. It will be demonstrated later that
the material axis is one of the symmetry axes of the fracture
energy of the film. The ruler is tightly pressed against the film
in such a way that no slip boundary conditions are imposed
along the entire ruler width and the sample. A flexible wire is
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FIG. 1. Experimental setup. (a) A rectangular specimen of spec-
ified dimensions is cut with an angle αr with respect to the material
axis. A cut is additionally made along its center line in order to
separate two “legs.” (b) The specimen is maintained on an orientable
platform by applying a ruler along its center line. The orientation of
the ruler with respect to the material axis is given by the same angle
αr . The resulting free leg is folded and pulled in the plane of the ruler
following the “pulling direction” through a micropositioning system.
The pulling force F is monitored with a load cell. (c) Typical case of
a fracture propagating away from the ruler along a generic direction
θ defined with respect to the material axis. (d) Case of a fracture
following the ruler (θ = αr).

attached to an arbitrary “pulling point” on flap A. This wire is
pulled along a constant direction, defined by the unit vector τ̂ ,
and at constant speed, thanks to a feedback controlled stage,
and the pulling force F is monitored [Fig. 1(b)]. For the sake
of simplicity, we consider here the case of the pulling direction
τ̂ in the plane of the ruler.

As the flap is pulled, a fold first forms, and the crack even-
tually propagates. We experimentally observe that the line
joining the fracture head to the pulling point (after folding)
is almost straight and is thus parallel to the pulling direction
τ̂ . Depending on the relative orientation of pulling [Fig. 1(b)],
fracture propagates either at a departing angle θ [see Fig. 1(c)]
or along the ruler, θ = αr [as depicted in Fig. 1(d)].

III. THIN ISOTROPIC SHEET

We first consider the case of thin sheets of negligible
bending stiffness. It will prove useful to define at each time
the “grip” unit vector T̂ , which joins the initial location of

FIG. 2. Simplified geometry of the tearing experiment. (a) Flap
diagram indicating the pulling point prior to flap folding (dashed
line); the folded flap and the position of the pulling point during
pulling. The unit grip T̂ and pulling τ̂ vectors are defined through the
initial and the current positions of the pulling point and the fracture
head. The direction of the fold corresponds to the perpendicular
bisector, τ̂ − T̂ . (b) Geometry of the tearing on the flat sheet diagram.
The location of the fold is indicated for clarity.

the pulling point to the fracture tip [Fig. 2(a)]. Although the
sheet is strongly bent in the experiments as in Fig. 2(a), the
prediction for fracture propagation is best understood by con-
sidering the trajectory in the diagram in Fig. 2(b), where the
sheet is replaced in its flat configuration. Our theoretical ap-
proach is based on Griffith’s criterion for fracture propagation
which establishes that the energy release rate should exactly
compensate the cost for creating new surfaces [22]. As the
sheet is here assumed to be inextensible and with a vanishing
bending stiffness, there is no elastic energy. As a consequence,
we expect fracture propagation (in a sheet with thickness h
and fracture energy Gc) to occur over a distance ds when the
cost of fracture Gchds is balanced by the work of the external
force Fdl , where dl is the displacement of the pulling point
P in the pulling direction τ̂ (Fig. 3). Two terms contribute to
dl as the pulling point moves from P to P′ and the crack tip
moves from O to O′, respectively. The change of the length
of the flap OP to O′P′ is by construction equal to the change
from AO to AO′ and thus we write dlT̂ = T̂ · t̂ ds (to the first
order of ds). In addition to this change in length, the crack tip
moves along ds. The contribution of this displacement in the
direction τ̂ is given by dlτ̂ = τ̂ · t̂ ds. The global displacement
of the pulling point in the direction τ̂ thus follows:

dl = (dlτ̂ + dlT̂ ) = (τ̂ + T̂ ) · t̂ ds. (1)
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FIG. 3. Sketch depicting fracture progression. The fracture ad-
vances a distance ds following a generic angle θ . dl is the total
increment displacement of the pulling point, from P to P′, along the
pulling vector τ̂ .

