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When a thin film moderately adherent to a substrate is subjected to residual stress, the
cooperation between fracture and delamination leads to unusual fracture patterns, such as
spirals, alleys of crescents and various types of strips, all characterized by a robust char-
acteristic length scale. We focus on the propagation of a duo of cracks: two fractures in the
film connected by a delamination front and progressively detaching a strip. We show
experimentally that the system selects an equilibrium width on the order of 25 times the
thickness of the coating and independent of both fracture and adhesion energies. We
investigate numerically the selection of the width and the condition for propagation by
considering Griffith's criterion and the principle of local symmetry. In addition, we pro-
pose a simplified model based on the criterion of maximum of energy release rate, which
provides insights of the physical mechanisms leading to these regular patterns, and
predicts the effect of material properties on the selected width of the detaching strip.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Thin film coatings are commonly used in engineering applications as a way to enhance the surface properties of a
substrate. However, residual stresses generally build up in the layer during deposition or use, which may result into buckle-
driven delamination when stresses are compressive or fracture in the opposite case of tensile stresses (see the classical
review from Hutchinson and Suo, 1992). In this paper we focus on this later situation, which has been widely explored due
to the dramatic consequences of such a failure. In the case of a strong adhesion of the thin film, the condition for the
propagation of channel cracks is well documented and we summarize the main results in Section 3.1. When the propagation
of cracks is possible (i.e. beyond a critical tensile load), cracks usually appear sequentially: a new crack follows a straight
trajectory, until it deflects and connects perpendicular to an earlier crack as a consequence of the tensorial nature of the
strain (Fig. 1a). If the substrate is rigid, the length scale of interaction between cracks is on the order of the thickness of the
layer. Indeed, the substrate tends to limit the relaxation of the residual strain induced by fracture (Thouless, 1990; Thouless
et al., 1992; Shenoy et al., 2000). The resulting hierarchical fracture patterns appear in old paintings (Karpowicz, 1990),
drying mud (Shorlin et al., 2000) or sol–gel coatings (Atkinson and Guppy, 1991). In addition to channel cracks, delamination
is also observed for high tensile stresses. The interplay between channel cracks, delamination and substrate fracture has
motivated a large number of studies (Cannon et al. , 1985; Mei et al., 2007; Yu and Hutchinson, 2003), to provide the
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Fig. 1. Cracks in thin films. The standard propagation of isolated cracks in a thin drying layer of corn starch leads to a hierarchical network where new
cracks branch perpendicular to older ones ((a) h 2.7 mmf = , scalebar 1 cm). However, surprising regular patterns are observed in thin silicate (Spin-On-
Glass) layer when the adhesion of the coating is moderate (scalebar: 100 mμ ): long oscillating alleys ((b) h 1.2 mf = μ , 0.45 N/mi

0Γ = ), Archimedean spirals
((c) h 1.1 mf = μ , 0.3 N/mi

0Γ = ) or parallel cracks ((d) h 1.45 m= μ , 0.3 N/mi
0Γ = ) follow an initial arch or line, at a fixed distance. Denser defects lead to

more complex patterns, nevertheless the band structure remains robust (e, f).
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operational conditions for thin film stability (Ye et al., 1992; Evans and Hutchinson, 1995; Freund and Suresh, 2004).
However, delamination requires free edges to propagate. As a consequence, this mode of failure is usually observed between
previously formed channel cracks and eventually leads to the detachment of pieces of the coating (Pauchard, 2006; Lazarus
and Pauchard, 2011).

The nucleation of successive channel cracks is nevertheless not the sole scenario for the failure in coatings under tensile
stresses. Indeed, a different mode has been recently evidenced in systems involved in new applications such as stretchable



J. Marthelot et al. / J. Mech. Phys. Solids 84 (2015) 214–229216
electronics (Rogers et al., 2010), biomaterials (Haldar et al., 2006) or fuel cells (Bozzini et al., 2012), which display a weak
adhesion of a thin film on a substrate. Intriguing fracture patterns have been reported in such systems such as regular alleys
of oscillating crescents (Fig. 1b), spiraling paths (Fig. 1c), parallel cracks (Fig. 1d), or more disorganized patterns (Fig. 1e)
(Sendova and Willis, 2003; Meyer et al., 2004; Lebental, 2007; Wan et al., 2009; Wu et al., 2013).

As a mean feature, these patterns display a well defined characteristic length scale, which is best evidenced in the
wavelength of the crescent alleys (Fig. 1b) or the pitch of the Archimedean spirals (Fig. 1c). This lengthscale is typically 25
times the thickness of the coating for most experimental systems. In a recent paper presenting live observations of crack
propagation, we showed that these striking patterns result from the simultaneous propagation of a delamination front in
collaboration with fracture across the layer (Marthelot et al., 2014). This new collaborative fracture mode surprisingly de-
velops in conditions where standard channel cracks are not expected to propagate. We provided a simplified physical model
based on energy estimates that selects a length scale for the patterns proportional to the thickness of the film. This model
also reproduces the diversity of observed patterns. However, a quantitative prediction of the crack propagation as a function
of the material properties of the coating and the substrate is still missing. We focus here on the case of a symmetric pair of
cracks propagating simultaneously with a delamination front and leading to a strip of a well defined width (Figs. 1f and 3a).
Indeed, this simpler geometry allows for a quantitative modeling and a direct comparison with experiments. Studying this
configuration thus constitutes a first step towards a generalization to more complex modes such as spirals or crescent alleys.

In Section 2, we characterize experimentally symmetric pairs of cracks and show how the selected width depends on the
different physical parameters. We address in Section 3 the selection of this width by studying numerically the stress
intensity factors at the crack tips, fromwhich the direction of propagation of the cracks can be predicted. We also determine
the conditions of propagation using a steady-state argument. In Section 4, we propose a complementary approach based on
maximum energy release rate (Chambolle et al., 2009), which provides insights into the physical mechanisms that select the
width of the band. In Section 5, we examine the robustness of the selection of the width and determine its dependence with
Fig. 2. (a) AFM imaging of crescents alleys reveals a slight increase of the thickness of the silicate layer as residual strain is relaxed by the crack. (b) Field
emission Gun-SEM images of the crack path. (c) Evolution of a delamination front around a fixed straight channel crack. (d) The delamination energy Γi

estimated from the shape of the front (diamonds) increases with the velocity. The delamination energy Γi is normalized by the value of the delamination at
zero velocity Γi

0
(coded in colors). Similarly, the fracture energy Γc measured in isolated cracks (black dots) increases with the crack velocity. (For inter-

pretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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material properties (Poisson ratio, Young modulus of the layer and of the substrate) using three-dimensional finite element
computations and simple analytical arguments based on energy. We finally quantitatively compare those predictions with
experimental data.
2. Experimental evidence of a new mode of crack propagation

“Spin-On-Glass” (SOG) silicate coatings are commonly used as protective coatings or to adjust the dielectric properties of
materials (Lebental, 2007). Depositing such films relies on a simple process where a sol–gel suspension is spin-coated on a
substrate and then cured in an oven. Nevertheless, the sol–gel condensation reaction produces residual tensile strains (on
the order of 1%), which may induce fracture (Brinker and Scherer, 1990). When adhesion with the substrate is large, such
stresses indeed induce the propagation of isolated channel cracks, leading to the usual hierarchical pattern of glaze cracks in
ceramics (Fig. 1a). However, if the adhesion of the layer on the substrate is moderate, unusual crack patterns can also appear
as illustrated in Fig. 1. Although similar patterns have been reported with other materials, we selected SOG coatings as a
model system for controlled experiments.

