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Programming stiff inflatable shells from planar
patterned fabrics†

Emmanuel Siéfert, * Etienne Reyssat, José Bico and Benoı̂t Roman *

Lack of stiffness often limits thin shape-shifting structures to small scales. The large in-plane transformations

required to distort the metrics are indeed commonly achieved by using soft hydrogels or elastomers. We

introduce here a versatile single-step method to shape-program stiff inflated structures, opening the door

for numerous large scale applications, ranging from space deployable structures to emergency shelters. This

technique relies on channel patterns obtained by heat-sealing superimposed flat quasi-inextensible fabric

sheets. Inflating channels induces an anisotropic in-plane contraction and thus a possible change of

Gaussian curvature. Seam lines, which act as a director field for the in-plane deformation, encode the shape

of the deployed structure. We present three patterning methods to quantitatively and analytically program

shells with non-Euclidean metrics. In addition to shapes, we describe with scaling laws the mechanical

properties of the inflated structures. Large deployed structures can resist their weight, substantially

broadening the palette of applications.

1 Introduction
As Carl Gauss demonstrated, curving a planar surface in two
simultaneous directions requires changing the metrics, i.e. the
distances between material points along the surface. Nature
displays numerous examples of such shape changes induced
by non-uniform growth, which for instance dictates the shape of
plant leaves1,2 or of our organs.3 Bio-inspired shape shifting
structures have been developed for applications in tissue
engineering,4 biomedicine5 or drug delivery.6 In order to achieve
the metric distortion required for complex shape morphing,
several actuation strategies have been intensively investigated
in the last decade, ranging from swelling hydrogels,7–10 liquid
crystal elastomers11,12 to, more recently, dielectric13,14 or
pneumatic15 elastomers. These different solutions rely on basic
scalar stimuli, respectively temperature, UV-light, electric field
and pressure. However, their fabrication involves relatively
complex processes: control of reticulation rate in hydrogels,
precise control of the orientation of the nematic director field
in liquid crystal elastomers, multi-layered electrodes for dielec-
tric elastomers and precise 3D-printed molds for baromorphs.
These objects are moreover inherently soft (Young modulus
typically under 1 MPa), hindering applications to human size
objects, architecture or space industry.

Other strategies to shape plates through a modification
of the apparent metric without significantly stretching the
material rely on cuts (kirigami),16–18 folds (origami),19,20 or
internal hinges,21 which allow for stiff materials to be used
(e.g. polymers or even metals). Recently, pneumatic pressuriza-
tion or vacuum have been introduced as a mean to actuate
origami structures.22–25 However, manufacturing still involves
the complex folding of the structure prior to actuation. Despite
recent advances, the actuation of folds remains indeed
complex, prone to errors26,27 and intrinsically soft.

Here, we present an alternative concept to transform initially
flat sheets into stiff and lightweight inflatable shells (Fig. 1)
using a versatile and scalable manufacturing technique:28 two
flat superimposed sheets (typically made of thermoplastic
coated fabric) are heat-sealed together along seam lines. In
contrast with mylar balloon structures where thin sheets are
sealed along their edges,29 locally parallel seam lines define
here a network of channels over the whole area of the sheets
(Fig. 2a, see ESI† and Supplementary movie 1 for details on the
manufacturing). In-plane contractions distort metric in a non-
Euclidean way, leading to the buckling of the structure into 3D
shapes. This transformation is programmed by the specific
pattern of the network. Inflation induces local bending of the
sheets (Fig. 2b and c) and an apparent in-plane contraction
perpendicular to the channels that we use as an average metric
distortion.

In elegant aeromorph structures,28 pressurized sheets with spe-
cific heat-sealed patterns fold into bistable soft hinges, program-
ming essentially the extrinsic bending of the sheet rather than the
intrinsic curvature (i.e., the metric). Our proposed strategy is closer
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to tessellated origami: seam lines are equivalent to the posi-
tions of valley folds, with mountain folds in between (Fig. 1a).
As a simple example, radial folds in a paper disk lead to the
formation of a cone. Similarly, an inflatable structure with

radial seams morphs into a conical shape. Conversely, both
origami with circular folds and its inflatable analogue with
nearly azimuthal seams (Fig. 1b and Supplementary movie 2,
ESI†) buckle into anti-cones.30 Contrary to standard origami,
the deployment of the 3D structure is here spontaneous upon
inflation and does not require tedious mechanical actuation of
individual folds. Moreover, rigidly and flat-foldable origami
tessellations involve soft deployment modes, and cannot be
stiff, whereas the effective folding angle in our inflatable
structures, corresponding to the local contraction rate l, is
fixed by volume maximization in the highly bendable regime
(Fig. 2b–e). The shape is obtained by the 2D patterning of flat
sheets, not through the complex assembly of multiple patches,
as in common inflatable structures.31 Internal pressure p also
provides stiffness to the resulting structure as in other large
scale inflatables, such as fabric air beams,32 stratospheric
balloons33 or even playground castles and architectural
buildings.34 We present and rationalize three different ways
to distort the metrics and propose analytic procedures to program
simple geometric shapes. We then discuss the mechanical proper-
ties of such Gaussian morphing fabric structures.

