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It is often postulated that quasistatic cracks propagate along the direction allowing fracture for the

lowest load. Nevertheless, this statement is debated, in particular for anisotropic materials. We performed

tearing experiments in anisotropic brittle thin sheets that validate this principle in the case of weak

anisotropy. We also predict the existence of forbidden directions and facets in strongly anisotropic

materials, through an analogy with the description of equilibrium shapes in crystals. However, we observe

cracks that do not necessarily follow the easiest direction but can select a harder direction, which is only

locally more advantageous than neighboring paths. These results challenge the traditional description of

fracture propagation, and we suggest a modified, less restrictive criterion compatible with our experi-

mental observations.
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Impeding fracture propagation has been the focus of most
engineering efforts, with the aim of preventing the ruin of
human-built structures. But predicting and controlling the
path of a running crack is also important in many applica-
tions, from manufacturing of Silicon wafers (obtained by
slicing a single crystal) to fracture-induced patterning at
nanoscale [1]. The prediction of a crack path along thin
sheets is particularly useful in the design of easier-to-open
packaging [2–6] or safer oil tanker hulls [7]. Observing a
crack path also provides a measurement of the material
properties of thin films [2] and even graphene sheets [8].
From a fundamental point of view, the tearing of thin sheets
has also received attention because of the remarkable repro-
ducibility of the crack path [2–9] and its intriguing insta-
bilities [3–6]. Previous studies have all assumed an isotropic
medium, although most thin materials are anisotropic
because of manufacturing process. However, the principles
of fracturemechanics do not provide a definite answer to this
apparently simple question. Which path will a crack follow
through an anisotropic material?

According to Griffith’s criterion [10,11], a crack prop-
agates in a direction ! when the energy released per unit of
propagation area (the energy release-rate G) balances the
surface energy cost of fracturing the material, Gc:

Gð!Þ ¼ Gc: (1)

In the case of an isotropic material, the following two
postulates [11] dictate the propagation angle: (i) By sym-
metry, cracks propagate in the direction where mode II
is absent from the stress field near the crack tip (principle
of local symmetry (PLS) [12]); (ii) Cracks propagate in
the first direction that satisfies Griffith’s criterion for an
imposed load (maximum energy release rate (MERR)
[13]). Both principles are equivalent except at a singular

kinking point [14–16]. Consider now an anisotropic mate-
rial whose fracture energy Gcð!Þ is a function of the
direction of propagation. Although PLS is not relevant
any more, MERR can be extended naturally [16–19].
Griffith’s criterion is first reached in the direction

! such that Gð!Þ=Gcð!Þ is globally maximal: (2)

When the derivatives exist, the combination of (1) and (2)
leads to dG=d! ¼ dGc=d!, which can be interpreted as
an Eshelby torque balance [19]. This variational criterion
has been formalized recently [16,18] and tested numeri-
cally on phase-field models of fracture [18,19]. We propose
to experimentally study the tearing of a sheet in a ‘‘trouser-
test’’ mode III configuration (Fig. 1). To interpret our
results in both weakly and strongly anisotropic sheets, we
shall translate this criterion into a simple geometric con-
struction analogous to a Wulff’s plot for crystal growth.
In particular, we shall give evidence of missing directions
along which the material never tears, a feature until now
specific to crystals.
Our experiments consist of pulling the tabs of a strip

(20-mm wide and 100-mm long) precut along a direction
inclined by"with the axis of the sheet (Fig. 1). We use two
types of bioriented polypropylene sheets of equal thickness
(50 #m) but different degrees of anisotropy. Biaxial stret-
ching during extrusion generally leads to strong anisotropy
of the material (case of material B, with Young’s modulus
varying from 1.9 to 3.4 GPa depending on the direction).
But we also used a ‘‘balanced’’ material which exhibits
weak anisotropy (material A, Young’s modulus with less
than 20% variation around 1.8 GPa). In the following,
! ¼ 0 corresponds to propagation perpendicular to extru-
sion direction. Both materials can be modeled [3,4] as
brittle [20]. The tabs are clamped in jaws (see Fig. 1)
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displaced with imposed pulling speed 50 mm=min , and
the corresponding force is monitored with a load cell with a
resolution of 0.6 mN. As the tabs are pulled apart, the crack
propagates along a straight path, in direction !. For an
isotropic material [21], the symmetry of the system imposes
a propagation in the direction of tearing (! ¼ "). This
symmetry is broken in the case of an anisotropic material.
For a material with weak anisotropy (material A), small
deviations !$ " are indeed observed [Fig. 2(a)], while the
propagation angle ! still spans all possible directions. In
addition, we observe eight specific directions where ! ¼ ".
Conversely, in a strongly anisotropic material (material B),
four angular sectors are missing [Fig. 2(b)].