2.1. Experimental setup

Thin films were produced by spin-coating a commercial solution of organosilicate sol–gel (SOG Spin-On-Glass, Accuglass
T-12B, Honeywell) on a silicon wafer. The rotation speed was set from 500 to 1200 rpm for 15–25 s. The liquid layer was
placed in an oven at 200 °C for 2 h. The solvent then quickly evaporated and the sol–gel condensation reaction progressively
transformed a gel into a glassy micrometric silicate film. The obtained silicate coating was characterized by different
parameters, that we have quantified precisely, namely the thickness hf, Young modulus Ef and the Poisson coefficient νf of
the film, the residual strain s0, the adhesion energy Γi and the fracture energy Γc.

The thickness hf was measured by AFM (Fig. 2a) or SEM imaging of gently scratched specimens (Fig. 2b). The Young
modulus E 4 1 GPaf = ± was estimated by standard nanoindentation (MTS XP from Agilent). The Poisson coefficient was
inferred from the measurement of the relative variation of the film thickness 2 / 1zz f f xxν νϵ = ( ( − ))ϵ induced by the delami-
nation of a strip of the film. This variation on the order of 6 nm for a film of h 1 mf = μ was measured by AFM imaging,
corresponding to 0.25fν = (Fig. 2a).

The tensile stress was obtained by monitoring the slight deflection from the slight deflection induced on the supporting
wafer (we used a wafer of thickness h 100 ms = μ for these measurements). This measurement confirmed that residual
stresses are isotropic in the film. The curvature of the wafer κ is indeed related to the residual stress through Stoney's law,

E h h/6 1s s f s0
2σ κ ν= ( − ), where E 169 GPas = and 0.36sν = are respectively the Young modulus and the Poisson coefficient of the

silicon wafer (Stoney, 1909). We typically obtained 0.15 m 1κ ∼ − for h 1 mf = μ , leading to a residual stress 55 MPa0σ = for the
different samples. Such stress corresponds to a residual strain E/ f0 0σϵ = on the order of 1%.

As a way to control the adhesion of the coating layer, the wafer could be previously coated with a first thin layer of SOG,
methyltriethoxyorthosilicate, tetraethylorthosilicate, glycidoxypropyltrimethoxysilanetetraethoxysilane or 1H,1H,2H,2H
perfluorodecyltrichlorosilane. The adhesion energy Γi was inferred by monitoring the shape of a delamination front around
a fixed straight crack of length L as proposed by Jensen et al. (1990) (Fig. 2c). The aspect ratio of the front Y L/ is indeed
predicted to rely on the ratio of the residual stress s0 with a critical stress, sc, on the Poisson ratio of the film and on a
parameter accounting for mode 3 contribution at the tips of the straight crack. However, the effect of this last parameter is
quite moderate and the numerical data from Jensen et al. computed for 1/3fν = and different contributions of mode 3 can be
fitted by the simple relation Y L/ 1 0.47 0.05 /c0σ σ = + ( ± ) . Measuring the critical strain for delamination from the shape of the
front thus provides an estimate of the adhesion energy through the relation E h2 / 1c f i f f

2 1/2( )σ Γ ν= ( − ) (Jensen et al., 1990). As
it is observed in any adhesive system, the adhesion energy increases with the speed of propagation of the delamination
front (Fig. 2d). This is not due to kinetic energy effects (typical velocities range from 1 to 100 mμ /s) but due to time de-
pendent dissipation (e.g. diffusion of reactive molecules facilitating fracture propagation, Lin et al., 2007). We refer to as Γi

0

the limit of this energy estimated for a motionless front. By changing the preliminary coating on the silicon wafer, we were
able to vary Γi

0
between 0.3 and 1.3 N/m.

A standard plasma cleaning of the sample finally promotes a strong adhesion and thus prevents delamination. In this
condition, channel cracks are observed above a critical thickness hc, as expected in thin films under tension (see Section 3.1).
For a residual stress 55 MPa0σ = , a critical thickness h 1.8 mc = μ leads to a fracture energy, 1.5 0.2 N/mc

0Γ = ± according to
Eq. (3). Fracture energy was also found to increase with the speed of propagation of the crack (Fig. 2d). This dependence is
compatible with observations in other similar systems where it has been interpreted as effect of water diffusion through the
fracture tip (Lin et al., 2007).

2.2. Duos of cracks: experimental observations

Although a large variety of patterns can be observed for different triggering conditions (Marthelot et al., 2014), we focus
in this paper on the paradigm case of duos of cracks that propagate simultaneously. Such pairs were for instance observed to
grow perpendicularly along scratches produced with a sharp blade. Optical interferences visible as the pair of cracks
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Fig. 3. (a) Propagation of duos of cracks in a thin film of Spin-On-Glass, deposited on a silicon wafer (h 1.4 mf = μ , 0.55 N/mi
0Γ = ). In this particular

example, the cracks initially linked by a narrow delamination front, start to diverge but quickly converge towards a steady width W2. The pictures are taken
with a constant time lap of 2 s. (b) Opposite case where the initial width is larger than W2, leading to the same optimal width. (c) Relaxation of a duo of
cracks towards the optimal width in a film presenting a gradient in thickness. In the left part of the image, the thickness is larger than the critical thickness
hc required for the propagation of an isolated channel crack. Two isolated cracks propagated independently and stopped as they reached the region below
hc. A slow delamination front then propagates between both cracks and the collaborative propagation starts, leading to a rapid relaxation towards W2.
(d) Variation of W2 as a function of the film thickness hf for different values of the adhesion energy Γi

0
.
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advances indicate that the film delaminates simultaneously (Fig. 3a). Although the initial width of the delaminated band is
set by the initial conditions, it systematically converges toward a steady value W2, which is found constant for a sample of
uniform thickness. In this steady regime, the delamination front connecting both cracks propagates at a constant speed
ranging from 1 to 100 m/sμ .

We measured the variation of the stationary width of the strips W2 as a function of hf for different adhesion energies Γi
0
.

As illustrated in Fig. 3d, W2 increases linearly with the thickness over one decade. We observe that the duos of cracks
converge rapidly towardsW2 (Fig. 3b and c), which is in the order of 25 times the film thickness. This prefactor which probes
the interaction distance between the cracks is strikingly large in comparison with isolated cracks where the interaction
length is on the order of hf. Moreover, this optimal width is surprisingly robust and does not depend on the actual value of
the adhesion energy Γi

0
. In the remaining of this paper, we wish to explain these two remarkable experimental facts,

through two different approaches.
3. Prediction of crack propagation through stress intensity factors

In a first approach, we study the stress field around the crack tips, using the standard tools of linear elastic fracture
mechanics and finite elements numerical calculations. In this section (as well as in Section 4), we restrict the analysis to the
case of a single layer on a infinitely rigid substrate. A quantitative comparison with experiments including a sublayer is
presented in Section 5. Before describing duos of cracks, we start the following section by reformulating standard results on
isolated cracks (Hutchinson and Suo, 1992).

