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We describe the out-of-plane buckling of a flexible annulus floating on a bath of water as surfactant

molecules are added outside the annulus. The difference in surface tension induces compressive stresses,

which result in regular orthoradial wrinkles beyond a critical difference in surface tension. The wrinkles
first appear in the vicinity of the inner edge of the annulus and progressively grow as the concentration
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of surfactant is increased. Conversely, the wavenumber remains constant and relies on a simple balance

between gravity and the bending stiffness of the membrane within the range of our experimental
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1 Introduction

Beautiful experiments conducted independently at ESPCI-Paris*
and UMass Amherst University” have shown how the deposition
of a tiny droplet at the center of a thin elastic disc floating on a
bath of liquid may induce the formation of radial wrinkles
around the droplet. The wavenumber was experimentally found
to result from the balance between surface tension forces
induced by the droplet and the bending stiffness of the
membrane while the radial extension of the wrinkles depends
on the stretching stiffness. In other words, the wavenumber
provides Et* (ref. 3) and the length of the wrinkles gives Et,
where E and ¢ are the Young's modulus and the thickness of the
membrane, respectively.> Both quantities may thus be assessed
independently. The theoretical description of the problem is
nevertheless challenging due to the complexity of the stress
distribution in the vicinity of the contact line. A recent theo-
retical study® describes the stress state near the contact line by
taking into account the balance between the capillary forces
pulling up the contact line and the Laplace pressure pushing
down the membrane at the bottom of the droplet. This study
assumes a near threshold condition where the stress distribution
in the flat and wrinkled states is similar. However, the forma-
tion of wrinkles is expected to modify the post-buckling stress
distribution of a thin membrane in the far from threshold
regime, which should be relevant to the experiment.*® A very
recent study in this regime indeed provides a theoretical
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parameters. Our experiments fall outside the regimes explored in the literature for similar situations,
and we propose an approximate analytical description that completes the existing theoretical grounds.

prediction for the length of the wrinkles in agreement with
experimental data.®

Similar experiments have been proposed with the aim of
estimating the forces a living cell exerts on a membrane.”® In
the experiments by Géminard et al,” the center of an elastic
disc, preliminary mechanically stretched on a circular frame, is
sucked into a small ring, which generates an additional tension.
Beyond a critical tension, radial wrinkles appear around the
inner ring. The wavenumber is found to be proportional to the
radius of the ring while the radial extension of the wrinkles
increases with the displacement imposed at the center of the
disc. The drop on sheet situation explored by Cerda et al.® is
quite similar although the force is controlled in the experiment
instead of the displacement. More recently several studies have
been dedicated to the indentation of spherical shells under
pressure, which also leads to radial patterns.”*® Mechanical
information on the stiffness of yeast cells may for instance be
inferred from the morphology of the wrinkling pattern.* In a
different context, orthoradial wrinkles are finally been observed
as a projectile impacts a free standing membrane.’” In this
dynamical case, the evolution of the wrinkles is dependent on
the propagation of a compression wave through the membrane.
Nevertheless, except in the drop on sheet experiment, none of
these examples involve surface tension driven buckling.

We propose here a complementary experiment involving a
macroscopic annulus floating on water. A difference in surface
tension is induced between the inner and outer edges of the
annulus by the addition of surfactant molecules with the aim of
compressing the annulus. Indeed, soft frames or rings have
recently been found to bend or buckle under the surface pres-
sure exerted by surfactant molecules.”>™ After describing the
experimental setup, we shall focus on the case of a narrow
annulus where wrinkles extend over the whole width of the
annulus. We shall compare this simplified situation with the
case of lamellae uniaxially compressed where periodic wrinkles
quickly lead to a localized fold.'**” We shall finally describe the
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more general case of wide annuli where wrinkles first appear in
the vicinity of the inner edge and extend gradually. In particular,
we shall propose a simplified analytical model to describe our
experimental observations. We shall also show that our
macroscopic experiments explore a different regime from drop
on sheet experiments;"* the weight of the underlying fluid sets
the wavelength, and the analysis can be developed close to the
buckling threshold.

