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Popliteal rippling of layered elastic tubes and scrolls
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PACS. 46.32.+x – Static buckling and instability.
PACS. 81.07.De – Nanotubes.
PACS. 47.54.+r – Pattern selection; pattern formation.

Abstract. – Motivated by the periodic ripples observed in bent multi-walled nanotubes, we
use macroscopic ideas to derive geometric scaling laws for the wavelength and amplitude of
ripples in elastic scrolls and multi-walled tubes. Remarkably, our predictions are essentially
independent of material properties, and thus have a range of validity varying from the atomic
to the macroscopic even for relatively large deformations. We verify this using experimental
data that vary over six orders of magnitude in length, ranging from millimeters to nanometers
obtained using materials as disparate as rubber and graphite.

The mechanical response of a slender strut or a tube is very different from the bulk re-
sponse of the same material, owing primarily to the geometric separation of scales inherent
in the structure. This makes the structure relatively flexible and capable of large elastic de-
formations, a fact that is at the heart of many new material systems. The scale of these soft
modes of deformation, such as bending and twisting, is typically determined by a combina-
tion of material and geometric properties and gives rise to all manner of instabilities classified
under the general rubric of buckling. Understanding the response of the structures beyond
the onset of these instabilities is typically made difficult by the combination of geometric and
material nonlinearities. However, for small structures as well for those made of soft materials,
a reasonable description of the large-deformation behavior requires a consideration of just the
geometric nonlinearities, thus making the problem more tractable. In this letter, we treat
a class of such systems motivated by the nonlinear mechanical response of layered tubular
structures, and show that our geometric scaling laws are consistent with experimental data
gathered from phenomena separated by six orders of magnitude in scale.

In fig. 1(a), we see the rippling instability of a bent multi-walled carbon nanotube, where
the finite-amplitude periodic ripples have a wavelength that is much larger than the thickness
of a single layer, itself a fraction of a nanometer. These deformations are not unique to the
nano-world; when a rubber macrotube made by rolling a thin sheet of rubber into a scroll
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Fig. 1 – The geometric similarities in the rippling of a bent (a) multi-walled carbon nanotube (from [1])
and (b) rubber macrotube suggest that a single theory can explain both. (c) A schematic of the ripples
showing our notation.

is bent (fig. 1(b)), we see a similar rippling instability. However, there are two putative
qualitative differences between the systems due to this large disparity in scale that we must
address first: the effect of thermal fluctuations and the role of short-range forces, both of
which could be important for nanotubes. The persistence length of single-wall nanotubes is
of the order of meters, and that for multi-walled tubes is even larger, so that thermal effects
can be safely neglected in an equilibrium theory. As for the role of short-range forces, their
dominant effect is to prevent the inter-penetration of the layers. In the macrotubes, the
presence of layers serves the same purpose. Therefore, a single theory can possibly explain
both despite the very large disparity in length scales which separate the two phenomena. This
hope is bolstered by the fact that experiments on nanotubes [1] and rubber tubes show that
the rippling is completely reversible and elastic. In this letter we show that a simple elastic
theory that assumes that the strains are small so that the material response is linear and
isotropic in each layer [2] but accounts for geometrical nonlinearities suffices to explain these
observations quantitatively.

We first give a physical argument for the formation of the popliteal (ham of the knee)
ripples in multi-walled tubes. If a long single-walled tube of length L, circular cross-section
with external radius R and thickness t � R < L is bent into an arc of a circle with curvature
κ, the cross-section first ovalizes into the Brazier mode [3]. When the curvature exceeds a
critical value, the tube collapses about a knee formed by a sharp ridge connecting two kinks,
just like a bent drinking straw [4, 5]. This phenomenon reflects the very large energetic cost
of stretching a thin sheet compared to bending it [6]; the ridge allows the shell to respond
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by bending almost everywhere except in a small region in the neighborhood of the kinks and
the ridge, where large localized deformations arise. In a multi-walled tube, the single sharp
ridge is replaced by gentle periodic undulations in the popliteal region. Because the layers are
relatively free to slide over each other in the rubber scrolls and multi-walled nanotubes, the
steric effect due to the inner walls prevents the Brazier mode of buckling which favors long-
wavelength deformations. Instead, the layers are forced to accommodate the geometrically
imposed compressive strain due to tube bending by rippling with a relatively short wavelength;
this is particularly true when the number of walls is large, and the small hollow core has a
negligible effect. The competition between single-layer bending, which favors long-wavelength
deformations, and the elastic foundation provided by the multiple layers, which favors short-
wavelength deformation, leads to the selection of an intermediate scale of rippling, just as in
beam buckling on an elastic foundation [6] or in the wrinkling of skin [7].