3.1. Standard isolated cracks

Consider the classical case of a single and straight quasi-static fracture propagating in a thin isotropic homogeneous
coating perfectly adhering to an infinitely rigid substrate. We note that in view of the deposition technique (condensation of
a layer) the films in our experiments have in-plane isotropic mechanical properties, and undergo isotropic residual stresses,
as confirmed by direct measurements described in Section 2.1. The questions that we wish to address are as follows: what
are (i) the direction of propagation and (ii) the conditions for propagation?

The calculation of the stress field close to a crack tip in the film is a complex three-dimensional problem. However, the
configuration is mirror symmetric with respect to the straight crack trajectory, so that the stress field must also be sym-
metric (the loading is in pure opening mode I) all along the fracture front. According to the principle of local symmetry, the
direction of propagation is therefore in the plane of the initial trajectory: (i) an initially straight crack path remains straight.
Note that this symmetry argument does not state on the stability of such an existing straight trajectory: a perturbation to
this solution may be amplified during propagation. The symmetry of the system can be broken through a bifurcation. Indeed
oscillating crack path is for instance observed in plates subjected to a thermal gradient (Yuse and Sano, 1993; Deegan et al.,
2003) or during the cutting of a thin sheet with a blunt tool (Ghatak and Mahadevan, 2003; Roman et al., 2003; Audoly et al.,
2005), two situation where the system is mirror symmetric with respect to a straight path. In the case of interest here, we
assume straight paths to be stable, in the standard sense of stability analysis, since they are experimentally observed.

In addition to the shape of the path, we can determine the condition for propagation through Griffith's criterion. The
energy release rate of an isolated crack (Fig. 4a) is obtained from a simple plane strain analysis instead of the resolution of
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Fig. 4. (a) Elastic energy distribution around an isolated channel crack in a thin layer under residual stress s0. The energy density is normalized by its value
in the absence of fracture e h E/ 1 /f f f0

2σ ν= ( − ) . Elastic energy is released in a small area around the crack edges, with typical lateral size hfℓ ∼ in the
direction y perpendicular to the crack. (b) Collaborative mode of propagation of a duo of cracks separated by a delamination front. In addition to the lateral
strain release along crack path, the strip defined by three free edges is almost completely free of elastic energy in this propagation mode.
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the three-dimensional problem in the vicinity of the crack tip. Indeed, the difference in energy between a section far ahead
and far behind the crack tip leads to the following energy release rate G:

Gh 2 eh 1f fγ= ( )

where e h E1 /f f f0
2σ ν= ( − ) is the elastic energy density in the film per unit area, and 2γ is a numerical prefactor which

depends on the Poisson ratio νf of the film. We have noted hf the film thickness, Ef its Young modulus and s0 the residual
stresses in the film. Numerical tabulations for γ can be extracted from Beuth (1992), where the effect of a finite rigidity of the
substrate is also considered through the Dundur parameters (Hutchinson and Suo, 1992). In the case of an elastic coating
under residual stress deposited on a rigid substrate, γ is of order 1 (we used 0.64γ = in our measurement of fracture energy
in Section 2), but can be much larger for compliant substrates. We will consider such effects in Section 5.2.

Following Griffith criterion, isolated channel cracks propagate quasi-statically (ii) in thin films if the energy release rate
reaches the fracture energy Γc:

e2 2cγ Γ= ( )

This condition is usually presented in the following form: for a given residual strain s0, the film is stable with respect to
fracture (i.e. a nucleated crack will not propagate) if the film thickness hf is smaller than a critical value hc:

h
E

2 1 3
c

c f

f0
2

Γ

γσ ν
=

( − ) ( )

In our experiments such isolated cracks are observed in sufficiently thick coatings when large adhesion prevents delami-
nation. As described in Section 2.1, we used measurement of the critical thickness hc to estimate the work of fracture Γc.

These results are well established (Hutchinson and Suo, 1992; Thouless, 1990; Thouless et al., 1992; Shenoy et al., 2000;
Beuth, 1992), and recent studies focus on the interaction between several isolated cracks. A simplified model based on linear
foundation connecting the layer to the substrate has for instance been proposed (Xia and Hutchinson, 2000) and later
rigorously derived and used to study the sequence from fracture to debonding (Baldelli et al., 2013, 2014).

3.2. Predicting the width separating duos of cracks

We now focus on the case of duos of cracks, which is not described by the classical situation presented before. We
nevertheless follow the same line of arguments for this new collaborative mode: we first study the stress field around the
cracks to determine the path and then use Griffith criterion to predict the condition for propagation.

Consider a duo of cracks propagating with a steady width W2 as illustrated in Fig. 3a. The thin film initially adheres to a
rigid substrate and two straight cracks propagate through the film, with the resulting strip simultaneously delaminating
from the substrate. In contrast with the case of isolated cracks, the mechanical conditions on each side of the cracks tips are
very different. Indeed, the film remains attached to the substrate on one side and free on the other side. As consequence
there is no a priori reason to expect a pure mode-I loading and therefore a straight propagation of the cracks. However,
fracture may experience pure opening loading even in configurations where there is no symmetry, for instance in the
spalling and cracking processes of brittle plates (Hutchinson and Suo, 1992; Thouless et al., 1987) or in the case of the
interaction of curved channel cracks (Xia and Hutchinson, 2000).

Finite-element simulations of a straight delaminated strip were performed within the limit of three-dimensional linear
elasticity with the Abaqus software from Dassault Systèmes. The mesh size used for these simulations was one-tenth of the
film thickness. For the sake of simplicity, we first consider the case of a layer directly deposited on an infinitely rigid
substrate (Fig. 4b). The effect of the finite Young modulus of the substrate or that of a sublayer will be later described in
Section 5 for a quantitative comparison with experimental data. The system is therefore composed of an isotropic thin film
(thickness hf, Young modulus Ef, Poisson ratio νf) in which two rectilinear cuts are performed, delimiting a rectangular strip
with a width W (Fig. 4b). The layer is attached to the infinitely rigid substrate except in the area below the strip. We use the
symmetry of the problem to simulate only half of the strip. The isotropic biaxial residual stresses are imposed in the



Fig. 5. Numerically computed stress intensity factors at the crack tips for a delaminated strip with width W in a film subjected to residual bi-axial stress.
The ratio k k/II I is plotted as a function of the normalized width W h/ f , where hf is the thickness of the coating (stress intensity factors are averaged in the
thickness of the film). Since the sign of the ratio is related to the direction of propagation of the crack, parallel cracks are expected for W h15.1 f∼ . Inset:
Profiles of kI, kII and kIII along the crack front z h/ f for the selected width W h15.1 f2 ∼ . The position z h/ 0f = corresponds to the lower surface of the film in
contact with the substrate and z h/ 1f = to the upper surface.
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numerics as the result of a thermal contraction of the coating.
We use two simplifying assumptions on the geometry of the fracture front, which are guided by experimental ob-

servations. A first assumption is that the debonding front is straight as observed experimentally (see images on Fig. 3a). A
second simplification concerns the shape of the channel crack in the thickness of the coating. Post-mortem SEM imaging
suggests that the fracture plane is nearly perpendicular to the film surface (Fig. 2b). Although a precise monitoring of the
crack front is lacking, we will assume that the fracture front in the film is straight and perpendicular to the film surface.

