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Abstract – The present study investigates the rolling motion of a rigid sphere moving down a
granular slope. We observe that the sphere only moves steadily beyond a critical inclination that
depends on the diameter and density of the sphere. The groove created on the bed surface during
the passage of the sphere, grows with the diameter and density of the sphere and it is nearly
independent of both the sphere speed and the slope angle. The granular resistance experienced
by the rolling sphere is deduced from its dynamics. A mechanical description of the interaction
between the sphere and the granular bed accounts for the experimental findings through a single
adjustable parameter. A phase diagram for the sphere dynamics defined by two dimensionless
parameters, namely the slope angle and the ratio of the densities of the sphere and of the grains,
is proposed.

Copyright c© EPLA, 2018

Introduction. – The scientific questions associated
with rolling friction on granular beds are crucial for un-
derstanding motorized locomotion on sandy environments,
the evolution of talus [1], ballistics of spherical asteroid
landers [2] and even the rolling of heavy dung balls in soft
soils by beetles [3]. This phenomenon has benefited from
a revival of interest after the incident of the rover Curios-
ity, developed by the NASA for Martian exploration, that
got stuck for two weeks in a sand dune in 2005. More-
over, the need of robust technological solutions aimed at
exploring deformable grounds has motivated the develop-
ment of instrumented spheres that are propelled by winds
similarly as tumbleweeds [4,5]. This solution has been
also adapted to polar explorations [6] and reforestation of
arid zones. However, the success of these instrumented
spheres in the exploration of complex environments re-
quires a deep knowledge of the interaction between the
non-cohesive substrates and the sphere. Historically, the
problem of rolling friction on a deformable bed has been
addressed by Bekker from the point of view of soils me-
chanics [7,8]. Bekker expressed the drag of a wheel on
a flat granular substrate as a function of its geometry,
load and empirical soil constants deduced from soil tests.

Although this approach has proven effective in practical
situations, physical understanding is still missing. More
recently, Van wal et al. studied experimentally and nu-
merically the rolling resistance of a light sphere on a hor-
izontal granular bed [2]. They developed a theoretical
model based on the micro-collisions between the sphere
and the ground to account for the rolling friction that par-
tially agrees with their experimental observations. Beyond
flat substrates, the case of sandy slopes has been studied
by Crassous et al. in the context of ants captured inside
antlions sand traps [9]. They show that the friction of a
slider on a granular bed exhibits large deviations from the
Amontons-Coulomb laws at small applied pressure. Pre-
dicting the frictional behaviors on inclined granular slopes
thus requires new physical laws that remain to be found.
The problem of the rolling resistance of dense spheres on
an inclined sand bed has been addressed by De Blasio and
Saeter [10]. It was observed that the penetrating depth
and the rolling friction of the spheres both increase with
their density. Since this study was limited to a single slope
angle, more experimental efforts are required to achieve a
complete physical description of the problem. Here, we
investigate systematically the dynamics of spheres rolling
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Fig. 1: (Color online) Sketch of the experimental setup.

down an inclined surface of a non-cohesive granular sam-
ple. The first section describes the experimental setup and
the inferred sphere dynamics. The drag of the sphere is
estimated as a function of the slope angle and the main
physical parameters. Simultaneously, the deformation of
the granular bed due to the passage of the sphere is char-
acterized through the deflection of a laser sheet. In the
second part, a simple mechanical model for the rolling re-
sistance on a granular bed is proposed and compared to
our experiments. This model accounts for a gradual in-
crease of the asymmetry of the stress distribution acting
on the area of the sphere in contact with the bead as the
slope is increased. Finally, the different behaviors of the
sphere on a granular bed are discussed and summarized in
a phase diagram constructed with the slope angle and the
ratio of the densities of the sphere and of the grains.