To interpret these results, we consider the sheet as inex-
tensible and neglect the bending energy involved in the
folds that develop from pulling (see Supplemental Material
for justification [22]). The energy release-rate G therefore
reduces to the rate of work per unit of surface created,
Gð!Þtds ¼ Fdy, where t is the thickness of the sheet and
F the force applied as the crack advances by ds. Since
geometry imposes dy ¼ 2 cosð!$ "Þds, we obtain

Gð!Þ ¼ 2ðF=tÞ cosð!$ "Þ: (3)

Note that Gð!Þ is independent of the (possibly anisotropic)
elastic properties of the material. Our configuration
thus provides a convenient test for bidimensional geome-
tries, where only anisotropy in fracture energy is consid-
ered, in contrast with previous studies in anisotropic bulk
fracture [23].
We use a simple graphical construction to predict the

direction of propagation ! for the tearing orientation "
according to Eqs. (1)–(3). We plot in polar coordinates
1=Gcð!Þ, which we refer to as the G$1

c curve, and
1=Gð!Þ ¼ ½2ðF=tÞ cosð!$ "Þ&$1, which corresponds to a
straight line oriented along the direction "þ $=2, at a
distance t=2F from the origin (see Fig. 3). As F increases,
this line comes closer to the origin, keeping its orientation.
Griffith’s criterion (1) is satisfied at any intersection of the
line with the G$1

c curve. According to the maximization
criterion (2), propagation occurs at the first intersection
(the tangent), defining the tearing force and the direction of
propagation.
In the case of an isotropic material, the G$1

c curve is a
circle [Fig. 3(a)], and the propagation follows the direction
of tearing ! ¼ ". In contrast, when anisotropy is present,
the G$1

c curve is noncircular, and the following three
different situations may occur: (i) If the curve is locally
smooth, the tangential contact point gives, in general, a
propagation along a direction !!". The crack is deflected
towards a direction of lower fracture energy. (ii) If the G$1

c

curve exhibits a cusp [Fig. 3(c)], the corresponding fracture
direction !f will be selected for a finite range of loading
orientations "$ < "< "þ. This situation is reminiscent
of cleavage planes in crystals [23–25]. (iii) If the G$1

c

curve is locally nonconvex, a finite jump in the direction
of propagation !ð"Þ is observed as" is varied continuously
[Fig. 3(d)]. As a result, the directions !$ < !< !þ cannot
be selected through the trouser-test method and will cor-
respond to forbidden angles. The bounding angles !$ and
!þ are readily determined with a double-tangent construc-
tion, as in classical Maxwell construction.
A similar geometrical construction, referred to as

Wulff’s plot, is used to predict the equilibrium shape of
a crystal with an anisotropic surface tension %ð!Þ [26,27]
The polar curve 1=%ð!Þ is denoted as the %$1 curve. In this
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FIG. 2 (color online). Tearing of (a) weakly (material A) and
(b) strongly anisotropic sheets (material B), where missing
directions are evidenced. The direction of propagation ! (in
colored thick lines) when tearing in direction " (thin and dashed
lines) is represented in a rosace. Color codes indicate the
amplitude of deflection j!$ "j.
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FIG. 1 (color online). Trouser-test experiment. (a) Sample
with a starting cut of orientation ". The arrow indicates the
sheet axis. (b) The fracture propagates for an applied force F
with a deflection angle !$ ". (c) Guided strip experiment
(reinforcement in yellow).
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FIG. 3 (color online). Geometrical representation of the global
criterion for fracture propagation [Eqs. (1) and (2)]. The crack
propagates at the first intersection of the parallel (black) lines
(representing G) with the G$1

c curve (in red). (a) Isotropic case,
the arrow indicates increasing force; (b) weakly anisotropic case;
(c) singular anisotropy leading to facet; (d) anisotropy leading to
‘‘forbidden orientations’’ (grey sector).
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context, the point with the polar angle ! on the segment
that joins any two points (!a, !b) of the %$1 curve corre-
sponds to the surface energy of a sawtooth surface con-
structed with alternating local orientation !a and !b,
averaging to the same global orientation !. If this point
lies inside of the %$1 curve, the flat surface oriented along
! has a lower surface energy than the sawtooth structure and
is therefore energetically favorable. All orientations are thus
stable if the %$1 curve is convex. Conversely, if the %$1

curve exhibits a nonconvex part, the same convexification
construction as in Fig. 3(d) defines a range of unstable
(or forbidden) orientations. The expression for the curvature
in polar coordinates reads ð%00 þ %Þ=½ð%0=%Þ2 þ 1&3=2.
Nonconvexity therefore occurs when

sð!Þ ¼ %00ð!Þ þ %ð!Þ< 0: (4)