Griffith’s criterion for fracture propagation

Fdl = Gch ds

can therefore be rewritten as

2F cos
φ

2
cos(θ − αt ) = Gc(θ )h, (2)

where αt is the orientation of vector τ̂ + T̂ with respect to the
material axis and φ is the angle between vectors τ̂ and T̂ as
defined in Fig. 3 [since τ̂ and T̂ are unit vectors, ||τ̂ + T̂ || =
2 cos(φ/2)]. We can also express the energy release rate as
G(θ ) = 2F cos(φ/2) cos(θ − αt )/h, which is maximum for
θ = αt . In this isotropic material, fracture propagates in the
direction that maximizes the energy release rate [22], or equiv-

alently in the direction that minimizes the fracture force. We
conclude that in an isotropic, infinitely bendable sheet, where
the pulling point defining a grip vector T̂ is pulled along
direction τ̂ ,

fracture proceeds in the direction of vector T̂ + τ̂ (3)

i.e., along the bisectrix of pulling and grip vectors (τ̂ , T̂ ). In
the following, the vector T̂ + τ̂ will be referred to as “tearing
vector.” Note that, counterintuitively, the fracture direction
does not coincide with the pulling direction τ̂ . Rather, it prop-
agates in a direction perpendicular to the fold axis, a feature
also observed in other cases of fracture in infinitely bendable
sheets [23]. Indeed, as bending energy has been neglected, the
fold is strongly focalized, leading to a ridge that is parallel to
the direction of τ̂ − T̂ , perpendicular to the tearing vector.

We now present the consequences of the geometrical
rule (3) on the features of fracture guided by a ruler. Three
cases can be distinguished, namely, following the ruler for
guided tearing, symmetric, and departing away from the ruler.
For the discussion it is useful to define the angle α, as the
orientation of the ruler with respect to the grip vector (Fig. 4).

A. Guided tearing

The tearing vector is oriented towards the ruler [Fig. 4(a)].
In this case, the presence of the ruler frustrates propagation
along the natural tearing vector and the crack path follows
the ruler. This is the situation of guided tearing that we use
in everyday life when we wish to control the direction of the
cut. For a successful control of the tearing, we must therefore
make sure that the bisector of pulling and grip vectors (τ̂ , T̂ )
points inside the ruler. Counterintuitively, this condition may

FIG. 4. Different ruler cases. (a) The tearing vector is oriented towards the ruler and the crack path follows the ruler (b) Symmetric case:
the tearing vector, T̂ + τ̂ , is parallel to the ruler (critical guiding). (c) The tearing vector departs from the ruler.
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be achieved even when pulling the sheet away from the ruler.
If fold-ruler friction is minimized, guiding is possible for the
tearing vector ranging from being parallel (dangerously close
to losing control of the propagation departing the ruler) to be-
ing perpendicular to the ruler (apparently the safest situation).
The latter case is achieved by orienting the pulling vector at
an angle equal to π − α with respect to the ruler (i.e., the
symmetric grip vector with respect to perpendicular to the
ruler), leading to a fold that is parallel to the ruler. However,
the force applied by the operator in the general guided case is
given through Eq. (2) as

F = Gch

2 cos(φ/2) cos(αr − αt )
. (4)

The tearing force would thus diverge when the tearing vec-
tor (with an angle αt ) becomes perpendicular to the ruler,
αr − αt = π/2, and the fold is parallel to the ruler. Such large
forces may trigger additional fracture in the sheet and are
therefore not to be favored. The tearing force (4) is minimal
when αr = αt , i.e., when the tearing vector lies parallel to
the ruler, or equivalently when the grip and pulling vector are
symmetric with respect to the ruler, a situation that we study
next.

B. Symmetric tearing

The tearing vector is parallel to the ruler, leading to a fold
line perpendicular to the ruler [Fig. 4(b)]. The grip point may
still be chosen anywhere in the quarter of the plane defined by
the notch and perpendicular to the ruler passing through the
crack tip (0 < α < π/2). The limiting configuration occurs
when the grip vector and pulling vector are both perpendic-
ular to the ruler. In terms of the work of the operator, we
deduce from Eq. (4) that the less costly configuration is φ = 0
(α = 0), for which F = Gch/2. We conclude that the optimal
situation for guiding tearing is when picking the pulling point
almost at the contact of the ruler, and the operator pulls it
along the ruler. However, this situation corresponds to the
limit case where the crack is close to departing from the ruler.