Experiments. – The experiment consists in releasing
a homogeneous sphere of radius R and density ρs over
a flat granular bed made of glass particles of diameter
d = 0.5 mm (polydispersity of 15%) and tilted by an an-
gle α from the horizontal direction (fig. 1). Spheres are
made of expanded polystyrene foam and have a smooth
surface in comparison to the grain size. The granular
bed is prepared by pouring grains on a horizontal sub-
strate covered with sandpaper and increasing its slope up
to an angle αa = 23◦ at which an avalanche starts. Once
the avalanche stops, a granular layer of constant thickness
h � 10 mm remains and covers the substrate. According
to the study of Pouliquen and Forterre [11], the height of
the granular layer, h depends solely on the slope angle,
which allows for the preparation of layers of well-defined
thickness and good homogeneity. We verified that increas-
ing the thickness of the granular layer does not affect the
dynamics of the sphere, indicating that our experiments
correspond to the limit of deep granular beds (h > 4 mm).
The bulk density of this preparation has been measured
to be ρg = 1540 kg/m3, corresponding to a packing frac-
tion of φ = 0.58. Thereafter, the slope of the system is
reduced to the desired angle α at which the experiment
is conducted. The sphere is released at null height above
the granular bed without initial velocity or spin. Within
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Fig. 2: (Color online) (a) Position of a sphere as a function
of time for different slope angles α. The sphere diameter is
R = 16 mm and its density ρs = 22 kg/m3. Grains are made of
glass beads of mean diameter d = 0.5 mm (the polydispersity is
about 15%) and the bulk density of the bed is ρg = 1540 kg/m3.
The granular layer is prepared by bringing the system to α =
23◦ and waiting for the layer to reach the equilibrium thickness
of h � 10mm. Solid lines correspond to quadratic fits of the
form x = at2/2. (b) Acceleration of the sphere as a function
of the slope angle α for different sphere diameters (R = 11, 16,
24, 22mm for colored dots, triangles, squares and diamonds,
respectively) and densities (ρs = 22, 57 kg/m3 for blue and
yellow symbols). The dark solid line represents the classical
theory for rolling without sliding for a homogeneous sphere
(a = 5/7g sin α). The open dots correspond to the case of a
sphere rolling on a rigid incline.

the range of sphere radius and density, selected for the
experiments, the sphere does not sink entirely into the
granular layer and rolls down the incline. The dynam-
ics of the sphere along the slope is captured at a rate of
30 fps through a CCD camera located one meter above the
granular layer, preventing optical distortions. The sphere
motion is extracted from movies analysis through a MAT-
LAB code based on image correlation.

The typical dynamics of a sphere rolling on the granular
slope (fig. 2) reveals that the falling acceleration increases
with α and that data are well described by a quadratic
law x = at2/2 (solid lines in fig. 2(a)), where a is the
acceleration of the sphere that is approximately constant
during a fall. Similar experiments were reproduced with
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Fig. 3: (Color online) (a) Rolling ratio Rθ/x as a function
of the slope α for a sphere of diameter R = 24mm and den-
sity ρs = 22 kg/m3 over a granular bed made of glass beads.
The black solid line indicates the classical case of pure rolling.
(b) Granular reduced friction Fd/Mg deduced from experimen-
tal accelerations and eq. (1). Symbols have the same significa-
tion as in fig. 2(b). The blue and yellow solid lines show the
prediction of eq. (8) for c = 1.5. Gray regions show the model
predictions for c = 1.5±0.2. The dark solid line represents the
tangential force in the classical case of a pure-rolling motion
on a rigid substrate (Fd = 2/7Mg sin α).

spheres of different diameters and densities. In all cases,
good fit of experimental data was achieved and the mean
acceleration of the sphere, a, was deduced.

Figure 2(b) indicates that a minimal slope angle αc is re-
quired for the sphere to initiate spontaneously its motion.
For α > αc, the acceleration of the sphere increases with
α and shows vanishing dependency on R (blue symbols
in fig. 2(b)). Increasing the sphere density ρs results in
increasing αc and reducing the sphere acceleration a. For
a given angle, the measured acceleration is significantly
lower than the one expected for the classical problem of
a sphere rolling without sliding (a = 5/7g sinα, cf. dark
solid line and open dots in fig. 2(b)). Thereafter, we in-
vestigate the rotation of the sphere while rolling down the
granular slope by means of black painted stripes on the
sphere surface. Tracking these stripes provides the sphere
rotation angle θ recovered while it travels over a given dis-
tance x. We observe that the ratio Rθ/x is equal to unity
within the experimental accuracy of this study (fig. 3(a)).

Fig. 4: (Color online) Top view of the deflection of a laser
beam at the boundary of the groove produced by the passage
of a rolling sphere on a granular bed. The x-direction goes
from top to bottom.