The quantity sð!Þ is referred to as surface stiffness in
crystallography literature [28]. In practice, if a surface is
prepared with an orientation in a forbidden direction, the
surface reorganizes through spinodal decomposition into
alternating orientations !$, !þ determined by the double-
tangent construction [29]. This instability known as faceting
generates tunable nanoscaled sawtooth structures on solid
crystals [30,31] and was also observed on liquid crystals
[32–34]. Note that the forbidden sector [!$, !þ] is wider
than the regionwith negative curvature [where sð!Þ< 0, see
Fig. 3(d)]. Some orientations with !$<!<!þ but sð!Þ> 0
are therefore expected to be metastable, just like super-
cooled gas or superheated liquid near the first-order liquid-
gas transition. We can translate classical results from the
study of the equilibrium shapes of anisotropic solids into
anisotropic fracture: contrary to the common intuition for
the fracture of crystals, cleavage planes (cusps in the G$1

c

curve) may in principle exist without forbidden orientations
(nonconvexity). As an example taken from equilibrium
crystal shapes, silicon crystals at 1373 K have facets
but rounded edges and no forbidden orientation [28].
Conversely, forbidden orientations are not necessarily due
to a nearby cleavage plane, but to nonconvex parts in the
G$1

c curve, which does not imply a large difference in
fracture energy. We expect these findings to hold in the
more general case of three-dimensional fracture.
We now compare this geometrical framework to experi-

ments. For each tearing direction ", we plot on Fig. 4(a)
and 4(b) the energy release-rate line for the force F
measured and on this line the point with the polar angle
! of propagation. According to Griffiths criterion, (1) these
points lie on the G$1

c curve. The criterion for the selection
of the crack path (2) predicts that the line corresponding to
the optimal energy release-rate is tangent to the G$1

c curve
at the propagation point and remains outside of it every-
where. Criterion (2) is therefore experimentally satisfied if
the energy release-rate lines are tangent to the G$1

c curve.
This behavior is indeed observed on Fig. 4(a) for a weakly
anisotropic sheet, where the G$1

c curve is convex and all
fracture orientations are possible. Conversely, some direc-
tions are not observed with the strong anisotropic sheet,
and the corresponding fracture energies are not accessible
experimentally [Fig. 4(b)]. We observe that the energy
release-rate lines are on average tangent to the remaining
parts, in agreement with the same criterion. However, close
to the missing sector, although the experimental lines for
energy release-rate are nearly tangent to the G$1

c curve at
the angle of propagation, they clearly intersect the curve in
another location, in contradiction with global principle (2).
For instance, the propagation for a loading " ¼ 30( is
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FIG. 4 (color online). Polar plots of the G$1
c curves for the experiments displayed in Fig. 2. Red dots correspond to the propagation

of cracks at angle ! (diameter corresponds to the estimated error) and lines to the energy release-rate measured for each experiment
(" is the pulling angle). Since the fracture energy follows the symmetry Gcð!þ $Þ ¼ Gcð!Þ, only half of the orientations were
actually probed. In (a) weak anisotropy, material A, and (b) strong anisotropy, material B, energy release-rate Gð!Þ is normalized by
typical valueG0 ¼ 2Fm=t (resp. 6:6 kJ=m2 and 6:2 kJ=m2), where Fm is the maximal observed tearing force (resp. 0.165 and 0.156 N).
In (b) the minimum measured tearing force was 0:07N. (c) Geometrical construction [same data as in (b)], where the energy release-
rate lines for " ¼ 30(, !1 ¼ 51(, and !2 ¼ 5( are presented in red and blue, respectively. The G$1

c curve was arbitrarily extended in
light black line in the missing region where no measurement is available. The grey sector corresponds to orientations never observed
even when fracture is guided (see Fig. 5).
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often observed along an angle !1 for a force F1 [red
line on Fig. 4(c)], whereas the maximization criterion (2)
would predict a propagation for a lower load F2, along !2.
Nevertheless, propagation along!2 [blue line on Fig. 4(c)] is
also observed for the same configuration, but less frequ-
ently. The selection of the angle seems to depend on imper-
fections of the initial cut.