Stress intensity factors were computed for both cracks across the thickness of the film for different widths W of the strip.
The averaged values of the stress intensity factors over hf are quoted as kI , kII , and kIII . In the framework of linear
elasticity, all these stress intensity factors are linear functions of the loading and can be adimensionalized by E hf fϵ , where ϵ
is the imposed strain. According to the principle of local symmetry, the crack propagates without changing direction if the
stress intensity factor in mode II vanishes. In Fig. 5, we plot the ratio of shear to opening mode k k/II I as a function of the
strip width W. The averaged shear mode kII vanishes for a single value of the width W h15.1 f2 = for a Poisson ratio 0.25fν =
(see Section 5.1 for other values of νf). As a consequence, only strips with a width W W2= may thus propagate steadily along
a straight path. Moreover, the change of the sign of kII indicates that W2 corresponds to a stable width. For a strip width
larger than W2, the crack tips indeed undergo a shear loading which would induce a kink of the fracture inward, leading to a
decrease of W as the cracks propagate. The symmetric situation with a width W W2< would conversely lead to an increase
of W. This is an indication that the solution with constant width W W2= is stable. In any case, the width is thus expected to
converge towards W2. The selection of a given width in this problem is, in this sense, comparable to substrate spalling
(Thouless et al., 1987), and to more complex geometrical propagation of interacting straight and curved crack (Xia and
Hutchinson, 2000), which have been similarly explained by a vanishing value of kII for a single distance.

In the inset of Fig. 5, we present the profiles of stress intensity factors as a function of the position z h/ across the film
thickness, for the optimal width W W2= . These profiles indicate that the opening mode (kI) is dominant and roughly
constant. Interestingly kII varies monotonically and only vanishes on average. We also note that kIII is small but finite (in
average it corresponds to 5% of kI). This finite but small value is an indication that the geometry selected (straight front
perpendicular to the film) is only a reasonable approximation. Since the energy release rate is not constant along the front,
some parts will propagate faster than other, and the fracture front should indeed not remain straight. The actual front
should slightly tilt sideways (opposite sign of kII on top and bottom faces of the film, and finite kIII) (Leblond et al., 2011). A
complete numerical study of this problem would require to find the actual shape of the front in the steady state regime (the
one for which k k 0II III= = all along the front, with a constant kI). Such a delicate study would be beyond the scope of the
present work.

3.3. Energetic condition for the propagation of duos: Griffith's criterion

In the previous section, we found a steady width W2, which is solely dictated by linear elasticity and thus independent of
the loading. We now use a steady state argument to determine the conditions for propagation. This argument is only
relevant for the particular width W W2= , since other widths would lead to unsteady diverging or converging strips.
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Under steady state conditions, the energy released during propagation is the difference between energies far ahead and
far behind the fracture front (Fig. 4b). This energy released includes a contribution of the still adhering film, which is
identical to the classical case of isolated channel cracks (Fig. 4a). In addition, the elastic energy of the debonded strip is
completely released, since the boundaries of the strip are free (Fig. 4b). The energy released per unit advance of the front is
now given by

eh eW2 f 2γ +

Wide strips are thus more favorable from an energy release point of view. However the energy cost for propagation is also
higher, as it now involves two fractures across hf and a debonding front along W2. Propagation is thus energetically possible
if

h W e h W2 2 ,f c f i2 2γ Γ Γ( + ) = +

where Γi and Γc are respectively the debonding and fracture energies of the film. This relation defines a new condition for
propagation of duos of cracks, different from the threshold for isolated cracks (Eq. (2)). In the case of weak adhesion eiΓ ≤ ,
this condition may be satisfied for sufficiently large widths, even when Eq. (2) does not hold. In other terms, duos of cracks
may propagate in conditions where isolated cracks cannot.

3.4. Selection of the propagation velocity

Our experimental estimations of the quasi-static debonding and fracture energies show that both viΓ( ) and vcΓ ( ) increase
with the front velocity (Fig. 2d), as it is generally observed in any mode of fracture. If we take into account velocity de-
pendence, the condition of propagation therefore becomes

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟W

h
e

W
h

2 2 ,
4f

c i
f

2 0 0 2γ Γ Γ+ ≥ +
( )

where Γi
0
and Γc

0
respectively correspond to the minimal values of Γi and Γc, valid for vanishing velocities. Once this relation

is satisfied, we expect the excess of residual energy to be dissipated by the fracture and delamination velocity-dependent
processes (e.g. viscous dissipation, diffusion of reacting molecules, Lin et al., 2007). The resulting quasi-static propagation
velocity v is thus set by

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟W

h
e v v

W
h

2 2 .
f

c i
f

2 2γ Γ Γ+ = ( ) + ( )

The above condition will be compared quantitatively with experimental data in Section 5, where the effect of the finite
rigidity of the substrate is studied in detail. In the following section we propose an alternative approach based on physical
arguments to predict the selection of the width.
4. A physical model for the selection of the width

Within the assumption that cracks and delamination fronts are all straight, direct computation of stress intensity factors
showed that only strips with a well defined width W2 experience no shear mode, and propagate steadily. This result is
certainly not intuitive since the boundary conditions around each crack are asymmetric conditions. It is thus difficult to
interpret why the shear mode vanishes for a unique width W2. We now present an alternative point of view, where the
direction of propagation is deduced from a study of the energy release rate.

Indeed, the “maximum energy release rate criterion” is also commonly used to predict the direction of fracture pro-
pagation in a homogeneous, isotropic material. According to this criterion, fracture propagates in the direction that max-
imizes the energy release rate for a fixed loading (Cotterell and Rice, 1980). In the case of a smooth crack path (regular in
space and in time), in an homogeneous isotropic material, this criterion has been proved to be equivalent to the principle of
local symmetry used in the previous section (Chambolle et al., 2009; Cotterell and Rice, 1980). Both criteria nevertheless
slightly differ if the path presents a kink (Hutchinson and Suo, 1992; Amestoy and Leblond, 1992). However, we are here
interested in the conditions for a steady propagation, which corresponds to the first case.