2 Patterning strategies and
axisymmetric shape programming
In our approach, the pattern is locally made of parallel stripes
of width w, with seam lines of width e (Fig. 2b). Upon inflation,
the sheet bends perpendicularly to the seam lines to generate
a tubular cross section for sufficiently large pressures (p c
Et3/w3), where t is the thickness of the sheet and E its Young
modulus. Owing to the quasi-inextensibility of the fabric sheets
(p { Et/w), this change in cross section leads to an effec-
tive in-plane contraction perpendicular to the stripes. Taking
the thickness e of the seam line into account (but neglecting

Fig. 1 Origami-inspired design of Gaussian morphing fabrics structures. (a) Paper origami cone made with alternate mountain (solid lines) and valley
(dashed lines) radial folds. Inflated analogue composed of radial seams. (b) Concentric circular folds induce the formation of a saddle shape. The same
anti-cone with seams along an Archimedean spiral. (c) A 3 m-wide and 1.2 m-high paraboloid structure with a Miura-ori type of pattern, fitting closely to
the target shape (dashed line), sustains its own weight without any significant deflection.

Fig. 2 In-plane metric distortion. (a) Two flat superimposed fabric sheets
are heat-sealed along any desired path with a heating head mounted on an
XY-plotter. (b) Upon inflation, the cross section between two locally
parallel seams distant by w becomes circular, causing an in-plane con-
traction of magnitude l = 2/p. (c) Varying the relative width x = e/w of the
seam line, homogenised contraction ratios ranging from 2/p to 1 can be
obtained (red triangle: experiments; continuous line: model) (d), Deforma-
tion of inflated ‘‘zigzag’’ patterns inspired by miura-ori tessellation of
incident angle w. The orientation w of the zigzags increases to a value w0

upon inflation. (e) Principal contraction ratios parallel (blue circles) and
perpendicular (red triangles) to the average channel direction measured
experimentally as a function of the zigzag angle w. Solid lines correspond
to the model (eqn (3) and (4)) with l = 0.7.
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the effect of seam curvature29), the effective contraction
factor reads:

lðxÞ ¼ 2

p
ð1$ xÞ þ x (1)

where x = e/w is the relative seam thickness, in very good
agreement with experimental measurements (Fig. 2c). Conver-
sely, no length change is observed along the seam lines. This
direction may thus be seen as a director field for the anisotropic
metric distortion of magnitude l perpendicular and 1 parallel
to the lines. Following the framework developed for liquid
crystal elastomers,11,12 the metrics of the inflated structure
can be written as:

aðu; vÞ ¼ Rðaðu; vÞÞt 1 0
0 l2

! "
Rðaðu; vÞÞ (2)

where (u,v) is a parametrization of the plane, a is the local angle
of the director field, R the matrix of rotation and l the
contraction rate perpendicular to the channels. Interconnectiv-
ity between the channels is ensured by small apertures (smaller
than the typical width w) at the ends of the seam lines, thus
having limited influence on the local contraction governed by
volume maximization. Note that in contrast to nematic elasto-
mers, the contraction rate, l can be varied in the range [2/p,1]

by tuning x. However, as the structure is symmetric through the
thickness, the extrinsic curvature cannot be programmed.

We now illustrate how this metric distortion strategy can
lead to a variety of stiff non-Euclidean shapes upon inflation. In
the radial seam pattern shown in Fig. 1a, inflation induces a
perimeter contraction of amplitude l, which leads to the
buckling of the disk into a cone of angle 2arcsin l. In a nearly
azimuthal pattern (archimedean spiral), radii are contracted by
l, and the structure buckles into an anti-cone35 with an excess
angle 2p(l$1 $ 1) (Fig. 1b and Supplementary movie 2, ESI†).
Both cone and anticone have a flat metric everywhere except at
their apex, where Gaussian curvature is localized. General
axisymmetric shapes with distributed Gaussian curvature are
programmed by varying the angle a of seam lines with respect
to the radial direction (Fig. 3a–d),11,36 while keeping the seam
width and thus the contraction l nearly constant throughout
the plane. As in liquid crystal elastomers,11 the angle a fully
determines the ratio of azimuthal versus radial contraction
along the inflated shell. Arbitrary axisymmetric shapes, e.g. a
paraboloid (Fig. 3b), or structures with constant negative Gaus-
sian curvature (Fig. 3c) can be achieved (see ref. 36 for details
on the programming procedure). The same method is applied
in a cartesian coordinate frame37 to program a helicoid of pitch
P = 4.5c, where c is the width of the deflated ribbon (Fig. 3d and

