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This paper discusses the breakup of capillary jets of dilute polymer solutions and the
dynamics associated with the transition from dripping to jetting. High-speed digital
video imaging reveals a new scenario of transition and breakup via periodic growth
and detachment of large terminal drops. The underlying mechanism is discussed and
a basic theory for the mechanism of breakup is also presented. The dynamics of
the terminal drop growth and trajectory prove to be governed primarily by mass
and momentum balances involving capillary, gravity and inertial forces, whilst the
drop detachment event is controlled by the kinetics of the thinning process in the
viscoelastic ligaments that connect the drops. This thinning process of the ligaments
that are subjected to a constant axial force is driven by surface tension and resisted
by the viscoelasticity of the dissolved polymeric molecules. Analysis of this transition
provides a new experimental method to probe the rheological properties of solutions
when minute concentrations of macromolecules have been added.

1. Gobbling: introduction and physical picture
A peculiar and apparently new pattern of breakup has been observed in experiments

with jets of dilute polymer solutions at flow rates close to the critical rates
corresponding to a transition from dripping to jetting flow. In this regime, a thin
and slender jet terminates with a large terminal drop that is of much greater radius
than either the nozzle or the drops usually observed in the course of normal capillary
breakup of a Newtonian fluid jet. A representative sequence of digital images is
shown in figure 1. Although the jet is apparently in a steady-state, the terminal drop
experiences periodic dynamics. The drop first grows while slowly moving upstream,
the direction of motion eventually reverses, the drop then accelerates, becomes much
wider than the incoming jet, and eventually detaches. A new terminal drop then forms
and the process repeats itself.

As a result of capillary instabilities, the primary jet starts to develop the beads-
on-string pattern characteristic of polymeric jets (Goldin et al. 1969; Entov & Yarin
1984; Bousfield et al. 1986; Bazilevskii et al. 1990b) before merging with the terminal
drop. Therefore, the process resembles the ‘gobbling’ (‘to gobble – to swallow greedily
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1 mm

Figure 1. The ‘gobbling’ phenomenon: a large terminal drop periodically develops at the end
of a thin jet of a viscoelastic fluid (100 ppm PAA solution, Q = 39.7 mm3 s−1, Ri = 0.125 mm).
A sequence of video images is shown; the time interval between consecutive images is 6 ms.

or hastily in large pieces; gulp’: American College Standard Reference Dictionary)
of a chain of tiny beads by a greedy terminal drop, until it is ‘sated’ or ‘saturated’
and falls off. In some cases, the terminal drop can ‘swallow’ up to several scores of
beads before detachment. A movie of the gobbling phenomenon can be found at
http://web.mit.edu/clasen/Public/gobbling.avi.

The ‘gobbling’ phenomenon is specific to macromolecular solutions and is never
observed in experiments with jets of pure water or other Newtonian fluids. However,
even minute amounts of polymeric additive bring it into existence. If one focuses on
the central axial column, it is clear that the primary role of the polymeric additive is
to stabilize the later stages of the capillary thinning process and severely retard the
inertial breakup of the fluid column (Christanti & Walker 2001; Amarouchene et al.
2001; Tirtaatmadja, McKinley & Cooper-White 2006). This stabilization then enables
us to image the temporal evolution and axial development of a beads-on-a-string
morphology along the jet. Somewhat analogous bead dynamics can be seen even with
Newtonian fluids when a thin annular film of viscous fluid is coated on a solid fibre
(as described originally by Boys 1912 and studied in detail by Kliakhandler, Davis
& Bankoff 2001; Craster, Matar & Papageorgiou 2005 and references therein). In
the present case the rigid central fibre is replaced by the highly elongated polymer
molecules in the thin viscoelastic ligaments connecting the drops .

The dramatic effects of dilute amounts of high-molecular-weight additives on
the breakup of aqueous fluid filaments is well known and has been extensively
studied since the pioneering work of Middleman (1965) and Goldin et al. (1969).
The hydrodynamic consequences of small amounts of polymeric additives can be
rationalized in terms of the unravelling and extension of the initially coiled polymeric
molecules by strong extensional flows (Entov & Yarin 1984; Bazilevskii et al. 1990b;
Anna & McKinley 2001; Clasen et al. 2006b). In the case of steady jets issuing from
a nozzle at high flow rates, significant elastic stresses can be generated (even for
dilute polymer solutions) which affect the breakup length of the jet and the ensuing
droplet size distribution (Bousfield et al. 1986; Christanti & Walker 2001). In the
case of dripping from a faucet at very low flow rates, the presence of even dilute
concentrations of polymer can dramatically extend the time to pinch off and inhibit
the existence of satellite droplets (Amarouchene et al. 2001; Tirtaatmadja et al. 2006;
Sattler, Wagner & Eggers 2008). In each case, the large elongational viscosity of the
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highly stretched macromolecules results in a change in the local dominant balance of
forces in the local necking region (see McKinley 2005 for a recent review). What has
been much less studied is the role of a polymeric additive at the critical flow rates
close to the jetting–dripping transition. Even in a Newtonian fluid this transition can
exhibit complex or chaotic dynamics (see, for example, Ambravaneswaran et al. 2004;
Coullet, Mahadevan & Riera 2005; Sauter & Buggisch 2005) and recent simulations
with an inelastic generalized Newtonian fluid (Yildirim & Basaran 2006) show that
these dynamics may be substantially modified by the incorporation of nonlinear fluid
rheology. In the present work we investigate the role of fluid elasticity and a finite
polymeric relaxation time on the dynamics observed at the dripping–jetting transition
which result in the gobbling drop effect. A recent study by Clanet & Lasheras (1999)
provides the necessary background information on the dripping–jetting transition in
water and also introduces many of the essential elements for the dynamic theory
developed below to explain the gobbling phenomenon.

The paper is organized as follows. In § 2 we describe the experimental observations
and qualitative characteristics of the gobbling phenomenon. In § 3, an elementary
dynamic theory of gobbling is presented, based on the assumption that gobbling is
governed by mass and momentum transfer from a jet moving at constant velocity
to a terminal drop in a gravitational free fall. This model introduces a breakup
time for the jet as an adjustable parameter and we also delimit the range of other
physical parameters for which gobbling is observed. In § 4, the observed dependence
of the breakup time on the jet radius is finally explained quantitatively as a process
governed by a forced thinning of the interconnecting polymeric fluid ligament under
the combined action of the lateral capillary pressure and an axial force.

2. Experiments
2.1. Fluid properties

Experiments were performed with several dilute aqueous polymer solutions, and
compared with benchmark experiments performed using pure water. The main
body of results reported below relates to experiments with a 100 ppm solution of
polyacrylamide (PAA) in water. The polymer solution was prepared by dissolving 0.01
wt % linear polyacrylamide (Praestol 2540, Stockhausen) in deionized water. The fluid
was gently shaken for 5 days to ensure homogeneous mixing. The polymer molecular
mass was determined by intrinsic viscometry to be Mw =7.5 × 106 gmol−1 which
corresponds to a degree of polymerization of P ∼ 105. The molecular extensibility of
the chains depends on the ratio of the fully extended chain length (∼P ) to the r.m.s.
size of the random coil under equilibrium conditions (∼P 1/2). Estimates of the critical
overlap concentration c∗ based on this degree of polymerization give c∗ =0.0182 wt %.
Thus, we are dealing with a dilute (c < c∗) solution of a flexible long-chain
polymer capable of developing significant elastic stretch (∼P 1/2) in strong extensional
flows.