4.1. Elastic energy for a straight strip with width W

Similar to the previous section, we consider a film under bi-axial tensile stress covering an infinitely rigid substrate. We
will use the initial energy of this film as a reference 0 and we propose to estimate the elastic energy of the system W L,( )
as a long strip of length L and width W (L W hf⪢ ⪢ ) delaminates from the substrate (Fig. 4b). As suggested by the experiments,
the delamination front is assumed to be straight. We use the coordinates x, y in the plane of the coating, with y being
oriented along the delamination front. The previous finite elements' calculations provide the stress field distribution on the
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Fig. 6. (a, b, c) Numerical computation of the stress fields. Stress component sxx : the spontaneous tilting of the strip (side cut view of the strip a) releases
stresses even ahead of the debonding front (also seen on top view b). Stress component syy : residual stress is released in the strip except in the vicinity of
the delamination front (top view c). (d) Difference in elastic energy due to the delaminated strip W L eLW eLh, 2 f0 γ− ( ) − − normalized by ehf

2
as a

function of strip width W h/ f for a constant length L (see geometry on Fig. 4b). The plot presents a minimum and can be fitted with a quadratic function
W h Wf

2α β− + with 0.0254α ≃ , 0.368β ≃ .
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film displayed in Fig. 6. The observation of the stress field shows that residual stresses are decreased in two independent
regions: the delaminated strip and a pair of narrow bands of the adhering film along the fracture path. We thus split the
difference in elastic energy, W L W L L, ,0 strip cut− ( ) = ( ) + ( ), into the contributions of these respective regions. The term

Lcut( ) is similar to the case of classical isolated cracks and does not depend on the width of the strip.
We have seen that far enough from the delamination front, the steady state difference in elastic energy is given by

eW eh2 fγ+ per unit strip length (Eq. (4)). Integrating this difference over the length of the strip would thus lead to
L eh L2 fcut γ( ) = and W L e,strip( ) = , where is the debonded area. However, this expression neglects boundary effects close

to the crack tip and to the delamination front. Indeed, the elastic field along the edges of the cut is not invariant along x (steady
state elastic field) close to the fracture tip. The steady state energy for the cut is only valid a few thickness away from the tip
and should be corrected into L eh L h2 f fcut γ ζ( ) = ( + ), where ζ is a numerical factor. In a similar manner, the delamination front
perturbs the complete relaxation of the residual strain in the strip. We computed numerically the energy of the finite size
system W L,( ) using the numerical scheme developed in Section 3.2. We plot in Fig. 6a the elastic energy

W L eLW eLh W L e eh, 2 , 2f f0 strip
2γ γζ− ( ) − − = ( ) − + . The strip length L was kept constant (as well as cut), and only the

widthW of the strip was varied. In other words, this graph represents the evolution of eh W W L e,f
2

strip( ) = ( ( ) − ) shifted by
a constant value. An essential feature of the additional term in energy release W( ) is to present a maximum. In the following
section, we provide a physical interpretation of this non-monotonic variation as the result of two elastic perturbations that
take place close to the delamination front. We show in Section 4.2 how this property determines the crack path.

4.1.1. Strain along the width at the boundary: “a surface effect”
The boundary condition at the end of the strip in contact with the attached film prevents the residual strain to be

completely relaxed in the y direction (Fig. 6c). In a first approximation, the problem is thus similar to a planar strip with
three free edges but under a tensile strain yy 0ϵ = ϵ along the last one. Due to the Laplacian nature of elastic equations for
plane stress, the boundary condition has an influence over a characteristic length on the order of W. As a consequence, the
region of the strip remaining under strain has an area proportional to W2, leading to an elastic energy eW2α , where α is a
numerical prefactor depending only on the Poisson ratio of the film νf. We thus expect a correction of our estimation of the
released energy with a term eW2α− . As a first approximation, this correction should only depend on νf and be independent
of any other material parameter, even if the substrate is not considered as infinitely rigid (see Section 5).

We note however that this correction depends on the geometry of the delamination front. In this paper we assume that
the front is straight, based on optical observation (see for example Fig. 3a–c). This assumption remains to be justified by a
determination of the geometry of the delamination front using interfacial fracture mechanics, a challenging question that
goes beyond the scope of this paper.

4.1.2. Tilting the strip: a line effect
In contrast with syy stresses, sxx residual stresses are completely relaxed in the strip. However more energy can be

released in the remaining coating if the strip is tilted (Fig. 6a and b).
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In experiments, this out-of-plane displacement is evidenced through the interference fringes usually visible in the de-
bonded area (Fig. 3). It is also visible in the finite element simulation presented in Fig. 6a where the strip remains straight in
the debonded zone. Additional effects such as gravity, electrostatic forces, or surrounding airflow usually lead to a re-
attachment of very long strips after propagation has taken place, so that tilting is not evidenced in Fig. 2b. In our simplified
model of the delamination front, we do not consider these potential additional bending forces.

Tilting the strip provides some localized shear across the thickness of the film in the vicinity of the delamination front. This
situation is very similar to the boundary condition at the free edges of usual (isolated) channel cracks, where the shear in the
thickness relaxes stresses over a distance of order hf along the crack path. This additional contribution leads to a correction of
the estimation of the released energy by a term eWhfβ , where β is a numerical factor. As a first approximation, we expect β to
mainly depend on νf if the substrate is infinitely rigid. We study in Section 5.2 the effect of a substrate of finite stiffness.

4.1.3. Combining both effects
Implementing these two contributions in the strip leads to a correction of the estimation of the energy released:

W W L e eh W h W h, / / / . 5f f fstrip
2 2β α( ) = ( ( ) − ) = ( ) − ( ) ( )

which is in agreement with the numerical results (Fig. 6d). Indeed, a quadratic function fits fairly well the difference
eWL− and gives 0.0254α ≃ and 0.368β ≃ for a thin film with a Poisson ratio 0.25fν = deposited on a rigid substrate. We

discuss in Section 5 the dependence of α and β with the Poisson ratios and the finite stiffness of the substrate. The elastic
field close to the delamination front is therefore well captured by these two ingredients: a line effect favoring large widths
(linear term in W) and a surface effect penalizing large widths (quadratic in W).

It might be intuitive to deduce from this result that the system selects an optimal width which maximizes . However, such
an optimization is not grounded and would lead to a width W h7 f2 ≃ , which is half the prediction from stress intensity factors.
The role of is nevertheless crucial in the selection of the width as the fracture propagates. We discuss this selection in the
following section.

4.2. Selection of the width

Starting from an initial long strip of width W and length L (L W⪢ ), we propose to determine in which direction the
symmetric cracks should propagate. To address this question, we compute the energy released by propagation as a function
of the direction of propagation. Following the previous sections, the elastic energy in this initial state is given by

e e W eh L h2 .f f0 γ ζ= − − ( ) − ( + )

We now consider the symmetric propagation of a pair of cracks forming an angle θ with the axis of symmetry (Fig. 7a). If
both cracks advance by a distance sΔ , the delamination front is also translated by a distance x ssinθΔ = Δ . Although the
kinked configuration is more complex than the previous uniform strip, we will assume that the expression for the elastic
energy in the strip remains valid. In other words, we assume e e Wstrip′ = ′ + ( ′), where ′ is the new area of the
delaminated part, and W′ the width of the front.