2 Capillary compression

In our experiments we use thin elastic circular annuli cut out
from polyvinylsiloxane sheets with an elastic modulus E ranging
from 750 to 250 kPa, Poisson ratio » = 0.5 and thickness ¢
varying from 16 um to 110 pm. The inner and outer radii of the
annuli, a and b respectively, are typically of a few centimeters.
The elastic sheets are obtained by spin-coating liquid vinyl-
siloxane (Elite double from Zhermack) on a flat surface and
letting it cure. Once cut, the annuli are deposited on the surface
of a bath of distilled water with an initial surface tension y = 72
mN m~". We generate a difference in surface tension between
the interior and the exterior of the floating annulus by adding
gently a few droplets of liquid soap outside of the annulus. Two
platinum plates, each attached to a force sensor, provide a
simultaneous measurement of the surface tension through the
classical Wilhelmy plate method'® inside and outside the disc
(Fig. 1). The difference in surface tension is finally tuned by
moving a PTFE bar in contact with the water surface. Reduction
of the effective surface accessible to the surfactant indeed
decreases the outer surface tension v,. Since the surfactant is
soluble, its diffusion under the annulus and absorption in the
inner side would eventually drift down the inner surface tension
vi. However the duration of an experimental run is short
enough to limit this effect (which typically takes tens of
minutes).

In addition to standard imaging from above, the out of plane
deformation of the disc is monitored through a Free Surface
Synthetic Schlieren optical technique developed by F. Moisy.*
This technique is based on the analysis of the refracted image of
a grain pattern visualized through the non-planar interface. An
apparent displacement field is deduced from the correlation of
two images: a reference image taken while the interface is still

4 (,

Fig. 1 Experimental setup: an annulus is cut from a thin polymer film and
deposited on the surface of water. Surfactant molecules are progressively added
outside the annulus and induce a difference in surface tension monitored through
standard Wilhelmy plates. Out of plane deformations are deduced from a Free
Surface Synthetic Schlieren optical technique.™
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Fig. 2 Typical experiments where wrinkles appear below a critical value of the
outer surface tension (y; =71 + 1 mN m~"): (a) “Wide” annulus, a/b = 0.35, t =
35um, yo=30+1mN m~", (b) narrow annulus, a/b=0.7,t =16 um, yo=45=+1
mN m~", (c)a/b =07,t=50 pm, yo = 385+ 1 mN m~', and (d) the same
annulus after collapse, yo =32+ 1mNm~".

undeformed, and a second one taken after deformation. The
displacement field is then integrated to reconstruct the
instantaneous height field of the surface.

Preliminary experiments conducted with annuli of different
geometries are displayed in Fig. 2. Within a time scale shorter
than a second, steady radial wrinkles are observed below a
critical value of the outer surface tension. Indeed, the stronger
tension on the inner boundary tends to reduce the average
radius of the annulus, inducing an orthoradial compressive
stress. The observed wavenumber remains steady while the
concentration of surfactant is increased. Two different situa-
tions are observed as a function of the aspect ratio a/b. In the
case of wide annuli (small value of a/b), the wrinkles have a
finite radial extension at the onset and both extension and
amplitude progressively increase as v, is lowered. In the case of
narrow annuli (a/b ~ 1), the initial wrinkles extend along the
whole annulus. Eventually, the annulus suddenly collapses
below a second value of the outer surface tension (Fig. 2d and a
movie supplied in the ESIf).

Addressing first the case of a narrow annulus, we propose
that although the annulus is subjected to a tension gradient
along the narrow (radial) direction, it exhibits a buckling
instability that is nearly identical to the buckling of compressed
1D lamellae.

3 Narrow annulus

We consider first the simpler case of a narrow annulus with a
width w = b — avery small in comparison with its average radius
R =(a+ b)/2. Within the limit w/R — 0, such an annulus may be

This journal is © The Royal Society of Chemistry 2013
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viewed as the one dimensional band floating on a liquid, and
submitted to uniaxial compression.'®** We note that the
underlying liquid is expected to play a crucial role in the
selection of the buckling wavelength. Indeed application of a
compressive load on a free band classically leads to a single
buckle as higher buckling modes would increase the bending
energy. Nevertheless the underlying liquid tends to flatten its
surface and favors buckles of higher modes with lower ampli-
tudes. We review the possible buckling patterns due to the
“foundation” effect of the underlying liquid (gravity and surface
tension), and show that in our experiment, the weight of the
displaced liquid is the dominant factor.