The zero shear rate viscosity for this solution was determined with a capillary
viscometer to be η0 = 2.74 mPa.s. The surface tension of the tested solution was
determined using a Wilhelmy plate type tensiometer (Krüss K-10) to be γ =
61.4 mN m−1.

High-molecular-mass polymer solutions are prone to develop thin liquid filaments,
such as those seen between the beads in figure 1. This enables the determination
of a longest relaxation time λ for the solution from the direct observation of the
capillary thinning kinetics of thin liquid filaments, as discussed in Bazilevskii, Entov
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Figure 2. Kinetics of the capillary thinning of a liquid filament of aqueous polyacrylamide
solution (100 ppm) in a CABER-1 capillary breakup rheometer showing the filament radius
versus time. Raw data (points), approximation by an exponential dependence (broken line)
and by a finitely extensible nonlinear elastic dumbbell (FENE) model (solid line). The limit of
the optical resolution (10 μm) is shown by the dotted line.

& Rozhkov (1990a , 2001); Entov & Hinch (1997); McKinley & Tripathi (2000);
Anna & McKinley (2001) and Clasen et al. (2006b). The experiments were carried
out using an extensional rheometer (CABER-1, Cambridge Polymer Group) described
in Braithwaite & Spiegelberg (2001).

In these experiments, the radius of the thinning filament is monitored by a laser
micrometre, and the time dependence of the radius R is fitted with the exponential
expression:

R(t) ∼ exp(−t/θ)

that is valid at intermediate times for flexible polymer chains that have not been fully
extended. Eventually, the filament breaks in finite time once the finite extensibility
limit of the polymer chains is reached.

According to the theory presented elsewhere (Bazilevskii et al. 1990a; Entov &
Hinch 1997; Anna & McKinley 2001; Bazilevskii et al. 2001; Plog, Kulicke & Clasen
2005 and Clasen et al. 2006a), the longest relaxation time can then be evaluated as:

λ = 1
3
θ.

From the exponential decay regime of the experimental capillary thinning data in
figure 2 we find λ≈ 0.012 s.

2.2. From jetting to dripping

Thin jets of fluid were expelled vertically downwards from standard syringe tips of
different diameters; the tip inner radius range was 0.05–0.76 mm. Experiments were
performed at several different controlled flow rates using a precision syringe pump
(Harvard Apparatus PhD 2000).

Starting from initial conditions of a steady jet, a number of different flow regimes
are successively observed as the flow rate of the polymer solutions is progressively
decreased. In particular, the gobbling phenomenon is observed only within a certain
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Figure 3. Characteristic stages of gobbling with a nozzle of radius Ri = 0.075 mm as the flow
rate is progressively decreased from 26.7 mm3 s−1 to 20.1 mm3 s−1 (from the bottom to top
sequence of images). Images are recorded at 2000 fps, the interval between 2 consecutive shown
frames is �t = 5 ms.

range of flow rates. In figure 3 we show visualizations of the characteristic stages
of the gobbling phenomenon for a nozzle with an inner diameter of Ri = 0.075 mm
and flow rates Q ranging from 20.1 to 26.7 mm3 s−1. Starting from a high flow rate,
a continuous jet flow is observed. Due to the classical Rayleigh–Plateau instability,
the jet rapidly breaks into drops with a characteristic size that is of the order of
the diameter of the jet. As the flow rate is lowered, the terminal drop begins to
‘gobble’ the jet. At this ‘incipient gobbling’ stage, the terminal drop grows but remains
nearly stationary before detaching. Upon decreasing the flow rate further, we observe
the onset of a parabolic trajectory of the terminal drop, resulting in excursions of
increasing amplitude in the length of the jet. Passing through the stages of ‘moderate’
gobbling (where the amplitude is half the maximum length of the jet), we finally
reach ‘critical’ gobbling when the gobbling amplitude reaches the maximum length of
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the jet and the terminal drop almost reconnects to the nozzle. Any further decrease
in the flow rate results in a reconnection of the terminal drop to the nozzle and a
longer interval during which the terminal drop stays connected to the nozzle before
detaching. We refer to this regime as ‘intermittent gobbling’ rather than a form of
dripping because the large terminal drop still ‘gobbles’ up smaller beads as it separates
and slowly accelerates downwards under gravity. A dripping transition is reached once
the flow rate is low enough to allow single drops to detach from the nozzle without the
generation of additional smaller beads during the detachment process. The periodic
growth of the jet length and drop size occurs over a narrow range of flow rates,
which makes the phenomenon rather sensitive to specific experimental conditions
that parameterize the critical flow rate, especially the polymer concentration and
solution ‘freshness’. Thus, an appreciable shift in critical values may be observed
between different series of experiments carried out with different batches of solution
of the same nominal polymer concentration.

In an effort to quantify this time-dependent phenomenon, an experimental technique
has been developed based on frame-by-frame computer-aided analysis of successive
video images produced by a digital high-speed camera (Clasen et al. 2004). Details of
this technique are outlined below.

2.3. Detailed analysis of ‘gobbling’: data processing technique

Images of the gobbling jet were captured with a high speed camera (Phantom 5,
Vision Research Inc.) working at a frame rate of 2000 fps and with an image size of
256 × 1024 square pixel. A macro objective (Canon 70 F/2.8) gives a spatial resolution
of 25 μm pixel−1.

Frame by frame analysis of these images reveals many important features of the
gobbling phenomenon. The starting point of the analysis is the conversion of the
digital images produced by the camera into profiles of the free surface of the jet,
i.e. the radius versus distance from the nozzle tip R(z) at a given time. An image
analysis code was specifically developed for this purpose using LabView (National
Instruments). In particular, critical features of the evolving jet can be extracted, such
as the location of the terminal drop or the position of asperities on the continuous part
of the jet that evolve in time into well-defined beads. Since capillary instability waves
do not move relative to the fluid in the jet (Rayleigh 1879, 1892; Weber 1931; Eggers
1997), the positions of these asperities can be used as markers to directly measure the
velocity distribution along the jet. The position L(t) of the centre of the terminal drop,
as well as the position of the individual beads X(t) can be extracted as demonstrated
in figures 4(a) and 4(b) to construct ‘XLt diagrams’ (figure 4c). Subsequent processing
of the free surface profiles allows the determination of the terminal drop volume V,
as well as the radius and position of the thin ligaments connecting the beads. The
fragment of an XLt diagram shown in figure 4(c) is typical for a well-developed
‘gobbling’ regime. It clearly illustrates an important feature of gobbling in thin jets:
the fluid velocity is, to a first approximation, constant along the jet. Indeed, thin
solid lines in these space–time diagrams are essentially parallel to the traces of the
beads. They have a constant slope corresponding to the jet velocity (in this particular
case of U0 = 0.5 m s−1) which remains fairly constant during the cycle. In thicker jets
the acceleration caused by gravity becomes important, and the trajectories of the
individual beads in XLt diagrams tend to become parabolic. Although the terminal
drop moves slowly upwards and downwards prior to detachment, the primary jet
remains unaffected by this oscillation. This is a characteristic of convective jet flows,
in which fluid particles move purely by their own inertia. This observation is confirmed
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Figure 4. (a)–(b) Construction of an XLt diagram. Traces of the terminal drop position L(t)
(hollow circles) and individual asperity locations X(t) on the falling jet (filled points) are
displayed in three video frames each separated by δt = 1 ms. (c) Example of an XLt diagram
for a jet issuing from a nozzle of Ri = 0.075 mm at a flow rate of 22.3 mm3 s−1. Thin solid lines
of constant slope are essentially parallel to the bead traces indicating that the beads move
with constant velocity until they merge with the terminal drop, which is following a periodic
trajectory. Such a flow pattern is typical of the fully developed ‘gobbling’ regime observed for
thin viscoelastic jets.

by scrutinizing other similar XLt diagrams for thin jets of polymer solutions (not
reproduced here) and serves as a basis of the elementary dynamical model which is
presented in § 3.3.