C. Departing from the ruler

The tearing vector points away from the ruler edge
[Fig. 4(c)]. Under this condition, fracture is not guided any-
more and its propagation is dictated by the tearing vector, θ =
αt . Then, the force applied for the operator depends solely on
the angle φ between grip and pulling vectors:

F = Gch

2 cos(φ/2)
. (5)

IV. QUANTITATIVE EXPERIMENTAL TESTS

In the following, we experimentally explore what geomet-
rical features of the tearing problem are captured by the above
analysis.

We first explore the dependence of the fracture path with
the tearing vector τ̂ + T̂ . We use here samples cut perpen-
dicularly to the direction of the material axis (αr = 90◦). We
select a pulling vector τ̂ oriented at 45◦ departing the ruler
and vary the angle α made by the grip vector T̂ with the

FIG. 5. Angle of fracture propagation θ as a function of the
position of the pulling point (orientation of grip vector α) for a
fixed pulling angle of 45◦ with respect to the ruler. The red line
indicates crack orientation as predicted by the tearing vector (3). The
horizontal black line depicts the ruler orientation. Inset: Sketch of the
geometry of the experiment.

ruler (Fig. 5). The initial notch is made here parallel to the
ruler at a distance of 5 mm. This offset of the crack tip from
the ruler allows us to probe the prediction (3) without hitting
the ruler. Note that according to our experimental choices, the
tearing vector will be parallel to the ruler, i.e., αt = αr = 90◦,
for α = 45◦. We thus expect the fracture path to depart from
the ruler for α < 45◦ and to follow the direction given by
the tearing vector αt . Conversely, we expect the fracture path
to converge towards the ruler (θ � αr = 90◦) for α > 45◦.
Experiments confirm the theoretical predictions (Fig. 5) and
we observe that even if the pulling vector points in a direction
departing from the ruler (as is the case here), the fracture does
propagate towards the ruler for sufficiently large α. In these
cases, we observe that once the fracture has reached the ruler
edge, it proceeds along the ruler direction (black horizontal
line Fig. 5).

We further test our model by fixing this time the pulling
point, and varying the pulling direction. The grip vector T̂
is selected parallel to the ruler and, with this choice (α = 0),
the angle of the pulling direction τ̂ with respect to the ruler
is simply given by the pulling angle φ. In particular, φ = 0
indicates the pulling direction that is exactly parallel to the
ruler. We measure the fracture angle θ and the pulling force
as a function of φ for two different orientations of the ruler
with respect to the material axis: oriented at 90◦ and at 30◦
[see insets in Figs. 6(a) and 6(c), respectively].

Our simple analysis predicts that fracture propagates along
the tearing angle αt (θ = αt = φ/2 + αr), which corresponds
to the solid blue line of slope 1/2 in Figs. 6(a) and 6(c). The
presence of the ruler must then frustrate propagation angles
beyond the ruler orientation αr < αt , that is, when φ < 0, the
propagation direction is θ = αr (blue horizontal line).

In a first experiment [Fig. 6(a)], with the ruler oriented
along 90◦, our data are in good agreement with the model,
and fracture follows the ruler when its propagation along the
tearing angle becomes frustrated (negative values of φ). Nev-
ertheless, in the second experiment where the ruler is oriented
at 30◦, an offset of about 6◦ is systematically observed on
the propagation angle θ with respect to αt [Fig. 6(c)]. For
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FIG. 6. Angle of fracture θ and tearing force F as a function of φ (measured with respect to the ruler). (a, b) Ruler oriented at 90◦ with
respect to the film axis. (c, d) Ruler oriented at 30◦ with respect to the film axis. In (a) and (c) predictions from geometrical arguments, θ = αt