Fig. 3 Three metric distortion strategies. Simple geometric surfaces are programmed with corresponding seam patterns in insets. (a) Curved seam lines
changing the orientation a of the in-plane contraction: (b) paraboloid, (c) saddle of constant negative Gaussian Curvature and (d) helicoid. (e) Variation of
the contraction rate l through the variation of the relative seam width x, in addition to the control of the orientation a of the seam: (f) hemisphere; (g)
saddle; (h) helicoid. (i) Zigzag patterns with both the orientation a and the angle w of the zigzags as degrees of freedom to distort the metric: (j) paraboloid,
(k) Gaussian shape, (l) helicoid. For axisymmetric shapes, the red dashed lines correspond to the programmed target profiles. Each helicoid is
programmed to make half a turn (pitch P twice longer than the inflated structure). Scale bars: 5 cm.

Soft Matter Paper

Pu
bl

ish
ed

 o
n 

24
 Ju

ly
 2

02
0.

 D
ow

nl
oa

de
d 

on
 9

/4
/2

02
0 

7:
09

:1
4 

PM
. 

View Article Online

https://doi.org/10.1039/d0sm01041c


This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 7898--7903 | 7901

Supplementary movie 3, ESI†). More generally, the design of the
director field can in principle be used to generate complex
surfaces following the analogy with shape-programmed liquid
crystal elastomers.12,38

Nevertheless, we may also take advantage of the possible
variation of the contraction l A [2/p,1] by adjusting the
width of the seams (Fig. 3e), which offers an additional
degree of freedom in the metric distortion and opens addi-
tional shape programming strategies. A hemisphere can
for instance be programmed with radial seams of varying
width, using eqn (1) and following the simple geometric rule

lðrÞ ¼ R

r
sinðr=RÞ, where r is the radial coordinate in the flat

state and R the programmed radius of curvature of the dome
(Fig. 3f). The same method is applied with nearly azimuthal
seams of decreasing width to program a saddle of constant
negative Gaussian curvature (Fig. 3g and Supplementary movie
2, ESI†), or a helicoid with straight parallel seams (Fig. 3h and
Supplementary movie 3 (ESI†); see ESI† for more details on the
programming).

Another strategy to gain a second degree of freedom in the
metric distortion is to design zigzag patterns that are reminis-
cent of Miura-ori origami tessellations. In addition to the main
direction a of the channels, the characteristic angle w of the
zigzags (Fig. 2d) may be chosen. w controls the ratio of the
contractions l8 and l> respectively along and perpendicular to
the average channel direction (Supplementary movie 4, ESI†).
Inflating the structure induces a geometrical change from w to
w0 = arctan(tanw/l). Using simple geometric considerations, we
retrieve the average contraction rates:

lk ¼ cos w0= cos w ¼ lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 wþ l2 cos2 w

q (3)

l? ¼ l cos w= cos w0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 wþ l2 cos2 w

q
(4)

which are in quantitative agreement with experimental mea-
surements (Fig. 2e). Note that changing the angle w of the
zigzag does not impact the overall area contraction upon
inflation, which remains equal to l = l>l8. Indeed, every air
channel (from a zig or a zag) locally contracts uniaxially by an
amount l. Zigzag patterns can thus be viewed as a global
isotropic area contraction followed by an in-plane shear varying
both in direction (orientation a of the zigzag) and intensity
(angle w). Similarly to the computational techniques used with
curved seams, zigzags (Fig. 3i) may be used to quantitatively
program axisymmetric shapes (Fig. 3j, k and Supplementary
movies 5,6, ESI†) or a helicoid (Fig. 3l and Supplementary
movie 3, ESI†) (see ESI† for more details on the design of the
seam networks). A study dedicated to the homogenization
theory of zigzag patterns is under progress.

3 Stiffness of inflatable shells
Beyond geometry, such deployed structures are shells made of a
collection of inflated beams and locally present highly anisotropic