3.1 A compressed floating band

We consider a thin elastic band floating on a liquid water
compressed under an apparent strain ¢ = |AL|/L, where L is the
total length of the band and AL is the imposed displacement
(Fig. 3). We start by considering the effect of gravity recently
illustrated in a macroscopic experiment.*®

We compute the wavelength of the wrinkles in terms of
scaling arguments based on elastic bending and hydrostatic
energies and geometry. Assuming the inextensibility of the thin
sheet when wrinkles of wavelength A and amplitude A appear,
length conservation imposes e ~ (4/2)°. Since the typical
curvature of the band scales as A4/2%, the global bending energy
of the band is given by

EP

Y.~ 2210 i =
Uy, ~ B(A/X*) Lw, with B 20— )’ 1)

where E and v are the material's Young's modulus and Poisson
ratio, respectively, and ¢ is the thickness of the band. Formation
of wrinkles also requires the gravitational energy, which simply
scales as:

Uy~ pgA*Lw. (2)

Minimizing the total energy with respect to A for an imposed
value of ¢ sets the selected wavelength, the actual pre-factor
being obtained through a more precise calculation:**

Aeg = ZTC(B/pg)IM- (3)

Derivation of %,, to the 2nd order of ¢ leads to
U, = (pgB)"'*(2¢ — *)Lw. Differentiating the mechanical energy
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Fig. 3 Wrinkles in a uniaxially compressed sheet floating on a bath of liquid.
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with respect to the displacement AL = Le finally gives the
corresponding compressive force:

f=f(1 —¢) with f, = 2(pr)”2w_ (4)

Since the load decreases with strain, the wrinkled configu-
ration is mechanically unstable under an applied force. In
experiments with a controlled strain,' the deformation of the
strip is indeed found to localize into a singular fold for ¢ = 0.3.

3.2 Tension vs. gravity, and edge cascade

In addition to the gravitational energy, formation of wrinkles
results in an additional capillary energy since menisci are
formed along the edges of the wrinkled strip. This additional
foundation effect also tends to reduce the amplitude of the
wrinkles (and may therefore interfere with the wavelength
selection).

The lateral extension of a meniscus is set by the capillary
length,"® ¢. = \/v/pg, which corresponds to the millimeter
length scale for usual liquids. Note that ¢. also limits the
amplitude of the wrinkles. Indeed inner and outer menisci have
to reach the elastic sheet in order to maintain the contact
between the sheet and the liquid. Higher amplitudes would lead
to delamination.?” The increase in surface due to the formation
of lateral menisci is thus proportional to (4/£.)’L¢., which leads
to the surface energy:

Uy~ (ypg)'*A’L. (5)

The previous derivations of the wavelength and buckling
threshold are valid within the limit %, < %, i.e. w > /.. As
long as the strip is wider than a few millimeters, the buckling
wavelength is therefore set by gravity and follows eqn (3). This is
the case in experiments involving macroscopic strips.*®

However, even in the gravity-dominated case, lateral capil-
lary forces may modify the buckling pattern by adding an
additional tensile stress to the problem. Indeed recent experi-
ments conducted with ultrathin polystyrene films (¢ ~ 100 nm)
floating on water and uniaxially compressed lead not only to the
expected buckling wavelength (eqn (3)) in the bulk of the strip,
but also to a cascade of wrinkles of wavelengths decreasing from
the bulk to the edge.>® Wrinkles are observed to successively
double their frequency in this transition region.*»** As
described by Vandeparre et al.,* the scale ¢, for such doubling
relies on a balance between the bending energy B(4/3*)*/,,L and
the energy due to tensile forces y(4*/¢,)L, which leads to
by ~ (A/t)\/v/Et ~ L.. In the experiments, the width of the
transition zone where the bulk wavelength is transformed is
indeed observed to be comparable to the capillary length /..

Nevertheless, this edge cascade is not observed with thicker
materials.*® Indeed, modifying the wave pattern along the edges
also induces stretching strains in the sheet. In terms of scaling,
this strain is typically (4/4,)?, resulting in an additional energy
cost Et(A/¢,)* £,L. A cascade of wrinkles is thus expected if this
additional energy cost is negligible in comparison with the gain
in tension energy that drives the formation of a cascade of
wrinkles, ie.:

Soft Matter


http://dx.doi.org/10.1039/c3sm51825f

Published on 02 September 2013. Downloaded by Ecole Sup de Physique et de Chimie Industrie on 01/10/2013 18:02:21.