(without ruler constraint), are represented by straight blue lines. For φ < 0, solid horizontal blue lines indicate propagation along the ruler,
θ = αr . Below these lines, no fracture propagation can occur due to the presence of the ruler. Dashed black lines are the predictions including
anisotropy (Wulff’s without fold), whereas solid lines include in addition the effect of the fold stiffness. In (b) and (d) geometrical model
predictions for the tearing force from Eq. (2) are indicated with blue lines. When fracture is guided by the ruler, θ = αr , the tearing force is
given by Eq. (4). Dashed black lines indicate corrections due to fracture anisotropy (Wulff’s plot) while solid black lines indicate predictions
including both anisotropy and fold effects. Insets in (b) and (d) indicate the inverse of fracture energy as a function of the propagation angle θ ,
and the ruler orientation.

instance, for φ = 0, we observe that fracture propagates at an
angle θ ≈ 37◦ which differs from the ruler angle (αr = 30◦).
Fracture only becomes frustrated and guided by the ruler when
the pulling vector is further oriented towards the ruler, with
φ � −15◦.

Equation (2) accounts well for experimental values of
the tearing force for the ruler oriented at 90◦ in the regime
where the fracture does not follow the ruler [the blue line in
Fig. 6(b)]. When the trajectory of the fracture is at the edge of
the ruler, the fold is in contact with the ruler, leading to notice-
able frictional forces. In the case of guided cracks (θ = αr),
Eq. (4) underestimates the pulling force by about 30%. When
adding a Coulomb friction force of the form F = (1 + μ)Fc,
a good agreement is obtained [green line in Fig. 6(b)], with
μ ≈ 0.3 and Fc given by Eq. (4). A similar effect of friction
is observed when the ruler is oriented at 30◦ [Fig. 6(d)].
However, the tearing force deviates here significantly from the

prediction from Eq. (2) even for nonfrustrated directions (blue
line).

In conclusion, while our simple geometrical approach
based on the assumption of material isotropy and negli-
gible elastic energy captures the fundamental propagation
features, we find that the fracture trajectory as well as the
pulling force clearly depend on film orientation, revealing
fracture-anisotropy or elastic-energy interplays. In the follow-
ing section, we develop more refined arguments to predict
fracture direction accounting for both the fracture energy
anisotropy and the elastic energy stored in the fold.

V. FRACTURE ANISOTROPY AND FOLD EFFECTS

A. Fracture criterion in anisotropic materials

Thin films are commonly anisotropic due to manufactur-
ing procedures. Even for weak anisotropy, small variations
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of the fracture energy with orientation can affect the frac-
ture trajectory significantly. We therefore recall the fracture
criterion for anisotropic materials used recently in [14,20].
According to the classical Griffith criterion, a crack propa-
gates in the generic direction θ for which the energy release
per unit of fractured surface [the energy release rate G(θ )]
compensates the energy cost of fracturing the material Gc(θ ),
so that G(θ ) = Gc(θ ). This criterion alone does not predict
the direction of propagation, and an additional criterion is
needed. In an isotropic material, and for smooth propaga-
tion, it is assumed that fracture propagates in the direction
that maximizes the energy release rate [24]. This “maximum-
energy release rate criterion” is equivalent to the principle
of local symmetry for continuous trajectories [17,18]. In the
case of an anisotropic material, a natural generalization of
the maximum-energy release rate criterion is to postulate that
fracture propagates in the first direction which satisfies Grif-
fith’s criterion [18,25–27]. Thus, assuming that the loading is
progressively increased, cracks propagate in direction θ which
first satisfies

G(θ ) = Gc(θ ), (6)

therefore imposing

dG(θ )

dθ
= dGc(θ )

dθ
. (7)

As a result, crack propagation does not in general follow
the direction of maximum-energy release rate, but is attracted
towards directions less costly in fracture energy. The con-
dition (7) can be identified as an Eshelby torque (left-hand
side) balancing a material torque associated with anisotropy in
fracture energy [26]. This general criterion [Eqs. (6) and (7)]
was tested in the numerical phase field approach [25–27].
Recently, the tearing path observed in anisotropic films pulled
from two points [14,20] was shown to obey this criterion. In
addition, the direction of propagation of interacting cracks
in thin films adhered to a rigid substrate has been described
with the same approach, despite differences in geometry and
underlying physics [28,29].