We now quantify this physical argument using the schematic in fig. 1(c). If a ripple of
wavelength λ leads to a radial displacement of the outer wall of the tube with amplitude A,
the typical curvature of the ripple scales as A/λ2. Note that here we have assumed that the
curvature of the ripples is much larger than that of the bent tube, so that we can neglect the
fact that A/λ2 is really the excess curvature over and above that induced by the bending of
the tube [8]. Then we may write the elastic bending energy density per layer per unit area as

UB ∼ Et3κ2 ∼ Et3A2/λ4, (1)

where E is Young’s modulus of the material and the bending stiffness of a single layer scales
as Et3 [6]. Because the tube walls are curved, the small-scale radial rippling also causes
circumferential stretching of the layers in the popliteal region to accommodate the compressive
strain induced by the macroscopic bending of the tube. This stretching strain is of order A/R
and varies linearly away from the neutral axis of bending. Then the stretching strain energy
density per layer (per unit area) is

US ∼ EtA2/R2. (2)

Although the rippling causes the layers to stretch in the circumferential direction, in the
axial direction the layers bend approximately inextensibly. This is a consequence of the
high energetic cost of stretching; the layers will always respond inextensibly as long as the
geometric constraints and boundary conditions allow it. The initial circumferential curvature
of the tube 1/R leads to layer stretching when ripples are formed since the ripples change the
local radius of the tube; here the constraints prohibit inextensional deformations. However, in
the axial direction, there is no initial curvature, so that bending can be and is accomplished
approximately inextensibly. For a single ripple on the outer layer, the externally imposed
curvature κ leads to a compressive strain of order Rκ. Since this is accommodated by bending
the layer out of the plane, the axial inextensibility condition written in terms of Pythagoras’
theorem for a single wave yields [λ(1− Rκ)]2 + A2 ≈ λ2, which simplifies to

A2/λ2 ≈ Rκ. (3)

This constraint makes our theory nonlinear from the outset because the amplitude and
wavelength of the ripples are related to each other. Substituting (3) into the expressions above
for UB and US, we can write the total energy density as

U = UB + US ∼ EtRκ

(
t2

λ2
+

λ2

R2

)
. (4)
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Integrating the energy in (4) over the (constant) area of a layer, and minimizing U with respect
to λ, leads to a scaling law for the wavelength

λ ∼ (Rt)1/2. (5)

Using (5) in the inextensibility constraint (3) leads to a scaling law for the maximum ripple
amplitude

A ∼ R(tκ)1/2. (6)

We observe that the wavelength is essentially independent of the material properties [9] and
is also independent of the applied strain/loading. On the other hand, the amplitude is in-
dependent of the material properties but is dependent on the externally induced curvature
κ. Our scaling laws fall within the scope of a recent general theory of wrinkling [7] with one
crucial difference; the layered cylindrical geometry here leads to the surprising independence
of the wavelength on all but the system geometry.