A < b/ [Et = v/+/pgEL (6)

In experiments on ultra thin films,* the length scale,
v/+/pgEt ~ 40 pm, is about 400 times the thickness of the sheet.
This is consistent with the observation of a well defined cascade
above the buckling threshold. In contrast, v/\/pgEt is on the
order of 100 um for our experiments, which is on the order of
the thickness of the sheet and below the observed out of plane
amplitude of the wrinkles. We thus expect our experiments to
lie within the macroscopic regime described by Pocivavsek et al.
where cascades of wrinkles are not observed along the edges. A
comparison of v/,/pgEt with the thickness of the sheet brings
a rule of thumbs for the transition between both regimes; a
cascade of wrinkles is indeed expected for ¢ < (y*/pgE)"”. Note
that a slightly different criterion for the formation of the
cascade of wrinkles has been derived by Huang et al. based on a
softness number that does not depend on the amplitude of the
wrinkles.*

3.3 Buckling annulus

We assume that a narrow annulus behaves as a 1D band where
both ends have been reconnected. The orthoradial force sup-
ported by a radial section of the annulus is most easily
computed from the integration of the surface pressures along
the inner and outer edges of one half of the annulus (see Fig. 4):

Sy = ia — vob. )

The annulus is expected to wrinkle when this capillary force
reaches the threshold buckling force for a one-dimensional
band. The critical value of the outer surface tension at the onset
of wrinkling is therefore:

Yoo = vialb — 2pgB)"(1 — alb). (8)

This criterion is in good agreement with our experimental
observations (Fig. 5). The measured wavelength is also found to
follow fairly well the prediction from eqn (3) (Fig. 6, data rep-
resented by empty circles).

A linear band uniaxially compressed is expected to collapse
immediately if a force slightly larger than the threshold is
imposed.’” It might therefore be surprising that, in our
experiments, the wrinkling pattern on the annuli remains stable

Fig. 4 A difference of outer and inner surface tension v, v; results in a
compressive force f,, as can be seen when isolating force one half of the annulus.
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Fig. 5 Comparison of the theoretical estimate of the threshold for wrinkling in
the case of narrow annuli (eqn (8)) with the experimental results. Experimental
results include annuli of different aspect ratios 0.65 < a/b < 0.9 and different
values of flexural rigidity B.

within a certain range of the difference in surface tension.
However in our circular geometry, the compression tends to
reduce the radius of the annulus, which decreases the
compressive force f,. If this reduction compensates the negative
term in the response of the wrinkled band in eqn (4), the
wrinkled annulus should remain stable. More quantitatively, if
we apply an apparent compressive strain ¢ to the mean radius of
the annulus, while maintaining a constant width, the inner and
outer radii become respectively a — (a + b)e/2 and b — (a + b)e/2.
A simple derivation of the corresponding force leads to a first
order correction in f, of (v, — vi)(a + b)e/2. When introduced
into the force balance eqn (4), this correction gives the following
prediction for the equilibrium strain:

experimental data (narrow annuli) 4
@  cxperimental data (wide annuli) %
-------- numerical stability analysis (narrow annuli) 7 1

i

— -~ numerical stability analysis (wide annuli)

A [mm]

2n(B/pg)"/* [mm]

Fig. 6 Wavelength of the wrinkles at the inner edge as a function of the elasto-
gravity length scale 27c(B/pg)'’%. Circles: experimental data in both narrow (empty
dots) and wide (filled dots) annulus regimes. Full line theoretical prediction from
eqgn (3). Dash-dotted and dashed lines: numerical integration of elastic plane egn
(20) for narrow and wide annuli respectively. The apparent noise observed for
large wavelengths results from the integer number of wrinkles.

This journal is © The Royal Society of Chemistry 2013
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&= 2(700 — 70)b (9)
(/Yi + ’Yuc)(b - LZ) + (Yoc - 70)(a + b)

To the first order of ¢, a decrease in v, below the critical value
monotonously increases the compressive strain. Determination
of a criterion for the collapse of the tube would require a more
complex estimation of the energy of the wrinkled annulus and is
beyond the scope of this paper.

4 Wide annulus

We now focus on the case of a wider annulus, where the initial
wrinkles are observed to remain localized in an area close to the
inner edge.