B. Measuring anisotropic fracture energy in
a simplified geometry

As in previous studies [14,20], the bioriented polypropy-
lene sheets used here are “balanced material” that exhibits
weak anisotropy (Young’s modulus with less than 20%
variation around 1.8 GPa) due to biaxial stretching during
extrusion. We determine the fracture energy as a function of
orientation using the trouser-test methodology as described
in [14,20]. Briefly, the sample is a rectangular strip (20-mm
width and 100-mm length) with a longitudinal cut splitting
the strip in two flaps with equal width. Both flaps are clamped
and pulled symmetrically away from each other [see Figs. 7(a)
and 7(b)]. Samples are cut in several orientations αt with
respect to the material axis, and the precut defines the initial
position of the crack tip. As a result of symmetry in loading,
the tearing vector is parallel to the side of the strip, along
the orientation αt [Fig. 7(a)]. As the material is anisotropic,
the fracture propagates in a direction θ �= αt , for a given
applied force F , both of which are measured for each sam-

FIG. 7. (a) The sample dimensions and its orientation with re-
spect to the material axis (Axis 1) and the machine direction (Axis 2).
(b) Trouser test configuration for the measure of the fracture energy
Gc(θ ) as a function of the fracture direction θ . (c) Polar plot of the
fracture energy as a function of θ . The solid line is the best fit to
the experimental data of the form Gc(θ ) = G1 cos2(θ ) + G2 sin2(θ ),
with values of G1 = 6.0 kJ/m2 and G2 = 5.3 kJ/m2. (d) The Wulff-
type diagram G−1

c (θ ) construction leads us to find graphically the
direction of propagation θw , as the first intersection point (indi-
cated by a red circle), and the force F required for a given tearing
direction αt .

ple. The fracture energy Gc for the orientation observed θ

is then deduced from Griffith’s criterion, which we write
Gc(θ ) = 2F cos(θ − αt )/h, and is reported in Fig. 7(b). The
fracture energy is well approximated by the simple equation
Gc(θ ) = G1 cos2(θ ) + G2 sin2(θ ) [Fig. 7(c)]. We observe that
θ = αt (straight propagation) occurs in samples along “axis 1”
(the material axis) and its perpendicular [see Fig. 7(a)], as one
would expect from the symmetry imposed in manufacturing.
In this material, plastic dissipation results in a rather large
fracture energy Gc ∼ 5 kJ/m2; however, the process zone re-
mains smaller than the thickness (h = 50 μm) [20].

C. How anisotropy deflects fracture

In the case of an isotropic material, the energy release
rate is optimized when the fracture direction t̂ is parallel to
the tearing vector, T̂ + τ̂ . In the case of anisotropic material,
the direction of propagation is set by Eshelby’s condition
[Eq. (7)], which reads here

−2F cos

(
φ

2

)
sin(θ − αt ) = dGc(θ )

dθ
h. (8)

Equations (2) and (8) then lead to

tan (θ − αt ) = −dGc(θ )

dθ

1

Gc(θ )
, (9)
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FIG. 8. (a) Polar Wulff diagram for anisotropic fracture energy.
The γ −1 curve: 1/Gc(θ ) (gray line) and the straight lines defined
by [2(F/h) cos(φ/2) cos(θ − αt )]−1 are plotted for two particular
values of F (black solid lines). Arrows on the dashed line indicate
the direction of increase of the tearing force and θw denotes the
propagation direction obtained at intersection. For the isotropic case,
intersection occurs for θw = αt . (b) The generalized Wulff diagram
which considers both the tilt angle �α f induced by the fold and the
anisotropy of the fracture energy. An effective tearing direction can
be defined as αt + �α f .

which, given the fracture energy Gc(θ ) and the direction of
tearing vector αt , allows for the determination of the propaga-
tion angle θ . Note that if the material is isotropic, we recover
propagation along the tearing vector since θ = αt .