The direct measurement of the jet velocity can also be used to confirm the initial
radius R0 of the jet. Due to the combined action of capillary and inertia forces in
the vicinity of the nozzle tip, the radius of the issuing jet differs significantly from
both the internal nozzle tip radius Ri and external nozzle tip radius Re (Clanet &
Lasheras 1999). In principle, the jet radius R0 could be determined directly from the
digitized jet profiles. However, due to the slenderness of the jet the radius corresponds
to only a few pixels, leading to significant imprecision (e.g. in figure 3 the jet radius
is R0 ≈ 90 μm ∼= 3.6 pixel).

A more reliable way to determine the initial jet radius R0 is to use the relation

Q = πR2
0U0. (2.1)

As the flow rate Q is accurately controlled by the syringe pump, and the jet velocity
U0 is directly measured by the marker traces, R0 is readily evaluated. The observed jet
radius R0 can then be related to the nozzle inner radius Ri . The results are presented
in figure 5. The data points are well described by a linear relation

R0 = 1.17 Ri, (2.2)
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Figure 5. Measured jet radius R0 as a function of the nozzle inner radius Ri: experimental
data for PAA solutions (�) and linear fit R0 = 1.17 Ri (straight line).

with a correlation coefficient r2 = 0.985. This relationship is employed systematically
in later developments.

3. Theoretical analysis
3.1. The dripping and jetting transitions (following Clanet and Lasheras)

The transition from dripping to jetting has been investigated in detail in the past for
the case of a low viscous Newtonian liquid (water in most situations). In particular,
Clanet & Lasheras (1999) give a precise definition and a comprehensive description of
the different flow transitions observed when increasing the flow rate of a Newtonian
liquid exiting a thin nozzle.

A first ‘dripping’ transition characterizes the transition from a time-regular drop
formation with constant drop volumes (‘periodic dripping’) to a quasi-periodic or
chaotic behaviour (‘dripping faucet’) during which the mass of the detaching drops
vary from one to the next.

A second ‘jetting’ transition occurs when the detachment point of drops suddenly
moves downstream, away from the nozzle. As the flow rate is progressively increased,
longer jets are observed. The authors precisely quantified this loose definition of a
jetting transition by measuring the length of the jet. They defined the transition as
the flow rate required to obtain a jet ten times longer than its diameter (changing this
arbitrarily chosen aspect ratio, does not modify significantly the critical flow rate).

In the absence of gravitational effects, the criterion for the transition is
straightforward: the momentum flux of the liquid has to balance or exceed upstream
capillary forces originating from newly created surface at the nozzle. If U0 is the
velocity of the fluid exiting the nozzle, Ri the inner radius of the nozzle, γ and ρ the
respective surface tension and density of the liquid, the transition is expected when
ρU 2

0 R2
i � γRi , i.e. We � 1, where We refers to the Weber number, We = ρU 2

0 Ri/γ .
The case of finite gravity is more complex since the weight of the drop plays an

important role in its detachment from the tip. In this case Clanet & Lasheras (1999)
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Figure 6. Critical flow rates versus nozzle inner radius for water and an aqueous solution of
100 ppm PAA. Open squares: dripping transition for water; closed squares: jetting transition
for water; closed circles: jetting transition for the PAA solution; solid line: prediction of jetting
transition for water according to formula (3.1) developed by Clanet & Lasheras (1999); dotted
line (1): critical flow rate Qcr0 from (3.9); dotted line (2): critical flow rate in the presence of
gravity Qcr from (3.10).

formulated the critical Weber number at the jetting transition as

Wec = 2

√
Boe

Bo

[
S − (S2 − 1)1/2

]2
; S = 1 + 2K(BoeBo)1/2, (3.1)

with

We =
ρU 2

0 Ri

γ
, Bo =

ρgR2
i

γ
, Boe =

ρgR2
e

γ
. (3.2)

The Bond numbers Bo and Boe compare capillary forces to gravity and are evaluated
using the inner tip radius Ri and the outer radius Re, respectively; K is a numerical
constant equal to 0.37 in the case of water jets in air. As intuition would suggest,
increasing the importance of gravity results in lower critical Weber numbers.

We measured experimentally the dripping and jetting transitions for water and a
dilute polymer solution (100 ppm polyacrylamide solution). The results are shown in
figure 6 and compared with the expression from Clanet and Lasheras given by (3.1).
Obviously, the data for water are in good agreement with the theoretical prediction
for a jetting transition. Conversely, the critical flow rates obtained with the polymer
solution at the jetting transition are much smaller than the corresponding values for
water.

Furthermore, when trying to reach the dripping transition for the polymer solution
by further lowering the flow rates, the novel gobbling regime is observed. The length
of the jet is approximately constant only for higher flow rates close to the jetting
transition (the case of ‘incipient’ gobbling described in figure 3). As the flow rate
is lowered further the jet undergoes subsequently the different stages of gobbling
described in figure 3. Although initially developed for low viscous Newtonian liquids,
we re-explore in the following sections the model from Clanet and Lasheras with a
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Figure 7. Steady jet issuing from a nozzle. The dashed box delimits the control volume for
the mass and momentum balance.

slightly different presentation that takes into account the peculiar additional features
of dilute polymeric solutions (persistent liquid filaments and rheological stresses).

3.2. A jetting transition depending on a positive momentum flux

The experimental observation of nearly constant jet lengths at the jetting transition
suggests a simplified description of the problem as sketched in figure 7. We consider a
steady jet issuing from a nozzle downwards along the z-axis and eventually breaking
at a distance Lmax from the nozzle. We choose a control volume bounded by two
horizontal cross-sections, one within the contiguous part of the jet close to the nozzle,
and the other one just after the jet breaking point.

