Capillary origami
Charlotte Py, Paul Reverdy, Lionel Doppler, José Bico, Benoît Roman, and Charles Baroud

Citation: Physics of Fluids 19, 091104 (2007); doi: 10.1063/1.2775288
View online: https://doi.org/10.1063/1.2775288
View Table of Contents: http://aip.scitation.org/toc/phf/19/9
Published by the American Institute of Physics

Articles you may be interested in
Capillary origami in nature
Physics of Fluids 21, 091110 (2009); 10.1063/1.3205918

Capillary origami and superhydrophobic membrane surfaces

Bio-inspired artificial iridophores based on capillary origami: Fabrication and device characterization

Controllable elastocapillary folding of three-dimensional micro-objects by through-wafer filling

Elastocapillary fabrication of three-dimensional microstructures

Elastic deformation due to tangential capillary forces
Physics of Fluids 23, 072006 (2011); 10.1063/1.3615640
Capillary origami

Charlotte Py
Physique et Mécanique des Milieux Hétérogènes, ESPCI—UMR CNRS 7635—Université Paris VI—Université Paris VII, 75231 Paris Cedex 5, France

Paul Reverdy
Laboratoire d’Hydrodynamique, Ecole Polytechnique—UMR CNRS 7646, 91128 Palaiseau, France

Lionel Doppler, José Bico, and Benoît Roman
Physique et Mécanique des Milieux Hétérogènes, ESPCI—UMR CNRS 7635—Université Paris VI—Université Paris VII, 75231 Paris Cedex 5, France

Charles Baroud
Laboratoire d’Hydrodynamique, Ecole Polytechnique—UMR CNRS 7646, 91128 Palaiseau, France
(Received 5 June 2007; published online 26 September 2007) [DOI: 10.1063/1.2775288]

The hairs of a wet dog rushing out from a pond assemble into bundles; this is a common example of the effect of capillary forces on flexible structures. From a practical point of view, the deformation and adhesion of compliant structures induced by interfacial forces may lead to disastrous effects in mechanical microsystems. However, capillarity may also drive the association of such microstructures into well-defined patterns. What happens when a water droplet is deposited on a flexible sheet? Does the sheet spontaneously wrap the droplet? Yes, if driving capillary forces overcome the elastic bending resistance of the sheet. The geometrical shapes obtained after a partial evaporation of the droplet are dictated by the initial cut of the sheet (see Fig. 1).

Pyramids, cubes, or quasispheres are obtained from triangles, crosses, or flower shapes, respectively. Beyond fundamental scientific interest (the problem is strongly connected with Gauss’ classical theorema egregium on topology), we believe this capillary origami to be relevant for self-assembling three-dimensional microstructures from two-dimensional templates. At small scales, capillary forces indeed dominate over other interactions and minute droplets may serve as micropliers.

FIG. 1. (Color.)


Present address: Matière et Systèmes Complexes, Université Paris VII—UMR CNRS 7057, Paris, France.