We thus conclude that the sphere does not significantly
slide. The difference in sphere acceleration compared to
the case of a flat and rigid substrate is then attributed to
the friction of the sphere due to the deformation of the
granular bed. Introducing the friction force Fd experi-
enced by the sphere along the x-direction, the equation of
motion yields

ẍ

g
= sin α − Fd

Mg
, (1)

where M = 4πρsR
3/3 and g is the gravitational acceler-

ation. Considering that the sphere acceleration ẍ is con-
stant and equals the fitted value a, eq. (1) leads to an
estimate of the granular friction Fd. Figure 3(b) shows
Fd/Mg as a function of α for different sphere diameters
and densities. As a general trend, Fd increases both with
α and ρs and is larger than in the case of pure rolling on
a flat and rigid substrate where Fd = 2/7Mg sinα (black
solid line and open dots in fig. 3(b)).

The rolling of the sphere on the granular bed pushes
away excess granular material which results in the forma-
tion of a characteristic groove as discussed by Crassous
et al. [9]. In order to characterize the features of the
groove, we follow the profile of the granular bed with a
laser sheet that intercepts the surface with an oblique
incidence, as depicted in fig. 1. A top view of the groove
boundary is shown in fig. 4. We first observe that for
a given experiment, the depth of the groove δ and its
width w, both remain unchanged along the path of the
sphere. These results can be attributed to the fact that
for α < 22◦ the sphere displacement does not trigger
avalanches but only a local flow of grains. Conversely, for
22◦ < α < 23◦, the deposition of the sphere induces global
avalanches, a regime that lays out of the scope of this
study. We then investigate the dependence of δ and w on
the radius of the sphere for a given density (fig. 5(a), (b)).
One notices that the groove depth and width both increase
proportionally to R. Furthermore, the detailed study of
the geometry of the groove as a function of the slope α
for a given sphere (fig. 6(a), (b)) shows that both δ and
w remain nearly independent of α, for the range of angles
accessible in the experiments (α < 22◦).

Model. – We first focus on the features of a groove
produced by a sphere that is gently deposited on a flat
and horizontal granular surface. Uehara et al. investigated
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Fig. 5: Depth (a) and width (b) of the groove formed by the
passage of a sphere as a function of the radius of the sphere for a
given density ρs = 22 kg/m3. Dots correspond to experimental
data and black solid lines to the predictions of eqs. (2) and (3)
for ρs/ρg = 22/1540, μg = 0.40, A = 0.16 and B = 1.94.
The insets show the data for two ball densities, ρs = 22 kg/m3

(dots) and ρs = 57 kg/m3 (squares). (a) δ as a function of
(ρs/ρg)3/4R/μ

3/2
g . (b) w as a function of (ρs/ρg)7/16R/μ

7/8
g .

the depth and the diameter of a crater formed by a sphere
impacting a granular medium at low speed [12]. In the
limit of sphere released just above the medium, the depth
and the width of the crater read

δ =
A

μ
3/2
g

(
ρs

ρg

)3/4

R, (2)

w =
B

μ
7/8
g

(
ρs

ρg

)7/16

R, (3)

where μg is the friction coefficient between grains (for the
glass beads used in our experiments, μg = 0.40, as deduced
from the angle of repose of a granular pile) and A, B are
numerical coefficients. Adjusting eqs. (2) and (3) to the
experimental data, we find that the best fits are obtained
for A = 0.16 and B = 1.94 (solid lines in figs. 5 and 6).
These values hold for the two sphere densities considered
in this study (insets in figs. 5(a) and (b)). The numerical
values of A and B differ from the ones measured by Uehara
et al. for the case of crater impacts (A = 0.13 and B =
0.93) [12]. We attribute this difference to the fact that the

10 12 14 16 18 20 22
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

10 12 14 16 18 20 22
12

14

16

18

20

22

24

26

 

 

(a)

(b)

Fig. 6: Depth (a) and width (b) of the groove left after the pas-
sage of a sphere as a function of the slope angle α for a sphere
of radius R = 22 mm and density ρs = 57 kg/m3. Squares
correspond to experimental data and black solid lines to the
predictions of eqs. (2) and (3) for ρs/ρg = 57/1540, μg = 0.40,
A = 0.16 and B = 1.94.

contact area between the rolling sphere and the grains is
lower than the area of a sphere at rest.