4.1 Stress distribution prior to buckling

While the annulus remains planar, the stress distribution is
expected to follow the classical Lamé theory:*

a*b?
Yid® = v,b* — r—z(Yi — %)
ho, = oy , (10)
a*b?
vid® = ¥ob? + =5 (¥i = 7o)
hO’(y = az — b2 ) (11)

where o, and g, are the radial and hoop stresses, respectively.
b
Note that Jhagdr naturally leads to f, defined in eqn (7).

a
Although the radial stress is always positive, the hoop stress can

become negative if:

Yo_@/P+1

v, 3 (12)

In this case the region under orthoradial compression is
delimited by a < r < R*, with

1 - ’Yn/’Yi
k*
R =\ im — @b (13)

As in the case of a narrow annulus, such a compression
may induce the formation of radial wrinkles on the
membranes. Wrinkles are not expected to extend deeply in
regions where the membrane is initially under tension
(r> R*). Our goal is to understand when out-of-plane buckling
occurs and what dictates the wavelength and the extension
of the wrinkles. Most of the previous studies focused on
the case of an infinite disc (i.e. b/a — «) in both theoretical®**
and experimental”® work. In order to connect our experiment
to this limit, we define an effective surface tension at infinity
Y« given by

_ ’Yobz B ’Yiaz

Yeo ey (14)

This surface tension acting on a virtual disc of infinite
diameter would produce the same stresses in the regiona < r <
b which is relevant to our finite annulus. The expressions for the
stress are then reformulated as:*

This journal is © The Royal Society of Chemistry 2013
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(12 a2
ho, =v. +(7i77w)ﬁ and hoy = v, — (vifvm)r—r (15)

Introduction of vy greatly simplifies the condition to obtain
a negative hoop stress. Indeed (eqn (12)) becomes:

YilYe > 2 (16)

and the expression for the limit of the region under compres-
sion (eqn (13)) is now

R* = a(vily» — D2

In our experiments v; is limited by the surface tension of
water (72 mN m™'). The addition of surfactants can only
decrease the water surface tension down to a typical value v, ~
30 mN m™ ', which leads to y. ~ 15 mN m™ " for a typical
annulus of aspect ratio a/b = 0.5. The use of a finite-size
annulus (b < «) thus allows a larger equivalent tension differ-
ence to be achieved. The confinement parameter defined by
Davidovitch et al.*® as v;/v. is of order 5. However, the other
important parameter introduced in these previous studies, the
bendability, defined as a’y../B is lower than 3000 in our exper-
iments. This parameter is not very large because we are using
relatively thick samples (tens of micrometers).

4.2 Buckling conditions

Previous theoretical studies on an ideal case where the hydro-
static pressure is not present suggest that the membrane should
buckle if the hoop stress is slightly compressive, the actual
threshold being set by a balance between tensile stress and
bending stiffness.*® Depending on the confinement and bend-
ability parameters two wrinkling regimes, near threshold and far
from threshold, have been predicted. Different power laws are
proposed in both regimes for the number and the length of
wrinkles as a function of the bendability parameter. However,
the hydrostatic pressure played a major role in setting the
buckling threshold and the selected wavelength in our experi-
ments with narrow annuli. We thus propose to analyze our
results with wider annuli in the light of these preliminary
experiments dominated by gravity. We also keep in mind the
relatively low bendability number, and consider that our
experiments are close to the buckling threshold.

Considering a compressive stress similar to the critical stress
obtained in a narrow band appears as a natural criterion for the
threshold, hoy = —2./pgB, in the vicinity of the inner diameter.
In terms of critical surface tension, this condition modifies (eqn

(16)) and reads.
( )cr tic
v; .

where the elastocapillary length®® and the capillary length are
based on the inner surface tension, /¢ = +/B/y; and
le = +/7i/pg. We obtain an experimental measurement of the
threshold by measuring the amplitude of the wrinkles close to
the inner circle as a function of the outer surface tension. The

Lo

N —
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amplitude increases as the square root of the distance above the
threshold, as expected for a supercritical bifurcation, allowing
for a precise determination of the threshold (Fig. 7). Our
experimental results are in fair agreement with the criterion for
the threshold (Fig. 8), without any adjusting parameter. In order
to provide a stronger justification for this simple criterion, we
perform a numerical linear stability analysis of the Lamé planar
solution (eqn (10) and (11)) which provides the buckling
threshold, together with the buckling mode (wavelength and
radial distribution of the amplitude of the wrinkles at the
threshold). This standard analysis is described with more
details in appendix 5. The resulting buckling threshold esti-
mated from the numerical integration of eqn (20) is in good
agreement with the simplified criterion in eqn (17) (see Fig. 8).
We interpret the shift between the experimental data and the
predicted values by an additional effect of the meniscus formed
along the inner edge.