An equivalent and elegant way to determine the direction
of propagation is to use a graphical construction analogous to
Wulff’s construction introduced in the context of anisotropic
interface growth [14,20]. Here we apply this construction
to the case of tearing with a ruler, where the tearing vec-
tor is oriented along an angle αt (configuration considered
in Fig. 6). We plot in polar coordinates (r, θ ) the fracture
energy curve r(θ ) = 1/Gc(θ ), which we referred to as the
γ −1 curve in [20]. We add the energy release rate curve
r(θ ) = [2(F/h) cos(φ/2) cos(θ − αt )]−1, which corresponds
to a straight line oriented along direction αt + π/2 at a dis-
tance h/2F cos(φ/2) from the origin [Fig. 8(a)]. As F is
progressively increased, this line comes closer to the origin
but keeps its initial orientation. Griffith’s criterion [Eq. (2)]
is satisfied at any intersection point of the line with the γ −1

curve and is therefore first satisfied at the first point of inter-
section. According to the minimization criterion, the tearing
force and the direction of propagation θ are therefore defined
by the point of the γ −1 curve which accepts a tangent along
direction αt + π/2. This criterion was successfully tested [20]
in the simpler symmetric “trouser” geometry.

However, when we apply this anisotropic construction
to tearing experiments with a ruler, the predictions [black
dashed lines in Figs. 6(a) and 6(c)] exhibit discrepancies
when compared to the experimental fracture angles. Although
accounting for material anisotropy improves the prediction
of the direction of propagation when the ruler is oriented at
αr = 30◦ [Fig. 6(c)], significant mismatch is observed with
other orientations [see Fig. 6(a), for a configuration with the
ruler at αr = 90◦]. This observation suggests that an addi-
tional ingredient is at play in the selection of the direction of
crack propagation.

FIG. 9. Geometry of the fold as bending energy is taken into
account. The fold is assumed to have a conical shape, with a radii of
curvature rc and rw at the fracture tip and at the free end, respectively.

D. How bending energy deflects fracture

We have up to now neglected the elastic energy of the
sheet, which is localized in the region of the fold. This bending
energy varies during fracture propagation due to the geometric
variations of the fold and may contribute to the energy release
rate. Accounting for the variation of elastic bending energy in
Griffith’s criterion leads to

Gc(θ ) + dUf

dw

dw

ds
= F

dl

ds
, (10)

where Uf is the elastic energy stored in the fold and w is the
width of the fold (proportional to the width of the flap). In
order to obtain an estimate of dUf

dw
, we assume a nearly conical

shape for the fold, which is supported by direct measurements
of fold shape. Within this assumption, the local radius at the
position z along the fold is given by r = rc + rw−rc

w
z, where rc

and rw are the radii of curvature of the fold at the fracture tip
and at the free end, respectively (see Fig. 9). We obtain for the
bending energy

Uf =
∫ w

0

B

2r2
πr dz = π

2

B w

rw − rc
ln

rw

rc

where B = Eh3/12(1 − ν2) is the bending stiffness of the
sheet of thickness h, Young modulus E , and Poisson coeffi-
cient ν.

Since dl/ds = (T̂ + τ̂ ) · t̂ = 2 cos (φ/2) cos(θ − αt ) and
dw/ds = − sin(θ − αt ), Eq. (10) reads

Gc(θ )− π

2

B

rw − rc
sin(θ−αt ) ln

rc

rw

=2F cos
φ

2
cos(θ−αt ).

The balance of the moment induced by the component of the
force perpendicular to the fold F cos(φ/2) and the moment at
the base of the fold leads to

F cos(φ/2) =
∫ w

0

B

2r2
dz = Bw

2rcrw

.