However, the elastic stress along the cut is altered by the kink and the expression of the energy release is more subtle
than eh L h2 f fcut γ ζ′ = ( ′ + ), where L L s′ = + Δ is the new crack path length. We computed numerically the stress field in the
vicinity of a kink of angle θ (Fig. 7b). We consider the elastic energy l,sector θ( ) in a disk of radius centered on the kinking
a b

Fig. 7. (a) Starting from a straight strip (top) we consider the propagation of a fracture in a direction 0θ < by a distance sΔ . In the sketches, the color
symbolizes qualitatively residual elastic energy (as in Figs. 4 and 6). (b) Additional adimensionalized released energy due to the kink eh/ fkink

2θ( ) . (Inset)
zoom into a kink of angle θ in the crack path. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of
this paper.)
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point (the inset of Fig. 7b). As a rough approximation, this energy would be simply el eh l2f
2 π θ γ( − ) − . However, the presence

of the kink modifies significantly l,sector θ( ). We represent in Fig. 7b the correction of the released energy
el eh l2 fkink

2
sectorπ θ γ= ( − ) − − as a function of θ. This correction is independent of the radius of the disk as long as the

condition l hf⪢ is verified. We obtain a positive correction if the kink angle is positive (more energy is released), which
promotes the outward propagation of the strip. As a first order approximation, this correction varies linearly with sinθ ,
leading to the contribution of the kink e h sinfkink

2δγ θ= , with 0.29δ = . Note that kink is not exactly an odd function of θ that
would vanish in the case of isolated channel cracks as both the contributions of the complementary sectors are added.
Additional non-linear terms lead to a slight decrease of the released energy if a kink is formed, which finally favors the
selection of straight paths in standard channel cracks.

If we add the different contributions, the energy obtained after the propagation of the cracks is given by
20 strip cut kink′ = − ′ − ′ − . We finally obtain the elastic energy released during propagation by a distance sΔ in a di-

rection θ as the difference:

e A e W W eh s2 2 .r kinkγ= − ′ = [ ′ − ] + [ ( ′) − ( )] + Δ +

under the condition s hfγΔ ⪢ . We are however interested in the energy release rate s/( − ′) Δ as the propagation distance sΔ
vanishes. Although kink cannot be easily computed, its value is constant for s hfΔ ⪢ and vanishes for s 0Δ = as the kink
vanishes as well. As a first approximation, we assume that kink reaches its asymptotic value as the crack propagates by a
distance on the order of a thickness hf. We thus estimate the derivative as s eh/ sinfkink δγ θΔ ∼ , when sΔ vanishes.

We finally deduce the energy released rate for the propagation of cracks in the direction θ:

d
ds

e
d
ds

e
d W

dW
dW
ds

eh eh2 2 sin .r
f fγ δγ θ= − ( ) + +

If we input in this last equation the geometrical relations dA Wdscosθ= and dW ds2 sinθ= and the expression for W( )
determined in Eq. (5), we obtain

d
ds

e W h W hcos 2 2 2 sin , 6
r

f fθ γ α β θ= [ + − ( − ′ ) ] ( )

with β β δγ′ = + . Following Griffith criterion, the cracks propagate simultaneously with the delamination front if this elastic
energy release rate balances the fracture energy of the two cracks h2 c fΓ plus the delamination energy WcosiΓ θ . The condition
for propagation is therefore

e W h W h W hcos 2 2 2 sin cos 2 7f f i c fθ γ α β θ Γ θ Γ[ + − ( − ′ ) ] = + ( )

Note that we only need to determine the direction of propagation of the fracture in the film, since the interfacial delami-
nation front is forced to follow the weak interface. In this case, we use a general version of the criterion of maximum energy
release rate: the direction of propagation is the one that maximizes the difference of elastic energy release rate with the
dissipation rate (Chambolle et al., 2009; Cotterell and Rice, 1980). The direction of propagation is thus set by

d ds W h/ cos 2 / 0r i c fΓ θ Γ θ∂( − − ) ∂ = , which leads to

eW e W h Wsin 2 2 cos sin 8f iθ α β θ Γ θ+ ( − ′ ) = ( )

If we combine Eqs. (7) and (8), we finally obtain

e W e h2 cos 9i c fΓ Γ γ θ( − ) = ( − ) ( )

e
e

W hsin 2 /
10c

fθ
Γ γ

α β= −
−

( − ′)
( )

This last relation shows that the propagation is straight ( 0θ = ) only for a given distance width W W2= , where

W h
2

, 11f2
β
α

=
′

( )

This width is stable as the sign of θ compensates the deviation from W2. Indeed, if W is larger than W2, the propagation
angle is negative and both cracks move inwards. Conversely, if W is smaller than W2, the propagation angle is positive and
the two fractures move outwards. Since both prefactors α and β′ are only set by elasticity, independent of the fracture
energy and the loading of the film, the expected width should be robust, in agreement with our experimental observations.
The parameter δ is difficult to compute exactly and we arbitrarily take 0.76β′ = , which corresponds to the width W h/ 15f2 ∼
obtained in the numerical study of the stress intensity factor. This value corresponds to 0.4δγ = which is compatible with
our order of magnitude estimate 0.18δγ ∼ .

4.3. Convergence length

In the previous section, we have shown that the selected width W2 was stable, which leads to uniform strips. Indeed, if
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the initial width of the strip W differs from W2, Eq. (10) predicts a convergence of W towards W2. Such a rapid convergence
towards the optimal width is a robust characteristic observed in the experiments (Fig. 3b and c). When the fracture is
deviated by a defect in the film, it effectively quickly goes back to the optimal width. We wish here to estimate the char-
acteristic length scale of this convergence.

We assume that the energy estimates in (5) are valid for strips with slowly varying width, so that Eqs. (10) and (9) are
still valid. If we introduce dW dssin /1

2
θ = in Eq. (10), we obtain

dW
ds

W W
1

,
122ξ

= ( − )
( )

which leads to an exponential convergence from W to W2 over the characteristic length ξ given by

e
e

h
4

. 13
c

fξ
Γ γ

α
=

−
( )

As e e/2cΓ γ( − ) is of the order of unity in our experiments, as well as the parameter β′, which leads to W2ξ ∼ . Experimentally,
we effectively observed typical convergence lengths of the order of W2 (Fig. 3b and c).

As a conclusion, although our analytical approach is approximate, it provides a physical interpretation for the robust
selection of a particular strip width W2. Three main physical ingredients indeed dictate the value of W2, the surface and line
effects due to the boundary layer at the attached end of the strip and the effect of a curvature of the crack path. Moreover
this analytical approach predicts how W2 acts as a function of elastic properties of the film. In the next section we will focus
on the case of a substrate of finite stiffness and show how the analytical approach is also relevant in this situation.
5. Influence of the Poisson coefficient and of the finite rigidity of the substrate for a quantitative comparison with
experiments

In the previous sections, the substrate was assumed to be infinitely rigid. However, thin sublayers were used in the
experiments to modify adhesion properties. In order to compare quantitatively our experimental data with our theoretical
predictions, we study in this section the influence of the substrate rigidity and more generally of the material properties of
the coating in the selection of the optimal width. This quantitative study is important to determine the conditions of
stability of the coatings.
a b

c d

Fig. 8. (a) Numerical computation of the average shear loading k k/II I along fracture front of a delaminating strip, normalized by opening mode, as a
function of strip width W, for different Poisson coefficients of the thin film ( 0, 0.125, 0.25, 0.375, 0.5fν = ). (b) The corresponding equilibrium strip width
W2 (for which k 0II = ) slightly increases with νf, as captured by the prediction of the physical model in black continuous line (W h/ 1 /2 1f f f2 ν β ν α= ( + ) ¯′ ( − ) ¯)
with 0.32β β¯′ = ¯ + . (c, d) Numerical computation of parameters α and β for our physical model as a function of νf, compared to (black continuous line)
prediction 1 fα ν α= ( − ) ¯ . (c) Numerical computation of parameter β compares well with theoretical prediction in black line 1 fβ ν β= ( + ) ¯ (d).
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5.1. Influence of the Poisson ratio of the coating

In the case of an infinitely rigid substrate, the selected width W2 was found to be independent of the Young modulus of
the coating. However W2 is a function of the Poisson ratio and we investigate this dependence in the following section.