Can we force tearing cracks to propagate in these miss-
ing directions? By limiting a band of anisotropic polypro-
pylene film with two stiffer adhesive tapes, we can guide
the propagation in the loading direction," [Fig. 5(a)]. If the
material were isotropic, the crack should follow the natural
straight path along ! ¼ ", ignoring the reinforcement. In
the case of the weakly anisotropic material, the propagation
is in general deflected and the crack path eventually hits and
follows the reinforced boundary. Using this technique in
the strongly anisotropic case, we observe some previously
missing directions, which we interpret as metastable [35].
But in some directions, which we will denote forbidden
directions, we observe that the crack bounces from the
boundary and selects a very different direction. This direc-
tion is followed for a long distance, most of the time until
the opposite boundary is hit. This kinking mechanism
repeats successively, leading to a sawtooth pattern [see
scanned fracture path in Fig. 5(a)] where the crack path

avoids the forbidden direction. We could not devise a way
to drive fracture along such forbidden directions.
All along the crack path the energy release-rate follows

the same equation (3), independent from the history of the
crack: the existence of sawtooth solutions shows that two
stable orientations are selected from the same geometry of
loading. In addition, we observe that these directions of
propagation are again obtained with very different forces
F1 and F2 as seen in Figs. 5(b) and 5(d). These observa-
tions contradict the criterion (2), which predicts propaga-
tion in the direction of global minimal force (i.e.,
maximumG=Gc). Both selected directions !1;2 seem, how-
ever, to correspond to local angular minima of the force
[the red and blue lines are locally tangent to the G$1

c curve
in Fig. 4(c)]. We therefore suggest that the global max-
imization principle should be taken in a less restrictive
sense: fracture propagates in a direction that locally max-
imizesG=Gcð!Þ (and minimizes the fracturing force). Such
a criterion is compatible with our experiments and also
reduces to the MERR criterion (and therefore to PLS) in
isotropic cases. As a consequence, stable propagation cor-
responds to all portions of the G$1

c curve that are locally
convex. Only the points where sð!Þ< 0 should be consid-
ered as forbidden. In the case of strong anisotropy, the
force Eshelby balance criterion is bound to give several
directions for a given loading configuration [three solutions
marked as black bullets in Fig. 4(c)]. Some of these direc-
tions are local maxima of the force (green dotted tangent
line), where sð!Þ< 0, and should be discarded. The other
directions are local minima of the applied force, and we
suggest that they should all be considered as acceptable
directions of propagation. Which of these directions is
selected in a particular experiment? Our modified criterion
is similar to accepting the metastable states of the faceting
transition. In first-order transitions, multiple solutions
(stable and metastable sates) are indeed observed, depend-
ing on the history of the system. We speculate that, in the
case of fracture, the history and preparation of the system
selects among possible directions of propagation.
Conclusion.—Cracks propagate as soon as they can, for

the lowest possible load. We have shown that this com-
monly accepted extension of criterion for crack propaga-
tion in anisotropic sheets leads to features first introduced
in the study of anisotropic surface tension in crystals
such as facets and forbidden directions. This construction
suggests that the existence of forbidden crack orientations
is intimately connected with a negative fracture stiffness,
G00

c ð!Þ þGcð!Þ< 0. Our tearing experiments support these
predictions. We have indeed observed that tearing paths
avoid some orientations in strongly anisotropic polymer
sheets, although they do not exhibit a preferred cleavage
plane. However, we found some surprising examples
where cracks repeatedly chose to follow a hard path while
an easier one (corresponding to a lower load) was avail-
able, which challenges the accepted theory of fracture.
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FIG. 5 (color online). Fracture guided along a forbidden di-
rection [setup in Fig. 1(c)] in material B. A pair of adhesive tapes
are placed 5 mm apart along the band of anisotropic polymer.
Pulling is performed at 200 mm=min . (a) Sawtooth crack paths
obtained when the crack is guided in a forbidden direction (15( )
" ) 35(). When the direction is not forbidden (" ¼ 10(, 40(),
the crack path follows one of the boundaries. (b)–(c) Measured
force as function of displacement for" ¼ 30(, on a nonreinforced
sample, in the most frequent case of propagation along ! ¼ 51(

(b), and along ! ¼ 5( (c). (d) Force measured during zig-zag
propagation (" ¼ 30() in a reinforced sample. The plateaus
corresponding to propagation are consistent with measurements
in (b) and (c).
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We therefore suggest a less restrictive local principle:
cracks may choose a direction that requires the lowest
force compared to their neighboring directions. This prin-
ciple allows for multiple directions. More experimental
and theoretical efforts will be needed to confirm, clarify,
or reject this modification of the fundamental principle
of fracture mechanics and its extension to classical three-
dimensional fracture.
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