The time-averaged momentum balance for this control volume integrated over one
period reads

−F + πρR2
0U

2
0 + Vjρg =

ρVmaxUd,max

T
, (3.3)

where F is the tensile force at the upstream cross-section, R0 the jet radius, U0 the
jet velocity, Vj the time-averaged fluid volume between the two cross-sections, T the
period between two detaching drops passing through the lower cross-section, Vmax

the volume of each of these detaching drops and Ud,max their velocity.
The net tensile force F supporting the jet consists of two parts:

F = 2πR0γ + πR2
0τzz, (3.4)

where the first part takes into account the surface tension of the newly created surface
at the upper cross-section of the control volume while τzz refers to other axial stresses
in the jet. These axial stresses in the slender jet can be expressed in terms of two
contributions τzz ≡ σzz − p, where the pressure p can be replaced by the radial stress
balance p = γ /R0 + σrr :

τzz = (σzz − σrr ) − γ

R0

. (3.5)

Here, the second term on the right-hand side represents the capillary pressure at the
lateral surface of the jet, while the first term is the ‘rheological stress’ contribution
σrheol ≡ (σzz −σrr ) resulting from the deformation of the viscoelastic fluid (i.e. a normal
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stress difference). Combining with (3.4) we obtain

F = πR0γ + πR2
0σrheol . (3.6)

The solution experiences a strong shear rate in the syringe needle (γ̇ ∼ 105 s−1 for the
typical conditions of our experiments) during a residence time of the same order of
the relaxation time of the low concentrated polymer molecules (Lneedle/U0 ∼ 20 ms).
Nevertheless, we neglect the initial elastic strain of the dilute polymers in the uniform
jet considered in this simplified model. In this condition, the ‘rheological stress’ σrheol

is negligible, which leads to

F = πR0γ. (3.7)

This formulation differs from Clanet and Lasheras by a factor of 2, but is in
agreement with the expression that Griffith used when he successfully measured the
surface tension of glass (Griffith 1926). This factor of 2 has apparently lead to some
controversy as discussed in Eggers (1997), who also gives an expression equivalent to
(3.7).
With this new expression for the tensile force, the momentum balance (3.3) becomes

−πR0γ + πρR2
0U

2
0 + Vjρg =

ρVmaxUd,max

T
. (3.8)

Since the right-hand side of (3.8) must be positive, it implies a lower bound Qcr for
the jet flow rate Q = πR2

0U0:

Q � Qcr = Qcr0

(
1 − Vjρg

πR0γ

)1/2

, with Qcr0 = πR
3/2
0

√
γ

ρ
, (3.9)

where Qcr0 is the critical flow rate in the absence of gravity and corresponds to a
critical Weber number Wecr0 = 1. This critical flow rate is already considerably lower
than the experimentally measured values for pure water as depicted in figure 6. In
physical terms, the inequality (3.9) states that the momentum influx into the control
volume should be sufficient to support a positive momentum flux out of the control
volume. Taking into account gravitational forces, in particular, if we let Vj = πR2

0Lmax ,
which is appropriate for an uniform jet of length Lmax , we get

Qcr = Qcr0

(
1 − ρgR0Lmax

γ

)1/2

. (3.10)

If we first set a higher value of the flow rate, and then begin to slowly decrease it, the
continuous jetting regime should not persist later than the point where the flow rate
falls below the critical value Qcr . Using experimentally observed values for Lmax we
obtain values close to the critical flow rates observed experimentally for the polymer
solutions as shown in figure 6.

It is essential to note that this lower bound on the flow rate in the jet can only
be explored experimentally for sufficiently long jet breakup times. This is usually
not the case for low viscosity Newtonian liquids and this prevented Clanet and
Lasheras from also exploring this boundary and observing the gobbling phenomenon.
However, adding a tiny mass fraction of high-molecular-weight polymeric molecules
to the solution extends the breakup time and may allow a subsequent exploration of
this breakup process.

Although the description above remains qualitative, it introduces the essential
ingredients driving the gobbling phenomenon: incoming momentum flux, capillary
forces and gravity. We therefore re-explore in the following section a simplified
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Figure 8. Simplified version of the gobbling scenario: the terminal drop is attached to a jet of
radius R0 that is flowing with a uniform velocity U0. The drop is submitted to its own weight,
to the capillary tensile force from the jet and absorbs a momentum flux from the jet. For a
critical length Lmax , the drop detaches from the jet and the same scenario starts again.

dynamic model previously introduced by Clanet and Lasheras which allows for a
precise description of the different gobbling stages illustrated in figure 3. We then
reconsider the importance of the rheological stress term σrheol of (3.6) in § 4.

3.3. Elementary dynamical model of gobbling

Our experimental observations indicate that the gobbling phenomenon results from
the interaction between two distinct entities: a steady-state slender jet, and a spherical
terminal drop that slowly grows and translates axially. Furthermore, the evolution
of the terminal drop does not affect the flow in the jet. This jet is characterized by
its initial radius (R0) and its velocity (U0) and is independent of the downstream
conditions. Indeed, the jet velocity remains nearly constant during the whole cycle
as observed in figure 4(c). This property of negligible upstream perturbation is a
generic property of convective jetting flows, in contrast to ‘pseudo-jet’ flows, which
are dominated by the upstream transfer of the tension force along the jet. Examples
of the latter include fibre spinning (Pearson 1985), coiling of viscous jets (Ribe et al.
2006) or slow periodic dripping (Coullet et al. 2005). In the following we consider
a liquid drop attached to a jet of uniform radius R0 and uniform velocity U0 (we
incorporate in Appendix B the effects of gravitational acceleration and a slow axial
variation in the radius of the jet). As proposed in Clanet & Lasheras (1999), we
shall apply principles of mass and momentum conservation to the drop. In addition,
we assume that the length of the jet is limited: if the dynamics of the system lead
the jet to reach a critical length Lmax , the drop detaches from the jet and a new
terminal drop forms (figure 8). From a more physical point of view, this is equivalent
to assuming that the jet breaks in a finite time tbr , such that Lmax = tbrU0. In the case
of a Newtonian jet of water described by Clanet and Lasheras, this breakup time
was governed by a balance between capillarity and inertia tbr ∼ (ρR3

0/γ )1/2, leading
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to rather short lengths Lmax . With polymer solutions tbr can be much larger due to
the extensibility of the macromolecules (Anna & McKinley 2001; Wagner et al. 2005;
Tirtaatmadja et al. 2006), which allows for longer jets. In § 4 we shall describe in
more details how this breakup time tbr is connected to the non-Newtonian rheological
properties of the fluid in the case of dilute polymer solutions.

The mass balance for the terminal drop is determined by the net mass influx, which
depends on the jet flow rate Q, and on the velocity Ud of the terminal drop relative
to the jet velocity U0:

dV
dt

= Q

(
1 − Ud

U0

)
, (3.11)

where V is the volume of the growing terminal drop. This net mass influx also enters
the linear momentum balance for the terminal drop, together with the tensile force F

acting in the jet and the gravitational acceleration:

ρd(VUd)

dt
= ρQ (U0 − Ud) + ρVg − F. (3.12)

Clanet and Lasheras have derived an exact parabolic solutions of (3.11) and (3.12)
for the terminal drop velocity Ud(t) and position L(t):

Ud(t) = U0 − U ∗ + 1
3
gt, L(t) = Lmax +

(
U0 − U ∗) t + 1

6
gt2, (3.13)

with

U ∗ =

√
F

πρR2
0

. (3.14)

Using the expression for the net tensile force from (3.7), we obtain

U ∗ =

√
γ

ρR0

. (3.15)

In physical terms, U ∗ represents the velocity of capillary waves propagating along
the jet as described by Rayleigh (1879). The integration of the volume conservation
(3.11) then gives

V(t) = πR2
0

(
U ∗t − 1

6
gt2

)
. (3.16)

With the selected initial condition, the length of the jet has a maximum value at
t = 0, which corresponds to the critical jet breakup length Lmax when the terminal
drop has just pinched off. The jet length then initially decreases because the capillary
velocity U ∗ pulling the terminal drop upwards exceeds the incoming axial velocity U0.
As the terminal drop grows and increases its weight, the upward motion eventually
ceases and the drop trajectory reverses due to the downward effect of gravitational
acceleration. The jet length finally reaches Lmax , the drop then detaches and the same
scenario starts again. We show in Appendix A that even if the initial volume of the
drop is finite, the solution eventually converges to the present solution.