Hereafter, we develop an empirical model for the gran-
ular friction experienced by the sphere. While rolling
downwards, the sphere is in contact with grains on a zone
characterized by the angle θm given by cos θm = 1 − δ/R
(fig. 7). In a continuum approach, normal and tangen-
tial stresses are distributed along the contact zone. These
stress distributions can be reduced to two punctual forces
along the radial and orthoradial direction, denoted fr

and fθ, respectively. The orientation of fr and fθ rela-
tively to the slope defines the angle θc (fig. 7). The static
equilibrium of the sphere thus corresponds to θc = α,
fr = −Mg and fθ = 0. For the case of rolling motion,
we propose a heuristic expression of θc as a function of θm

and α, θc = θm(1 − e−cα/θm). This expression includes a
progressive loss of symmetry of the stress distribution for
increasing α above αc and the saturation of θc to θm for
large enough α. Indeed, the center of mass of the stress
distribution cannot exceed the size of the contact zone.
Note that the proposed expression only includes a single
adjustable parameter denoted c. Following this expression
of θc, the critical slope angle αc for which the sphere starts
rolling respects αc/θm = 1 − e−c αc/θm .
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Fig. 7: (Color online) Notations used in the model.

Along the y-direction, fr and fθ projections compensate
the weight of the sphere, leading to

−fr cos θc + fθ sin θc = Mg cosα. (4)

Along the x-direction, the projections of fr and fθ define
the friction force Fd experienced by the sphere,

Fd = −fr sin θc − fθ cos θc. (5)

Finally, the torque equilibrium toward the center of the
sphere yields

Jθ̈ = Rfθ, (6)

where J = 2/5MR2 is the moment of inertia of a
homogeneous sphere relatively to the sphere centered
axis. Measurements of the sphere rotation indicate that
the non-sliding approximation holds in our experiments
(fig. 3(a)). Thus, the non-sliding relation, Rθ̇ = −ẋ, com-
bined with eqs. (1) and (6) leads to

fθ = − J

MR2 (Mg sin α − Fd), (7)

which along with eqs. (4), (5) yields to the reduced friction
force

Fd

Mg
= cosα

( 2
5 tan α + sin θc

2
5 + cos θc

)
, (8)

where θc = θm(1 − e−cα/θm), cos θm = 1 − δ/R, and δ is
given by eq. (2). Equation (8) predicts that Fd/Mg in-
creases with the slope angle α and the density ratio ρs/ρg

and does not depend on the sphere radius R. These trends
are in qualitative agreement with the observations previ-
ously made (fig. 3(b)). Thereafter, the experimental data
have been adjusted to the theoretical predictions of the
normalized friction force Fd/Mg deduced from eq. (8).
The best fit of the data is provided for c = 1.5 as rep-
resented by blue and yellow solid lines in fig. 3(b). The
good agreement with experiments justifies a posteriori the
assumption made on the dependence of θc with θm and α.
Indeed, the experimental data could not be captured by
an empirical law where θc depends solely on θm. More-
over, the fact that a same value of the coefficient c allows
to fit different density ratios ρs/ρg suggests that c does
not depend on the properties of the granular bed. In ad-
dition, we performed similar experiments on a sand bed

(ρg = 1549 kg/m3 and μg = 0.65) and a good agreement
between the theory and the experiments has been obtained
when the physical properties of the sand are considered.
Finally, the fit of the predictions with experimental data
provides a first characterization of the distribution of con-
tact forces and its dependence with the properties of the
granular medium and the slope angle.

Discussion. – Following eq. (8), we deduce that the
dynamics of the rolling sphere on a deformable granular
slope is equivalent to the dynamics of a sphere rolling
over a non-deformable incline with a friction coefficient
μeff = (2

5 tan α + sin θc)/(2
5 + cos θc). This observation

justifies the De Blasio and Saeter assumption of interpret-
ing the deceleration of a sphere on a granular slope in
terms of effective friction coefficients [10]. In their experi-
ments, an increase of the effective friction coefficient with
the slope angle was observed, a fact which is in agree-
ment with the predictions of eq. (8). However, a direct
comparison with our model is not possible because the in-
ternal friction coefficient of their grains was not provided.
Note that the expression of μeff depends on the proper-
ties of the granular medium through its bulk density and
its internal friction coefficient. The larger the values of ρg

and μg, the lower the normalized granular friction Fd/Mg.
We thus expect the compaction of the granular medium to
reduce the friction of the rolling sphere. This fact was ver-
ified experimentally by tapping several times the granular
preparation prior to the release of the sphere.