We first extend our numerical study of stress intensity factors developed in Section 3.2 for a coating with a Poisson
coefficient νf between 0 and 0.5. We plot in Fig. 8a the corresponding ratio kII as a function of the adimensionalized width
W h/ f . In the whole range of Poisson coefficient, kII vanishes for a given width W2, which corresponds to a stable self-peeling
strip. We find that W2 slightly increases with νf ranging from W h10 f2 = for 0fν = to W h25 f2 = for 0.5fν = (Fig. 8b).

Our physical model constitutes a useful tool to interpret this dependence of W2 with νf. Indeed, following Eq. (11), we
only need to determine the evolution of the numerical factors fα ν( ) and fβ ν′( ) with the Poisson coefficient. The layer is
initially subjected to equibiaxial residual stress s0, which results into a density of elastic energy per unit area
e h E1 /f f f0

2σ ν= ( − ) . If stresses in one direction are relaxed (e.g. 0yyσ = ) while strains in the other direction are maintained
(e.g. xx 0ϵ = ϵ ), the energy per unit surface becomes h E e1 /2 1 /2f f f f0

2 2σ ν ν( − ) = ( − ) . This simple result provides a prediction for
the variation of the coefficients ( , ,α β γ) with νf. Indeed, the delaminated strip relaxes freely in the x and y directions,
excepted in the vicinity of the delamination where strains in the y direction are not relaxed (Fig. 6c). In this region the
remaining energy density (or in other words, the deficit in elastic energy released relative to a free strip) is thus proportional
to e 1 /2fν( − ) , which leads to a dependence of α with νf:

1 , 14fα ν α= ( − ) ¯ ( )

where ᾱ is a universal constant independent of material properties. The same situation occurs in the region of the bonded
film in the vicinity of the debonding front (stresses are partially relaxed in the x direction by shear, but not in the y
direction). The density of elastic energy released by tilting the strip is thus proportional to the difference e e 1 /2fν− ( − ) ,
which now leads to a dependence of β with νf in the form

1 , 15fβ ν β= ( + ) ¯ ( )

where β̄ is also a universal constant. The same argument applied in the region of the kink finally leads to a similar result
1 fγ ν γ= ( + )¯, where γ̄ is again a universal constant. If we combine both effects, we finally obtain for the coefficient β′:

1 16fβ ν β′ = ( + ) ¯′ ( )

Both coefficients α and β are determined by fitting the elastic energy of the strip W L e eh, / fstrip
2( ( ) − ) obtained through

finite element simulations with a quadratic function W h W h c/ /f f
2α β− ( ) + ( ) + . We plot in Fig. 8c and d the variation of α and

β for different values of νf ranging from 0 to 0.5. This evolution is in good agreement with Eqs. (14) and (15), fromwhich we
extract the constants 0.0349ᾱ = , 0.306β̄ = . Introducing Eqs. (14) and (16) into Eq. (11), finally leads to the dependence of
the selected width with the Poisson coefficient:

W
h

1

2 1
.

17f

f

f

2 ν β
ν α

=
( + ) ¯′
( − ) ¯ ( )

This relation is in good agreement with the evolution of the width determined directly from the computation of stress
intensity factors. In this fit we have corrected 0.32β β¯′ = ¯ + using the value previously determined in Section 5.1 with

/ 1 fδγ δγ ν¯ = ( + ). As a conclusion, although our physical approach is approximate, it brings quantitative prediction of the
influence of the Poisson coefficient on the selected width. In this section the substrate was still considered as infinitely rigid.
In the following section we study influence of the finite rigidity of the substrate.

5.2. Influence of a sublayer and quantitative comparison with experiments

We now consider the effect of the finite stiffness of the substrate. In actual experiments we used a sublayer of silicate in
order to tune the adhesion properties of the coating. We define as hsc, Esc and νsc the thickness, the Young modulus and the
Poisson coefficient of the sublayer respectively. Note that in the limit of thick sublayer, the effect of the underlying substrate
is screened, and the problem is equivalent to a film deposited on an elastic substrate. We assume that the presence of the
sublayer does not change qualitatively the physics of the selection of the width, but modifies the quantitative value of W2. In
terms of independent parameters, the width selected in the duos of crack (Eq. (5)) will now depend on the ratio of Young
moduli of the film and the sublayer, the Poisson coefficients of the film and the sublayer and the ratio of the thickness of the
film and the sublayer. Dimensional analysis shows that this dependence can be rewritten into W h E E h h/ / , , , /f sc f f sc sc f2 ν ν= ( ).
In the following sections, we first predict the selection of the width selection directly using the principle of local symmetry
on stress intensity factors determined numerically. We then interpret these results with our physical model, before com-
paring quantitatively these theoretical predictions with our experiments.

5.2.1. Influence of the rigidity and the thickness of a sublayer
We first conduct finite element calculations for fixed Poisson coefficients 0.25f scν ν= = . We determine the equilibrium
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Fig. 9. (a) The optimal width (predicted through the numerical calculation of stress intensity factors) as a function of the sublayer to layer thickness ratio
h h/sc f , for different rigidity ratios E E/sc f . (b) and (c) Respective evolution of the coefficient α and β as a function of the sublayer thickness for E E/ 10sc f = and
1.
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width from the estimation of stress intensity factors and the principle of local symmetry. We present in Fig. 9a W h/ f2 as a
function of the thickness ratio h h/sc f , for different ratios of Young moduli E E/sc f . Note that h 0sc = corresponds to the cal-
culation presented in Section 3.2 for a thin film directly coated on a rigid substrate, where we found W h/ 15.1f2 = . The
different curves thus start from this reference value. Coating the substrate with a sublayer more rigid that the film almost
does not affect the selection of the width. Nevertheless, W2 increases significantly with hsc if the sublayer is less rigid than
the film. More generally, increasing the compliance of the sublayer results into wider strips. This variation eventually
reaches a plateau value for a typical thickness ratio that also increases as the ratio E E/sc f decreases.