4.3 Wavelength

While the extension length of the wrinkles remains small in
comparison with the inner radius of the annulus, it is tempting
to compare the wave mode observed in wide annuli with the
wavelength selected in a 1D narrow band. We present in Fig. 6
the wavelength of the wrinkles measured along the inner
radius. Although the boundary conditions at the end of the
wrinkles are different between wide and narrow annuli, the
elasto-gravity wavelength A, = 27(B/pg)""* robustly describes
the wrinkles observed in all our experiments (at and above the
buckling threshold) (Fig. 6). The numerical stability analysis of
the plate equations (appendix 5) confirms this agreement at the
threshold (Fig. 6). We conclude that in our system the wave-
length is given by a local balance between gravity and bending
rigidity.

These experimental and theoretical results are in contrast to
theoretical predictions carried out in a different regime domi-
nated by tension. For instance, a balance between bending

0.03 T T T T T T T T

0.025 - b

0.02 - B

0.015 |- B

A [mm]

0.01 4

0.005 - b

0 L L L L L L
0.34 0.36 0.38 0.4 0.42 0.44 0.46 0.48 05 0.52

’Yo/’yi

Fig. 7 Evolution of the amplitude as a function of v,/vi. Symbols: experimental
data obtained for a wide annulus a/b = 0.36, solid line: fit by the function

A= o/ ('Yo - 'Yom’t)/'Yi-
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Fig. 8 Evolution of the critical normalized difference in surface tension v ./y; as
a function of the ratio Lec/Lc: full line, simplified analytical theory (eqn (17));
dashed line, numerical stability analysis of the plate egn (20); circles, experience.
Inset: the relative critical difference as a function of the aspect ratio a/b.

stiffness and tension dictate the number of wrinkles observed
when a drop is deposited on a thin sheet,” where gravity does
not play any important role.

We note however that a fixed wavelength is obviously not
compatible with a constant number of wrinkles. An increase in
the difference between +v; and v, tends to increase the extension
of the wrinkles. In fact we observe that extended wrinkles tend
to split, which limits the deviation of the local wavelength from
Aeg (Fig. 9). Although it would be interesting to investigate this
wrinkling cascade in a deeper way, the narrow range of the
difference in surface tension in our experiment limits such an
investigation. The robustness of A.; may however be probed in a
different experiment involving mechanical loads.

4.4 Extension of the wrinkles

We observe experimentally that the extension of the wrinkles
increases with the difference in surface tension. The amplitude

Fig. 9 As the extension of the wrinkles increases new wrinkles appear, which
tends to maintain the wavelength in a narrow interval in the vicinity of Leq (see the
dotted circle).

This journal is © The Royal Society of Chemistry 2013
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of the wrinkles monitored through the synthetic Schlieren
technique reaches a maximum close to the inner radius and
progressively vanishes away (Fig. 10a). We define the exten-
sion length of the wrinkles as the difference between the
radius Rso, where the amplitude reaches 5% of the maximal
value and the inner radius: L, = Rsq — a. L, increases
progressively as the ratio y./v; is reduced, i.e., as the differ-
ence in surface tension is amplified (Fig. 10b). Prediction of
the evolution of L,, theoretically is challenging. Indeed, the
formation of wrinkles is expected to modify the stress distri-
bution in the annulus. Compressive stresses should eventu-
ally become negligible in the far from threshold limit.
However, we may assume that the stress distribution remains
almost preserved in the opposite near threshold limit. In the
previous section we have defined a simple criterion for
buckling based on an extrapolation of the 1D case. Determi-
nation of the extent of the wrinkles thus involves more
complex plate theory. However, we propose, as a very simpli-
fied description, to limit the extent of the wrinkles to regions
where the hoop stress is negative (r < R*). Under this condi-
tion, the extension of the wrinkles would be given by:

L,=R*—a=da(yilve — D> —1]. (18)

This simple relationship describes relatively well our
experimental data. When extrapolated to the buckling
threshold eqn (18) also leads to a finite length in incipient

wrinkles:
1/2+ Lo 0\
Ly =al (L2 leelZe) 1
o "[(1/2%/&) ’ (o)

This length scale would vanish as the membrane becomes
very flexible. However the corresponding limit /.. < /.
does not fall within the physical parameters of our experi-
ments. Different behaviors may thus be observed for such a
limit.

a Rsy,
o . . . .