We now sketch the main steps of a slightly more involved analysis that allows us to obtain
the prefactors for the above scaling laws. In terms of cylindrical polar coordinates (r, θ, x), the
radial displacement of the ripples in a single layer is u(r, θ, x), the curvature due to rippling
is κr = ∂2u/∂x2, while the circumferential stretching strain is γr = u/r. These strains yield
the dominant contributions [10] to the total energy density due to bending and stretching in
a sheet of thickness t, modulus E and Poisson ratio ν and lead to [6]

U = UB + US ≈ Et3

24(1− ν2)
κ2

r +
1
2
Etγ2

r . (7)

Since the ripples form as a consequence of the macroscopically imposed curvature of the tube
κ, the constraint of axial inextensibility for a layer in the popliteal region reads

L =
∫ 2π/k

0

[
1
2

(
∂u

∂x

)2

−∆(κ)
]
dx = 0, (8)

where k = 2π/λ is the wave number of the ripples, and ∆(κ) ≈ rκ sin θ. Then, the wavelength
and amplitude of the ripples are given by minimizing the functional

∫
(UB+US)da−ΛL, where

Λ is a Lagrange multiplier that imposes the inextensibility constraint (8). To be consistent
with bending of the tube, the solution of the (linear) Euler-Lagrange equation must have
the form u(r, θ, x) = A sin kx sin θ, θ ∈ [0, π] in the popliteal region, with the amplitude A
and wave number k related via the inextensibility constraint (8). Plugging in this form for
u(r, θ, x) into the energy density in (7), integrating over the layer area and minimizing with
respect to k yields

k2 =

[
12(1− ν2)

]1/2

tr
. (9)

For rubber, ν ≈ 0.5, so that the wavelength of the ripples on the outer layer where r = R is

λ =
2π√
3
(tR)1/2 ≈ 3.6(tR)1/2. (10)

The amplitude is determined by satisfying the axial inextensibility constraint in an integrated
sense [11], and yields

A ≈ 2
π3/2

λ(κR)1/2 ≈ 1.3R(tκ)1/2. (11)
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Fig. 2 – When the voluted rubber scroll is compressed axially, a rippling pattern similar to the one
in fig. 1 appears. A calculation similar to the one in the text then leads to the following expressions:
λ = 2π(tR)1/2/

√
3 ≈ 3.6(tR)1/2, A = λ(κR)1/2/π1/2 ≈ 1.46R(tκ)1/2, and yields results in agreement

with observations. The small difference in the amplitude from the result for the bent tubes arises
from the difference in the strain distribution in the two cases; however, the wavelength remains the
same. We note that this configuration is energetically unstable for isolated thin cylindrical shells
which prefer to buckle into an almost inextensible surface patterned by diamond-like buckles; here
however, the multi-layered structure stabilizes the axisymmetric state.

Although the wavelength we predict is the same as that for the onset of axisymmetric buckling
of a cylindrical shell [12], since our theory is nonlinear from the onset, this is fortituous.
Furthermore, the classical result of axisymmetric buckling of a thin shell corresponds to a
physically unstable situation; thin single-walled cylinders prefer to buckle into a diamond-
like pattern instead of the axisymmetric shape because the latter, which involves a lot of
stretching, is energetically very expensive [5]. Here, it is the presence of the multiple layers
that stabilizes the axisymmetric shapes. Indeed, we can see this by axially compressing the
multi-layered scroll, as shown in fig. 2. An even simpler qualitative experiment emphasizes
the role of the inner layers: when a single layer of rubber is wrapped around a solid tube
which is then bent, we also see the characteristic rippling instability [13].

When the number of walls n � 1, the inner radius of the tube is much smaller than the
outer radius and R ≈ nt. Substituting this into (10), (11) yields

λ ≈ 3.6n1/2t, A ≈ 1.3nt3/2κ1/2. (12)

These scaling laws show how one can generate large length scales in terms of small ones in
these systems. The validity of (10), (11) is based implicitly on the assumption of a wide
separation of the geometric scales which allows us to consider just the leading-order bending,
stretching and inextensibility effects. A quick check shows that since t � A � λ � R � L,
the requirement is satisfied. Although the above analyses focused on just the outer layer, the
inner layers located at a distance r from the neutral axis of the tube should behave in exactly
the same way, with λ ∼ (rt)1/2; A ∼ r(tκ)1/2. However, as can be seen in fig. 1(b), there is
a reduction in the amplitude and a flattening of the layers towards the neutral axis due to
the effects of the small but finite compressibility of the layers, so that the variations in the
wavelength are masked.