5.2.2. Interpretation with the physical model
We emphasize that the phenomenological model described in Section 4 provides physical understanding on the nu-

merical calculation of stress intensity factors. We indeed found that the steady width mainly results from a balance between
a surface and a line effect in the vicinity of the delamination front. Both effects depend differently on the properties of the
sublayer. We expect the distribution of stresses in the delaminated strip to be independent of the elastic properties of the
a b

Fig. 10. (a) Comparison of the steady strip width W2 computed numerically (colored lines for different conditions) with our experimental data. (b) New
stability condition for a thin coating in the plane e e/ , /c i

0 0γ Γ Γ( ), where e is the available residual elastic energy in the coating per unit surface, Γc
0
and Γi

0
the

fracture and adhesion energy respectively, and γ a numerical prefactor that depends on the mismatch of material properties between the substrate and the
coating. The x-axis corresponds to the comparison of the residual energy density to the interfacial energy, whereas the y-axis compares residual elasticity
to the material toughness. Isolated channel cracks occur above the line e2 / 1c

0γ Γ( = ), delamination is energetically possible on the right of vertical line
e/ 1i

0Γ = , but only between free edges which require preliminary fractures. The propagation of crack duos (for E Ef sc= , 0.25fν = and h hf sc= ) is possible
above the red curve. Open squares represent experimental observation of channel crack without delamination, filled squares with delamination, and filled
circles correspond to the delaminated strip studied here. (For interpretation of the references to color in this figure caption, the reader is referred to the
web version of this paper.)
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foundation. This independence is confirmed in Fig. 9b where the calculated parameter α is shown to be almost independent
of thicknesses ratio h h/sc f and Young moduli ratio (E E/ 1sc f = and 10).

Conversely, we expect the coefficient β to strongly depend on the properties of the elastic foundation. We indeed dis-
cussed in Section 4.1.2 the similitude of the line effect (resulting from the tilting of the strip) with the energy released by the
propagation of a standard isolated channel crack. In this last case, the energy release is characterized by the parameter γ
whose dependence on material properties of the substrate has been thoroughly studied by Beuth (1992). We plot in Fig. 9c
the variation of β with the ratio h h/sc f for to ratios of Young moduli, which confirms this dependence: larger release is
obtained on more compliant substrate. A constant parameter α together with β increasing with substrate compliance finally
explains why the strip width W h/ f2 (predicted as /2β α) in Fig. 9a is larger on more compliant and on deeper sublayer.

5.2.3. Quantitative comparison with experiments
In our experiments the adhesion energy was tuned by depositing a sublayer on the surface of the substrate (this sublayer

was thin enough to remain stable with respect to fracture). We performed experiments with different values of hf to probe
the linear relation between the width of the strip and its thickness that was predicted theoretically (Eq. (11)). The ex-
perimental data are fairly well described by a linear relation W h25 f2 = (Fig. 3d). However, the thickness of the sublayer was
held close to a fixed value (h 1 msc = μ ) and the ratio h h/sc f (ranging from 0.15 to 2) was not constant for these experiments.
Moreover, the elastic properties of the layer and sublayer slightly differ for the different coatings (E E/sc f ranging from 0.5 to
10). As a consequence, we do not expect the ratioW h/ f2 to be rigorously constant. We thus compare the experimental data to
theoretical predictions for two extreme cases (h hsc f= , E E2 sc f= ) and (h h0.25sc f= , E Esc f= ). These numerical predictions and
in particular the intermediate case (h hsc f= , E Esc f= ) are consistent with the experimental measurements (Fig. 10a). We
finally observe that the adhesion energy (represented in color scale) does not modify the width of the strip, as predicted in
our model.

5.3. Stability diagram

In the standard description of thin films two modes of failure were classically presented. Straight isolated channel cracks
can indeed propagate if the energy release rate e2γ exceeds the fracture energy Γc

0
. They for instance lead to the hierarchical

pattern observed in old paintings. Delamination can also occur when the energy release rate e exceeds the adhesion energy
Γi

0
. However, delamination requires free edges to initiate. In practice, this failure mode usually follows the propagation of

channel cracks (Pauchard, 2006; Lazarus and Pauchard, 2011). Both modes are described by straight boundaries in a stability
diagram displaying e/ c

0γ Γ vs. e/ i
0Γ (Fig. 10b).

However, the new collaborative mode of failure we have described may also propagate below the critical residual stress
required for the propagation of isolated channel cracks. This mode is experimentally observed in the case of moderate
adhesion and leads to the formation of patterns characterized by a robust width (Marthelot et al., 2014). We have described
this width in the case of parallel strips and Eq. (4) derived from Griffith's energy balance provides a condition for the
propagation of such cracks. This new boundary corresponding to E Ef sc= , 0.25fν = and h hf sc= is plotted in Fig. 10b as a red
curve. In agreement with our experimental data, this boundary is significantly below the boundary for isolated channel
cracks as e becomes slightly larger than Γi

0
.

Several failure modes compete in the sector of the diagram where e i
0Γ> and e /2c

0Γ γ> . Complex fracture patterns such
as spiral and oscillatory paths resulting from “follower cracks” can indeed be observed (Marthelot et al., 2014) in addition to
the duos described in the present study or to the more classical channel cracks followed by delamination (Fig. 1). The
selection between these different mechanisms certainly relies on the propagation dynamics of fracture and delamination
and remains a challenging problem. We hope that this open question will motivate further investigations.
6. Conclusion

Recent studies have put in evidence a novel mode of failure of thin films, involving the collaboration between fracture
and delamination (Marthelot et al., 2014). This mode leads to various patterns displaying a characteristic width curiously
robust (Sendova and Willis, 2003; Meyer et al., 2004; Lebental, 2007; Wan et al., 2009; Wu et al., 2013). The present study
focuses on a novel fracture pattern that is crucial for the understanding of fracture propagation in the presence of dela-
mination: a pair of parallel cracks connected by a straight delamination front that propagates simultaneously and leads to
the detachment of strips with a steady width.

We started by a quantitative description of our experimental observations conducted with a model system based on a
standard sol–gel coating process. We then interpreted and predicted the stable width observed in the experiments through
two complementary approaches. We first used the principle of local symmetry based on numerical computations of stress
intensity factors. In addition to this numerical method, we developed a physical model involving analytical estimations of
the elastic energy. Both approaches lead to a steady width, which is only determined by the elastic properties of the film
(and the mismatch with the mechanical properties of the substrate). Strikingly, this width is independent of fracture and
delamination energies.

This robust strip width can be interpreted through the physical model as a balance between surface and line effects in
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the vicinity of the delamination front. Indeed, boundary conditions limit the relaxation of the residual stress in the strip
while tilting the strip releases some additional elastic energy. This model also provides an interesting prediction for the
evolution of the strip width as a function of Poisson ratio of the film, and as a function of substrate compliance which are
confirmed by numerical computation of stress intensity factors.

Although our study is limited to strip patterns, our approach could in principle be extended to more complex geometries
such as spirals or alleys that are also observed in experiments. However, computing stress intensity factors would be more
difficult since the direction of the delamination front would have to be determined as well. Conversely, the physical model,
although approximate, still brings some insights (Marthelot et al., 2014). This collaborative mode of failure is still far from
being comprehensively explored. In particular, a better description of the dynamics is necessary to predict the selection of
the failure mode. We nevertheless hope that our different approaches will open further investigations into more complex
configurations. For instance, the phenomenon reported here could be captured by a numerical implementation of a damage
model for a simplified system (Baldelli et al., 2013, 2014) involving both fracture and delamination.
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