0.15 0.2 0.25 0.3 0.35 0.4

Yoo /%‘

Fig. 10 Evolution of the length of the wrinkles L as a function of the normalized
difference in surface tension v../v;. Inset: a typical example of the amplitude of
the wrinkles as a function of the radial coordinate.
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5 Conclusions

Although the principle of the experiment presented here may
appear similar to previous work (such as the case of a drop
deposited on a thin sheet), the wrinkling patterns presented
here are significantly different. Indeed gravity plays a dominant
role in our macroscopic version and leads to a characteristic
length scale Aeq ~ (B/pg)"*. Extended wrinkles are even observed
to split in order to maintain this wavelength. Conversely, the
wavenumber is fixed in “drop on thin sheet” experiments with
the characteristic wavelength around the droplet proportional
to (B/y)"*a"? (a corresponds to the radius of the drop in this
case).? In contrast to other experiments involving compressed
thin sheets, we do not observe any cascade of wrinkles at the
edges of our thick annuli. We indeed expect such a cascade to
appear only if the thickness of the sheet in small in comparison
with the length scale (y;%/pgE)"".

Our experiments are also found to correspond to a near
threshold situation where the formation of wrinkles does not
induce a total collapse of compressive stresses. The threshold
is set by a characteristic stress o, ~ (0gB)"*/t and the extension
of the wrinkles is reasonably described by the location of ¢y =
0 in Lamé in-plane solution. Conversely, “drop on thin sheet”
experiments are far from the threshold and the extension of the
wrinkles was found to be empirically set by a(Et/y)*?, while
a recent analysis predicts dependence on a(Et/y)"” instead.®

As a conclusion we have found a different regime of radial
wrinkling induced by surface tension forces; in contrast to exper-
iments at the scale of the capillary length (y/pg)"?, gravity domi-
nates here and imposes a given wavelength. We have however only
explored this regime close to the buckling threshold. The use of
ultra thin film samples at the centimeter scale would allow char-
acterization of the “far from threshold” limit of this gravity regime,
which remains completely unexplored. We believe that this radial
wrinkling regime with an imposed wavelength would exhibit a
behavior as rich and stimulating as the tension-driven regime
which has attracted strong attention lately, with distinct features
such as an extended wrinkling cascade.

Appendix
Linear stability analysis of buckling

We describe here the standard stability analysis of the stretched
annulus presented in more detail by Davidovitch et al.> We
consider the linear elastic plate equation:*”

Fw (1 ow 18w
— U,gt — +

BV w — 0,02 oW, 20w
wee or? ror  r?96*

) + pgw =0, (20)
where w is the vertical deflection of the sheet, and we impose a,,
and g, as the Lamé’s stress solution (eqn (10) and (11)). In this
equation, the first term represents the bending rigidity, the two
central terms are due to in-plane stresses, whereas the last term
represents the hydrostatic pressure.

We look for a non-zero solution of eqn (20) in the form w =
f(r) sin(m#@). The plate is free of forces or torques along the inner
and outer radii, and one would impose three boundary condi-
tions: zero axial torque M,,
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M, w Low 10*w
B [6r2 ”(?ar+72302>] =0forr=ab (2]
zero transverse torque M,y = B(1—v) 9 (Low and zero
que e = " or \r 90

. d -
vertical force Q, :BgAw. However, only two conditions on

each boundary (r = a, b) are needed for the fourth order eqn
(20). In fact, the conditions on Q, and M,, are coupled into a
single condition due to the infinite shear rigidity assumed
within classical plate theory”” which reads

_1oMy + ho,.% =0forr=a,b (22)

o a6 ar

The form w = f(r) sin (m#) leads to a linear 4th order ordinary
differential equation on f(r), with four boundary conditions. In
general this linear system has one solution, f = 0, but for a
critical value of the outer surface tension y. (the buckling
threshold) a non-zero solution exists. This boundary value
problem can be solved numerically for any value of the wave-
number m. We then find the wavenumber m which corresponds
to the lowest value of the buckling threshold.

This procedure gives numerical computation of the buckling
threshold and the buckling mode (wavelength and radial
distribution of the amplitude at the threshold) which can be
compared with experiments.
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