Expressions (3.13) and (3.16) allow for a direct comparison with experimental data.
Such a comparison is shown in figure 9 for the case illustrated in figure 1 (note that
Clanet and Lasheras could not make this comparison with pure water because of
short breakup times and, as a consequence, very short jet lengths). The experimental
data are described qualitatively by this elementary theory (dashed line). However, the
initial upwards slope of the analytical solution corresponding to the recoil velocity
dL/dt is steeper than observed in experimental data. The observed trajectories are
also slightly asymmetric in comparison with the predicted parabolas. However, these
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Figure 9. Terminal drop position and volume variation during an individual ‘gobbling
cycle’ and their comparison to theory. Nozzle inner radius Ri = 0.125 mm, initial jet radius
R0 = 0.188 mm, flow rate Q = 39.7 mm3 s−1. Open symbols: experimental data from image
processing of the video data; dashed lines: theoretical analytic solution of the elementary
theory from equations (3.13) and (3.16); continuous lines: numerical solution of the dynamic
theory of Appendix B.

features can be captured by a dynamic theory such as that presented in Appendix
B that takes into account the additional acceleration of the fluid in the jet due to
gravity. Indeed, the relative contribution of gravity into the momentum balance for
the contiguous part of the jet is on the order of the inverse of the Froude Number
∼ gLmax/U 2

0 , which ranges from 0.15 to 3.5 for our experiments and can therefore be
important (e.g. in the experiment presented in figure 9 this ratio is approximately 0.2).

The dynamic theory described in Appendix B is capable of describing the gobbling
dynamics quantitatively as can be seen in figure 9. It also provides a more accurate
description of the breakup time: because the liquid accelerates, the actual ‘time
of flight’ of a fluid particle exiting from the nozzle is smaller than tbr = Lmax/U0.
However, the dynamic model contains the same simple mass and momentum balances
introduced in the present simplified description and is only amenable to numerical
solutions. In the following, we will therefore continue with the qualitative, but
analytical, solution of the elementary model for gobbling.

3.4. From gobbling to jetting

The simple dynamic model describes successfully a single gobbling cycle. However, in

order to obtain a periodic behaviour, the integral over the period
∫ T

0
Ud(t)dt should

be equal to δL, the difference between the detachment length and the jet length
at the start of the next cycle. The analysis of the video images shows that this
difference is on the order of the diameter of the terminal drop before its detachment,
which is relatively small compared to the large breakup length Lmax observed for
fully developed gobbling. If we neglect this variation, then the periodicity condition
becomes ∫ T

0

Ud(t)dt ∼= 0. (3.17)
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Notice that this condition implies Ud(t) < 0 in the initial part of the period, which,
according to (3.13), leads to U0 < U ∗, i.e. We < 1. This inequality is in apparent
contradiction with the requirement of a positive downstream momentum flux in the
jet. However, the small, but non-negligible, contribution of gravity solves this apparent
paradox and allows a polymeric jet to exist down to flow rates Qcr and below the
critical flow rate Qcr0 as described in § 3.2.

The periodicity condition (3.17) in combination with (3.13) leads to the following
expression for the gobbling period:

T =
6(U ∗ − U0)

g
. (3.18)

The amplitude of the oscillation �L can be evaluated from the minimum jet length
Lmin which occurs at t = T/2:

�L = Lmax − Lmin =
3(U ∗ − U0)

2

2g
. (3.19)

This oscillation amplitude determines the range and the different stages of the gobbling
regime. Indeed, incipient, moderate and critical gobbling states, as already introduced
from observation in figure 3, correspond to �L = 0, Lmax/2 and Lmax , respectively.
The condition for incipient gobbling is straightforward: this stage appears as U0 =U ∗,
i.e. Q =Qcr0 or We = 1. This condition is in agreement with the experiment displayed
in figure 3 where incipient gobbling indeed corresponds to We � 1.

Determining the lower bound of flow rates for which periodic gobbling persists
(corresponding to critical gobbling) requires knowledge of the maximum length Lmax .
We therefore assume in the following that Lmax is defined by the breakup time tbr of
the elastic filament connecting the drop to the jet, such as

Lmax = tbrU0. (3.20)

The lower limit Ucrit in the range of possible jet velocities for gobbling, Ucrit <U0 <U ∗,
is then determined by the requirement �L = Lmax , which, according to (3.19), leads
to:

Ucrit = U ∗
(

1 + 1
3
ε −

√
2
3
ε + 1

9
ε2

)
; ε =

gtbr

U ∗ . (3.21)

The gobbling regime occurs over a narrow range of flow rates just below U ∗,
which vanishes if the breakup time decreases down to the value characteristic of a
Newtonian liquid or if the nozzle radius becomes very small.

The narrow range of flow rates for gobbling can be demonstrated by plotting the
volume Vmax of the terminal drop when detaching from the jet as a function of the
jet velocity as displayed in figure 10. Following our simplified model, the combination
of (3.16) with (3.18) leads to

Vmax = 6πR2
0U0

(
U ∗ − U0

g

)
. (3.22)

In spite of the experimental scatter of the data in figure 10 (which we believe to be
due to the high sensitivity to the rheological properties of the liquid) this relation is
in reasonably good agreement with the experiments, conducted here with a particular
nozzle radius Ri = 0.075 mm. Equation (3.22) contains no adjustable parameters. Over
the narrow range of experimentally observed velocities of �U0 =U ∗ − Ucrit = (0.84 −
0.62) m s−1, all stages of gobbling that are depicted in figure 3, from incipient to
critical gobbling, can be observed. Finally, an estimation of the breakup time tbr can be
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Figure 10. Gobbling range: terminal drop volume at detachment Vmax versus jet velocity
U0. Points: experimental data for Ri = 0.075 mm; solid line: theory according to (3.22).

determined from this velocity range by measuring the lower bound Ucrit and rewriting
(3.21), which reduces for small radii and smaller values of ε to Ucrit = U ∗(1 −

√
2/3ε)

and we obtain

tbr
∼=

3(U ∗ − Ucrit )
2

2gUcrit

. (3.23)

We experimentally measured Ucrit � 0.62 m s−1, which would correspond to tbr � 11 ms
for the nozzle radius used in these experiments. In the following section, we describe
the variation of this breakup time with the nozzle radius and show the consistency of
a calculation of tbr from Lmax/U0 with the above estimation from Ucrit .