stiffness both for bending and stretching. In the regime of
interest, the transverse bending stiffness per unit width of an
array of parallel inflated beams scales as B> B Etw2, as in other
inflatable structures.32 Although B> barely depends on the
applied pressure (as long as the air beam adopts the optimal
circular section, i.e. p c Et3/w3), the maximum moment per
unit width an array of beams can sustain without failing
strongly depends on pressure39–41 and typically scales as
pw2 + Et2 (see ESI† for more details). Conversely, the bending
stiffness along seam lines is proportional to Et3 and is therefore
orders of magnitude smaller than in the transverse direction:
seams act as soft hinges between rigid inflated tubes. As a
consequence, long straight seams favor floppy modes (e.g. the
cone and the dome respectively illustrated in Fig. 1 and 3f bend
easily along radial lines) whereas curved and narrow seams
promote the global stiffness of the inflated structure. This
strong stiffness anisotropy has a major impact on the shape
selection among isometric embeddings of the target metrics:
for instance, a helicoid (Fig. 3h) is selected rather than a
catenoid, since it does not require the bending of the horizontal
beams. Zigzag patterns appear as an interesting strategy to
ensure the variation of the direction of the air beams at a
mesoscale, while inducing stronger and more isotropic
mechanical stiffness of the inflated structure. Since the envel-
ope does not extend, the stretching modulus per unit width of
pressurized patterns is related to variations of the enclosed
volume and scales as pw in both directions (see ESI† for more
details). Moreover, sharp changes in the direction of the seam
induce, in the inflated state, compressive folds in the vicinity of
the junctions between ‘‘zigs’’’ and ‘‘zags’’.29 In this region, the
zigzaging beams may therefore deform through folding or
unfolding the membrane without material strain. Upon bend-
ing, the curvature of such zigzag structures localizes at these
softer spots. A kinking angle f is achieved by the work pDV
against the imposed pressure p, where the volume change DV is
quadratic in f. The localized linear hinge stiffness per unit
width C = pq2(DV)/qf2 is therefore proportional to p:

C = pw2F(w) (5)

where w is the only local length scale and F a function of the
zigzag angle w. Experimental measurements using a three point
bending test (Fig. 4a) are consistent with this prediction: C is
linear with the pressure and appears independent of the sheet
material properties.

Hinges can thus sustain a maximum moment that scales as
pw2 (as for straight beams). They also allow for much larger
curvatures before an overall collapse, as many kinks are dis-
tributed over the structure. Hence, inserting hinge-like singu-
larities typically reduces the local bending stiffness but also
prevents the formation and localization of a single catastrophic
kink in the structure. The global bending rigidity of zigzag
patterns may be seen as a collection of beam components of
stiffness B0 = Ew2t/(4p)cos2w and hinges of rigidity C. The
homogenized rigidity thus reads:

B> = (B0
$1 + nlC

$1)$1 (6)
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where nl is the number of direction changes per unit length. In
the typical regime of interest, both terms are of the same order
of magnitude and none may be neglected. Despite the strong
simplifications implied in our description, eqn (6) provides a
satisfying scaling law (using the prefactor found experimentally
in Fig. 4a for C), especially at large enough pressures (where the
assumption of circular cross section of the beams is verified).

All in all, the maximum moment per unit length the structure
can sustain scales classically as pw2. The typical maximum size
of such inflatable structures Lmax at which they can sustain their
own weight scales thus as Lmax B [pw2/(rgt)]1/2. For typical values
(E B 109 Pa, w B 1 m, rB 103 kg m$3, g B 10 m s$2, t B 10$3 m
and p B 104 Pa), Lmax amounts to tens of meters. Architectural
shape-morphing structures are thus reachable with this strategy.
In order to highlight the high stiffness to weight ratio of such
structures, a 4 m wide structure (3 m in the inflated state) has
been manufactured using an ultrasonic sewing machine (Fig. 1c
and Supplementary movie 7, ESI†).

4 Conclusion
Gaussian morphing fabrics constitute a versatile and simple
technique to produce stiff shape-morphing pneumatic struc-
tures with well-defined programmable shapes. The manufac-
turing process is scalable and architectural size structures are
within reach. Several patterning strategies – lines, seams of
varying thickness and zigzags – have been introduced, allowing
for one or two degrees of freedom in the metrics prescription.

Although a wide variety of shapes can be programmed analyti-
cally, the general inverse problem, i.e. programming a pattern of
seam lines such that the inflated structure deploys into a desired
target shape, has to be solved numerically12,38,42,43 and is beyond
the scope of this article, since state-of-the-art techniques12 fail due
to the strong mechanical anisotropy of the structures.

Numerous extensions are possible for practical applications:
several layers may be stacked with specific welding patterns
between two consecutive fabric sheets, each pattern coding for
one specific shape (Supplementary movie 8, ESI†). As the fabric
used remains unstretched upon deployment, the structures
may support metallic tracks for shape changing electronic
devices.44 Other actuation strategies may also be envisioned,
such as hydrogel swelling inside the structure (Supplementary
movie 9, ESI†). In order to bias the symmetry and promote a
preferred deployment direction, fabric sheets of different thick-
nesses may finally be used. Altogether, our study offers a simple
manufacturing platform where stiff shape-morphing structures
are anticipated to find new innovative applications at human
and architectural scale, ranging from rehabilitation medical
tools to emergency shelters.
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