To verify our predictions, we rolled macroscopic rubber sheets of varying thicknesses into
tubes with a negligibly small core and bent the resulting scrolled tubes into arcs of circles
of varying curvature κ. Figure 3(a) shows that the millimeter range wavelength of the rip-
pled rubber tubes and the nanometer range wavelength of the rippled nanotubes [1, 14–16]
follow (5), i.e. the wavelength is determined primarily by geometry, is independent of κ and
is essentially independent of the material properties. The inset in fig. 3(a) shows that the
ripples in nanotubes are only slightly longer (in a dimensionless sense, following (10)) than
the ripples in rubber tubes. This is probably due to the weak short-range interaction between
graphite sheets which increases the effective-layer bending stiffness. In fig. 3(b) the measured
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Fig. 3 – Wavelength and amplitude of the rippling patterns. (a) The wavelength of the ripples obeys
the predicted scaling law for phenomena separated by six orders of magnitude; the solid line is given
by λ = 3.6(tR)1/2 (10). In the inset the same data is plotted in dimensionless form following (12)
and shows that the wavelength of the nanotube ripples is slightly larger than that of the macrotube
ripples, consistent with the slight increase in the layer bending stiffness for nanotubes because of
a smaller Poisson ratio and the weak interaction between layers. The scatter in the experimental
data for small n arises since the tubes sometimes kink via the Brazier buckling mode [3] instead of
rippling. (b) The amplitude of the ripples for the macrotubes and the few nanotubes for which this
data is available also falls on the theoretical line A = 1.3R(tκ)1/2 (11). The inset shows the same
data plotted in dimensionless form following (12). The nanotube data was obtained from [1,14–16].

amplitude of the ripples is seen to follow the law (11), confirming the validity of our theory
for finite deformations.

Our analysis illuminates the geometric mechanisms which generate mesoscopic length
scales from atomic ones, in sharp contrast to the computational [17–20] approaches to these
problems using atomistic and continuum ideas which depend on the detailed interactions in
each system. Consideration of the microscopic physics reveals differences between the nan-
otubes and rubber tubes; in the former the attractive short-range van der Waals forces couples
the deformations of individual layers, while in the latter the frictional interaction between lay-
ers plays a similar role. In particular, this leads to an asymmetry in the crests and the troughs
of the ripples, seen in the nano and macro scrolls which arises due to the fact that there is
a large but finite compressibility of the multi-layer scroll. However, the primary role of the
multi-layered geometry is to induce an effective anisotropy in the system via the steric hin-
drance that prevents very long-wavelength deformations, but nevertheless allows the layers to
slide over each other relatively easily allowing us to treat each single layer separately. This is
reminiscent of liquid-crystal systems such as smectics [21], although a crucial difference is the
ability of each layer in our purely elastic system to resist shear deformations, something that
the individual smectic layers cannot do owing to their in-plane fluid-like behavior. Indeed, the
analogy to smectics may be carried further. The competition between bending and layer com-
pression leads to a characteristic length scale of localization that scales as (Et2/K)1/2, where
K is the compression modulus of the multi-layer; this describes the crest-trough asymmetry
and depends on the short-range repulsive nature of the van der Waals force for nanotubes,
and the looseness of the packing for the rubber tubes, although the details of this are best
left for another study.

The independence of the rippling pattern on material properties is indicative of the gener-
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ality of our theory, which depends on the effective anisotropy of the system generated by the
layered structure. Thus, we can expect to see similar patterns in elastomeric liquid-crystalline
systems that are solid-like in the plane in such cases as smectic layers, micellar onion phases
and layered focal conics. On a completely different scale, we should also expect to see this
rippled phase in macroscopic systems such as the kinking of timber [22] which is a layered
cylindrical structure, and in geological formations that are often layered. Indeed, our the-
ory might perhaps explain even the wrinkling of an elephant’s trunk, suggesting the epithet
“Ganesha” instability after the mythical elephant god from India!
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