3.5. The breakup time

In the previous sections we have shown the relevance of the simplified dynamical
model to describe the gobbling phenomenon. However, we had to introduce a breakup
time tbr as an adjustable parameter. Determining the dependence of tbr on the
experimental parameters is still required to close this dynamical model. We first note
that tbr is in fact an apparent breakup time defined as Lmax/U0 in (3.20). In reality, the
fluid also accelerates under gravity and the actual time of flight of a Lagrangian fluid

particle tof =
∫ Lmax

0
dz/U (z) is smaller than tbr . This time of flight can be evaluated

using the numerical velocity profiles obtained from integrating equation (B 3) of the
dynamic theory in Appendix B.

Both the apparent breakup time and the time of flight were estimated from the
maximum jet length Lmax extracted from processing the XLt diagrams. The variation
of these breakup times as a function of the nozzle radius is displayed in figure 11.
Both measures of the breakup time are found to increase with the radius of the
nozzle. The results for tbr are fairly well described by a linear correlation (solid line
in figure 11) that has the following form for the present polymer solution and test
geometry:

tbr (s) = 0.14Ri (mm). (3.24)

The breakup time corresponding to the nozzle radius presented in the previous
section (Ri = 0.075 mm) is 10.5 ms, which is in relatively good agreement with the
value estimated from the experimental measurement of Ucrit (tbr � 11 ms). The linear
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correlation is surprising since it suggests that the breakup dynamics are limited
by viscosity tbr ∼ ηR0/γ (this scaling arises from a simplified balance between
the destabilizing Laplace pressure (∼ γ /R0) with viscous stresses resisting breakup
(∼ η/tbr ) (Eggers 1997). However, the equivalent viscosity would need to be of the
order of 2 Pa.s to match our empirical correlation, which is 3 orders of magnitude
higher than the actual shear viscosity of the dilute polymeric solutions. Such high
values are the signature of strong elastic stresses generated in the fluid while the
filament thins. Indeed, the extensional viscosity of polymeric solutions commonly
increases over several orders of magnitude during strong elongational flows (McKinley
& Sridhar 2002; Amarouchene et al. 2001; Sattler et al. 2008).

3.6. Predicting critical gobbling parameters

Substituting the empirical correlation (3.24) for the breakup time obtained with the
present polymer solution in the relation (3.21) closes the description of the gobbling
dynamics. The lower critical velocity Ucrit that relates to critical gobbling (as shown
in figure 3) and the corresponding flow rate,

Qcrit = πR2
0Ucrit , (3.25)

can then be evaluated. In figure 12 we compare the critical flow rates of the theoretical
predictions of incipient and critical gobbling, calculated without any fitting parameter
(besides the linear correlation between tbr and the nozzle radius Ri), with experimental
data close to critical gobbling conditions. The experimental data are indeed close to
the theoretical predictions of critical gobbling (solid line). The deviation is due to the
fact that experimental data are still obtained at flow rates slightly higher than critical
gobbling conditions (this can also be seen in figure 3 where, for the indicated case
of critical gobbling, the terminal drop is actually not travelling completely back to
the nozzle). Flow rates right at critical gobbling present a rather unstable state that
favours a reconnection of the terminal drop to the nozzle even with very small flow
rate variations. Figure 12 also shows the results of the numerical calculations of the
dynamic theory of Appendix B for the range of incipient to critical gobbling.

The lower critical velocity Ucrit of (3.21) can also be used to calculate the volume of
the detaching terminal drop Vmax . By inserting Ucrit into (3.22) we obtain the volume
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of the detaching terminal drop at critical gobbling conditions:

Vcrit = 6πR2
0Ucrit

(
U ∗ − Ucrit

g

)
. (3.26)

This theoretical prediction for the critical volume of the terminal drop is plotted in
figure 13 as the solid line and shows very good agreement with the experimentally
obtained values. This drop volume Vcrit can also be compared to the volume of
a quasi-static dripping drop detaching from a syringe tip. The latter situation has
been comprehensively studied by Harkins and Brown (Harkins & Brown 1919) and
constitutes a common method to estimate interfacial tensions (Adamson & Gast
1997). Harkins and Brown have shown that the volume of the detaching drop is given
by

Vdrip = fHB

2πγRe

ρg
, (3.27)

where Re is the external radius of the tip and fHB is a function of the ratio
X = Re/

√
γ /ρg ranging from 0.5 � fHB � 1. The coefficient fHB accounts for the

non-sphericity of a terminal drop due to gravity. The ‘smoothed values recommended
for corrections’ by Harkins and Brown are well approximated by a polynomial fit:

fHB � 0.928 − 0.7847X + 0.7025X2 − 0.2233X3; X =
Re√
γ /ρg

, (3.28)

in the range 0 < X < 1.4. As illustrated in figure 13 the volume Vcrit of the terminal
gobbling drops at critical conditions are significantly below the volume Vdrip of
the Harkins–Brown relation for dripping, but also much larger than the volume of
detaching drops for the jetting case Vμ (obtained from (3.31) as we describe below).
This difference in volume between dripping and gobbling explains also why the critical
gobbling conditions are so sensitive to slightest variations in the flow rate: a slight
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decrease in flow rate will lead to reattachment of the terminal drop to the nozzle
(shown in figure 3 as ‘intermittent gobbling’). This then prohibits the continuation of
the gobbling cycle since Vcrit is not large enough for pinch off due to dripping. The
terminal drop attached to the nozzle first has to grow (by inflow of fluid) to reach the
Harkins–Brown volume condition Vdrip in order to detach again.

The dependence of Vcrit on Ri for the experimental data shown in figure 13 is found
to be almost linear over this range of nozzle diameters and can be approximated by

Vcrit � 0.8
2πγRi

ρg
� 0.7

2πγR0

ρg
, (3.29)

where the latter equality is obtained by using (2.2). This simple relation will be used
in the following section to determine an upper bound on the range of syringe nozzles
for which the development of the gobbling regime can be observed.

3.7. Limits of gobbling

As observed in figures 1 and 3, the jet exiting the nozzle first undergoes a classical
Rayleigh–Plateau instability controlled by the interplay of inertia and capillarity,
leading to the beads that are eventually consumed by the terminal drop. A linear
perturbation calculation gives the wavelength of the fastest growing mode (Rayleigh
1879, 1892; Weber 1931):

LR = 2
√

2πR0 � 9.0R0, (3.30)

the volume:

Vμ = πLRR2
0 = 2

√
2π2R3

0, (3.31)
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and the corresponding time scale:

τR � 2.9

√
ρR3

0

γ
. (3.32)

The wavelength LR determined from the video images was measured for different
column radii and is compared with the Rayleigh prediction in figure 14. The agreement
between the experimental data and the classical prediction is very good, which
indicates that the presence of minute quantities of polymer molecules does not
modify the initial inertiocapillary dynamics controlling the formation of the beads.
Indeed typical values for the inertial time characterizing the growth rate of the
inertiocapillary perturbation (τR ∼ 1 ms) are shorter than the fluid relaxation time
(λ∼ 10 ms) which characterizes the time scale for growth of viscoelastic stresses.
In the linear regime (at short times) polymer effects are negligible. Of course, this
situation changes dramatically in the nonlinear regime (Amarouchene et al. 2001;
Wagner et al. 2005). The volume Vμ of a single bead represents the lower limit for
the terminal gobbling drop when reaching the transition to pure jetting and is also
compared in figure 13 to the critical gobbling conditions.