Thereafter, we apply our results to estimate the force
required for beetles to push dung balls over sandy surfaces.
Considering ρg ∼ 1500 kg/m3, μg ∼ 0.7 and assuming
that the dung ball density is ρb ∼ 800 kg/m3, the force
required to roll the dung ball on a flat and sandy ground
is equal to about a fifth of the ball weight. For a dung ball
that is 50 times the weight of the insect as measured by
Bartholomew and Heinrich [3], a beetle must be able to
generate forces about 10 times its own weight in order to
move the dung ball. The maximal pushing force of beetles
belonging to the Scarabaeidae family, has been reported
by Evans and Forsythe to be about 250 times their own
weight [13], thus ball rolling is not the hardest tasks that
dung beetles can complete.

In this work, we only considered the case of high con-
trast in density where the rolling sphere induces a sur-
rounding granular flow. However, our predictions do not
hold for low density ratio where the penetration depth δ
becomes lower than the grain size (δ < d), a fact that
occurs for ρs/ρg < 11μ2

g(d/R)4/3 according to eq. (2).
In this limit, the granular bed acts as a non-deformable
rough substrate for the rolling sphere. Such a situation
has been investigated by Tardivel et al. with balls decel-
erating on a flat granular bed [2]. In their experiments,
they used a basket ball of radius R = 119 mm and density
ρs = 89 kg/m3 and a medicine ball of radius R = 113 mm
and density ρs = 447 kg/m3. The granular bed is made
of grains of size ranging from 6 to 12 mm with an internal
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Fig. 8: (Color online) Diagram of the different regimes encoun-
tered by a sphere placed on a granular bed made of glass beads
as a function of its angle α and the density ratio between the
sphere and the grains ρs/ρg. Crosses and dots indicate, re-
spectively, the non-rolling and rolling situations observed ex-
perimentally for spheres of respective density ρs = 21, 57 and
171 kg/m3.

friction coefficient μg = 0.87. In such conditions, the pen-
etration depth δ predicted by eq. (2) is less than 2 mm,
thus lower than a third of the minimal grain size. In order
to approach this limit, Tardivel et al. developed a model
based on a succession of micro-collisions on a rigid surface
with small asperities. Such a model yields an expression
for the effective friction coefficient μeff = MR2/J

√
d/2R

which predicts the experimental value within a precision
of 25%.

Finally, the different behaviors of a sphere placed on
a granular slope are summarized in fig. 8. Stable gran-
ular slopes are encountered for angles smaller than the
avalanche angle αa (below the vertical dashed line). For
small density ratio ρs/ρg < 11μ2

g(d/R)4/3, the granular
bed remains undeformed and behaves like a rough surface
as described by Tardivel et al. [2] (below the horizontal
dotted line). At small slope angles α < αc or large den-
sity ratio, the sphere is in static equilibrium in the crater
formed by its release (above the solid line which repre-
sents the solution of the relation αc/θm = 1 − e−cαc/θm

that leads to αc � 0.61θm for c = 1.5). Between these
three limits, the sphere rolls down while deforming the
granular bed as considered in the present study.

Conclusion. – This study investigated the dynamics
of a sphere rolling down a granular slope. While moving
down, the sphere displaces grains and leaves a track, in-
ducing a granular friction. Remarkably, the sphere follows
a uniformly accelerated motion within the range of exper-
imental parameters explored in this work. We estimated
the steady friction force from the dynamics of the sphere

and showed that it increases with the sphere density and
the slope angle. The depth and the width of the groove
created by the sphere were characterized experimentally
and approached by the laws established in the case of a
sphere impacting a granular bed at zero falling height.
Thereafter, a mechanical model of the rolling sphere on a
granular slope has been developed. Although this model is
based on a heuristic description of the distribution of the
contact forces between the rolling sphere and the granu-
lar bed, the comparison with experiments is fairly good.
Finally, this model provides crucial information on the dis-
tribution of contact forces and its dependence on the slope
angle.
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