We finally obtain a minor correction for the effective fracture
energy:

Gc(θ ) � 2F cos φ/2 cos(θ − [αt + �α f ]) (11)

with

�α f = π
rcrw

(rw − rc)w
ln

rw

rc
� 1.
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In our experiment, rc � 0.5 mm, rw � 6.5 mm, and w �
20 mm, which leads to �α f ≈ 10◦. When comparing Eq. (11)
with Eq. (2), we see that the effect of bending energy in our
simple model is simply to replace αt by αt + �α f , which
corresponds to an effective rotation of the tearing vector by an
angle �α f . In the absence of anisotropy, we expect fracture
propagation along the direction [αt + �α f ]. The bending en-
ergy of the fold thus tends to deflect the propagation towards
the most bent flap, which is also observed in other situa-
tions [1]. Implementing the effect of bending energy in our
graphical prediction of the direction of the crack propagation
results in a simple rotation of the solid lines by an angle �α f ,
as shown in Fig. 8(b).

The predictions of this modified geometrical construction
are reported in Fig. 6 in black continuous line for a value of
�α f = 6◦, which results in a better comparison with experi-
mental data [Figs. 6(a) and 6(c)]. Notice that neglecting both
the fold energy and the fracture energy anisotropy (isotropic
prediction) leads to good matching to the experimental data
in Fig. 6(a). This is due to the fact that under the conditions
of Fig. 6(a), anisotropic effects are reduced—small axis of
symmetry along the ruler; fracture is attracted to the ruler—
and fold energy produces corrections in the propagation angle
that tend to compensate anisotropic effects, repelling fracture
from the ruler.

Although the bending energy stored in the fold plays an
important role in determining fracture direction, it does not
affect significantly the pulling force in our experiment where
anisotropy remains small [(G1 − G2)/G1 ∼ 11%]. Indeed,
when αt is close to zero or π/2, where the fracture energy
is, respectively, maximal or minimal, �α f locally varies only
at second order with orientation, leading to a minor change in
tearing force. The effect of the fold is more significative along
the orientation of maximum anisotropy (where dG/dθ is
larger) but still remains modest [see Fig. 6(d)]. Finally, when
the fracture proceeds along the ruler, the force significantly
deviates from Wulff’s predictions since friction becomes im-
portant.

VI. CONCLUSION

We have investigated the familiar tearing of a sheet along
a ruler. In contrast to the classical trouser test where two
symmetric folds are at play, the presence of the ruler imposes
boundary conditions on one of the flaps as it forbids its bend-
ing. As a consequence, the curvature of the fold does affect
the crack trajectory. In our experiment, we start by picking an
arbitrary point on the flap which will be pulled. The direction
joining this point to the crack tip defines the unit grip vector T̂ .

This point is then pulled along a vector τ̂ . We demonstrated
that the geometry of the configuration determines the main
features of fracture through a tearing vector τ̂ + T̂ .

Indeed, in the case of an isotropic, infinitely thin sheet,
fracture direction occurs along this tearing vector, and prop-
agation is guided by the ruler when fracture hits it, which
eventually occurs when the tearing vector is oriented towards
the part of the sheet covered by the ruler. Counterintuitively,
this guided configuration does not require the pulling direction
to be oriented towards the ruler. In terms of lowest pulling
force, the optimal configuration corresponds to a pulling point
placed initially very close to the ruler and pulled parallel to
the ruler. Nevertheless, this ideal direction of propagation is
in practice very sensitive to additional effects that we have
identified.

First, fracture energy anisotropy can lead to significant
deviation of fracture direction. Fracture is indeed deflected
towards direction of the minimum of fracture energy. We
quantify this effect using a geometrical solution similar to
Wulff’s construction, an elegant tool from crystal growth.
Second, finite bending energy in the fold leads to an additional
shift in the orientation of the fracture. Through a simple model
accounting for the fold energy, we show that this feature
can be captured by means of the generalization of Wulff’s
construction. We find that the fold always favors propagation
departing the ruler (since fracture tends to release the fold
energy by decreasing its width). Conversely, anisotropy of
fracture energy may favor propagation towards or departing
from the ruler, as it induces a shift towards the direction of
minimal fracture energy.

We conclude that efficient control of fracture by a ruler
is attained when fracture is constantly directed towards the
ruler, making it insensitive to imperfections. This is achieved
by either a pulling point initially not too close to the ruler or
a pulling direction oriented more towards the ruler than nec-
essary, which involves a higher tearing force than the optimal
solution with in addition a supplementary component due to
friction along the ruler.
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