The number of beads consumed by the terminal drop per gobbling period is given
by the ratio of the maximum volume of the terminal drop to that of a single bead.
From (3.29) and (3.31) we obtain for the ‘gobbling ratio’:

Vcrit

Vμ

≈ 0.16

(
γ

ρgR2
0

)
≈ 0.11

(
γ

ρgR2
i

)
. (3.33)

The ‘gobbling ratio’ scales inversely with the Bond number, which explains why
it increases dramatically for thin jets as the velocity approaches the critical value
(e.g. for Ri =0.1 mm we obtain Vcrit/Vμ ∼ 50). In the opposite limit, the ‘gobbling
ratio’ approaches unity for Rcr ≈

√
0.11γ /ρg = 0.8 mm: above this critical radius the

gobbling phenomenon should not be observable because formation of a single bead
on the jet is sufficient to overwhelm the volume of the terminal drop.
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Figure 15. False gobbling: periodic dripping with consecutive drops connected by an
‘umbilical cord’, Ri =0.685 mm; Q = 160 mm3 s−1.

Although preliminary investigations suggest that the gobbling phenomenon also
seems to occur for jets of larger diameter, closer observation reveals that these jetting
flows differ from ‘true gobbling’. For larger nozzle radii, the transition from dripping
to jetting for a polymer solution proceeds through a stage of interacting drops or
beads-on-a-string: as a result of the enhanced stability of the necks between the drops
that form at large radii (see figure 15), the next drop begins to mature before the
leading drop has detached. A detailed analysis of video images shows that, in this
case, the motion of the ‘leading drop’ affects the dynamic behaviour of the rest of the
jet through the tension transmitted along the thin umbilical cord of highly stretched
fluid that can be observed in figure 15.

The four XLt diagrams of figure 16 illustrate this issue; they represent the near-
critical gobbling regimes for thin (Ri = 0.125 mm) to wide (Ri = 0.685 mm) nozzles.
Figure 16(a) shows true gobbling with multiple beads (gobbling ratio Vcrit/Vμ ∼ 38)
merging into a single terminal drop which follows the expected parabolic trajectory.
Figures 16(b) and 16(c) still correspond to gobbling, but lower gobbling ratios of
Vcrit/Vμ ∼ 9 and ∼ 3, respectively, as the nozzle radius increases. In figure 16(d )
necklaces of drops connected by thin fluid filaments are observed: the next drop
emerges and starts to grow before the connecting ligament has broken up and the
first terminal drop has detached. We refer to this as ‘false gobbling’. Essentially, it
represents periodic dripping with consecutive drops connected by an ‘umbilical cord’
as can be seen in figure 15. The most important dynamic difference is that in this
case gravity is essential; the tensile force in the jet (arising now principally from
elasticity) is transmitted upstream up to the nozzle; whereas for true gobbling, the
force originates solely from capillarity at the nozzle. True gobbling dynamics for such
large nozzle radii could only occur in reduced or microgravity conditions.
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Figure 16. XLt diagrams showing transition from gobbling to dripping: (a): Ri = 0.125 mm,
Q =39.7 mm3 s−1, gobbling ratio ∼ 38; (b): Ri = 0.205 mm, Q = 64.5 mm3 s−1, gobbling
ration ∼ 9; (c): Ri = 0.42 mm, Q = 140 mm3 s−1, gobbling ratio ∼ 3; (d ): Ri = 0.685 mm;
Q =160 mm3 s−1, periodic dripping: necklace of drops.

4. Ligament thinning and breakup time
Good agreement is obtained between the predictions of the simple elementary

and dynamic theories and the experimental results for Qcrit and Vcrit shown in
figure 12 and 13. This suggests that the main features of the gobbling phenomenon are
governed by fundamental mass and momentum balances, while the polymer additive
controls only the terminal drop detachment event, which is encoded implicitly in the
breakup time given by (3.24). However, delayed breakup times are essential for the



Gobbling drops of polymer solutions 27

(1)

(2)
2r

2R0

Figure 17. Control volume for a viscoelastic steady jet issuing from a nozzle.

occurrence of the gobbling phenomenon (in Clanet & Lasheras 1999 the breakup
time of pure water is simply too short to observe gobbling). We discuss in this
section the dependence of the breakup time on the nozzle radius and the viscoelastic
characteristics of the polymer additive.

The elementary dynamical model presented in the previous sections used an
apparent breakup time tbr , or equivalently a maximum jet length Lmax , measured
experimentally to incorporate the effects of the dissolved polymer. For a quantitative
description of the influence of the polymeric additive, we analyse now the thinning
and breakup of the thin ligaments that interconnect the beads-on-string structure
and which develop due to capillary instability of the primary jet. This simple zero-
dimensional theory follows a similar form to the theory developed for capillary
thinning of filaments of polymeric fluids in the Capillary Breakup Extensional
Rheometer (see Bazilevskii et al. 1990a; Entov & Hinch 1997; Anna & McKinley
2001; Rozhkov 1983). However, the present description involves one major new
element: the ligament is submitted to a constant axial force.

We first note that the ligaments start as necks between adjacent beads on the
jet which grow and become visible at some distance from the nozzle. Because the
beads and ligaments are convected along the jet, each ligament is a Lagrangian object
consisting of the same fluid particles. As each ligament is convected downstream, it
progressively thins and has two possible fates: (i) it can reach the terminal drop and
be consumed by it, or (ii) it can break and the terminal drop thus detaches. The
video images of the ligaments show that they are elongated and uniform cylindrical
threads. It is therefore reasonable to consider the thinning ligament as a uniformly
stretching liquid column aligned along the jet axis.

4.1. Force in the ligament and equation for elastocapillary thinning

Following our previous elementary discussion, we first neglect the effect of gravity and
consider a short fast jet, with a uniform velocity U0. We choose two cross-sectional
profiles of the jet as shown in figure 17, the first (1) being located at a stationary
location just downstream of the nozzle exit within the fully developed uniform jet
region, and the second (2) moving at the velocity of the central Lagrangian element
of a thinning ligament. Within these boundaries, the time-averaged value of the
linear momentum within any control volume between two jet cross-sections remains
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constant. Therefore, the time-averaged momentum flux −F + ρQU0 as defined in the
first two terms of the momentum balance (3.3) is also constant along the jet. The
time-averaging implicit in this expression relates to averaging over a time interval
large when compared with the characteristic time scale of capillary breakup (the
Rayleigh time), and with the time interval between two beads passing across any
given cross-section. In the fully developed gobbling regime such an interval is small
with respect to the overall gobbling period.

As the product ρQU0 is constant, the net tensile force F acting on any cross-section
is also uniform along the jet. This constant force throughout the jet is readily evaluated
from (3.6) if we replace the upstream radius R0 with the radius r(z):

F = πrγ + πr2σrheol = constant. (4.1)

This force is the sum of a capillary surface force and a bulk viscoelastic force arising
from the stretching of the dilute polymeric solute. The value of this constant force
can be evaluated from the upstream cross-section (1) where the rheological stress is
negligible:

F = πR0γ. (4.2)

We equate these two expressions to obtain the following expression for the tensile
rheological stress difference that develops in the thinning filament:

σrheol =
γ

r

(
R0

r
− 1

)
. (4.3)

The rheological stress σrheol developed in polymer solutions consists of two principal
contributions, namely a viscous stress proportional to the instantaneous strain rate,
and an elastic stress depending on the accumulated elastic (reversible) strain of the
polymer. We will confine our present analysis to dilute polymer solutions for which
the additional contribution to the total viscous stress is small, while the elastic stress
becomes significant when large elastic strains are reached.

4.2. FENE model for dilute polymer solutions

In order to analyse the ligament thinning we use the same constitutive model as
Entov & Hinch (1997), corresponding to a dilute suspension of dumbbells with a
finite polymer extensibility (the FENE dumbbell model (Bird, Armstrong & Hassager
1987)). The elastic deformation in the jet, described by the average second moment
configuration tensor A of the polymer, is characterized by its axial (Azz) and radial
(Arr ) components which are governed by the microstructural evolution equations:

Ȧzz = 2ezzAzz − f

λ
(Azz − 1); Ȧrr = 2errArr − f

λ
(Arr − 1). (4.4)

Here, ezz and err are the axial and radial components of the strain rate tensor, λ is
the fluid relaxation time and f is the FENE correction term accounting for finite
extensibility of the polymeric molecules:

f =
1

(1 + 3/b) − (Azz + 2Arr )/b
. (4.5)

Azz is essentially the square of the ratio of the current length of the extended polymer
molecule to its initial length in the coiled state, the finite extensibility parameter b

corresponds to the limit of Azz at the maximum extension of the polymer chain. The
resulting viscoelastic stress contributions for this FENE dumbbell model are

σzz = 2ηezz + Gf (Azz − 1); σrr = 2ηerr + Gf (Arr − 1), (4.6)
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where G is the elastic modulus of the fluid. The components of the strain rate tensor
for thinning of the filament are expressed in terms of the rate of evolution in the
filament radius:

ezz = −2ṙ

r
; err =

ṙ

r
. (4.7)

In contrast to the derivation of Entov & Hinch (1997) for a stationary filament under
zero tensile force, for the case of a jet we are now taking the constant force into
account. Therefore we are substituting in (4.3) the rheological stresses σrheol = (σzz−σrr )
with (4.6) and (4.7). Introducing then (4.7) also into (4.4) we get the following set of
ordinary differential equations:

6η

(
ṙ

r

)
= −γR0

r2
+

γ

r
+ f G(Azz − Arr ); (4.8a)

Ȧzz + 4

(
ṙ

r

)
Azz = −f

λ
(Azz − 1) ; (4.8b)

Ȧrr − 2

(
ṙ

r

)
Arr = −f

λ
(Arr − 1) . (4.8c)

It should be noted that in (4.8a), by contrast to the capillary breakup described by
Entov & Hinch (1997), the constant force acting along the jet enters as the additional
term γR0/r2 in the force balance on the thinning ligament. This set of equations can
be solved numerically with the appropriate initial conditions, r = R0; Azz =Arr =1
at t = 0, to predict the evolution of the ligament radius in a jet with a persistent
constant axial force as material elements are convected along the jet. However, before
presenting numerical results, it is worth discussing the general features of the solutions.

4.3. First stage of thinning: inertiocapillary equilibrium

As described in § 3.7, the jet first undergoes a Rayleigh–Plateau instability with

a characteristic time scale τR � 2.9
√

ρR3
0/γ . During this first stage, the necking

dynamics from an arbitrary small perturbation α follow an exponential growth
r = R0(1 − αet/τR ), which induces a local strain rate near the neck of the form

ezz =
2

τR

αet/τR

1 − αet/τR
. (4.9)

The axial extension rate thus increases rapidly, which induces stretching of the
polymer molecules and leads to a elastocapillary regime in which the elastic response
of the fluid dominates its inertia.

4.4. Second stage of thinning: elastocapillary equilibrium. Infinite extensibility

In the elastocapillary regime we assume that the axial elastic strain of the polymer is
large, Azz 	 1; Azz 	 Arr . We also assume that the molecules are very extensible so
that Azz 
 b and f ≈ 1. Equation (4.8) reduces then to

6η

(
ṙ

r

)
= −γR0

r2
+

γ

r
+ GAzz; (4.10a)

Ȧzz + 4

(
ṙ

r

)
Azz = −1

λ
Azz. (4.10b)

Equation (4.10b) is readily integrated, assuming that the filament radius and the axial
component of the elastic strain satisfy the relation Azzr

4 =A0
zzR

4
0 , since the Rayleigh

time scale
√

ρR3
0/γ is much smaller then polymer relaxation time λ, and therefore
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no relaxation of the polymer occurred during the previous inertiocapillary thinning
stage. Taking the initial value of the axial stretch of the polymer (A0

zz) equal to unity,
integration of (4.10b) gives

Azzr
4 = R4

0 exp(−t/λ). (4.11)

Introducing this expression into (4.10a) we find

6η

(
ṙ

r

)
= −γR0

r2
+

γ

r
+

GR4
0

r4
exp

(
− t

λ

)
. (4.12)

As the radius r(t) → 0, a dominant balance is established between the first and third
term on the right-hand side of (4.12). At long times the solutions thus approach
exponential asymptotes:

r

R0

∼

√
GR0

γ
exp

(
− t

2λ

)
; Azz =

(
γ

GR0

)2

exp

(
2t

λ

)
. (4.13)

These expressions in (4.13) correspond to an intermediate asymptotic regime of quasi-
equilibrium elastocapillary thinning of a filament of viscoelastic fluid in a jet under a
constant axial force πγR0. The filament radius exponentially tends to zero while the
elastic stretch in the polymer molecules increases exponentially with time; however,
the scaling is different in comparison to elastocapillary thinning in the absence of a
constant force for which r(t) ∼ exp(− t

3λ
) (Entov & Hinch 1997).

This solution also implies that the ligament will not breakup in a finite time and the
elastic stress grows without bound. However, as the polymeric stretch increases, finite
extensibility effects eventually become important and need to be taken into account.
The intermediate elastocapillary solution (4.13) can only be used until the ratio Azz/b

becomes significant, typically Azz/b ≈ 0.1. After that, the thinning dynamics and the
final breakup are determined by the finite extensibility of the polymer.

4.5. Third stage of thinning: finite extensibility and breakup

In the very final stage of ligament thinning under a constant axial force, the elastic
strain is very large, the radius is very small and (4.8) simplifies to:

6η

(
ṙ

r

)
= −γR0

r2
+ f GAzz; (4.14a)

Ȧzz + 4

(
ṙ

r

)
Azz = −f

λ
Azz; f =

b

b − Azz

. (4.14b)

We neglect the term 6ηṙ/r , assuming viscosity to be small. Then we get from (4.14a):

r

R0

=

√
γ

GR0

√
1

Azz

− 1

b
;

ṙ

r
= − 1

2

Ȧzz

Azz

(
1

1 − Azz

b

)
. (4.15)

Introducing these expressions into (4.14b) and integrating we find an implicit
expression which describes the universal thinning behaviour close to breakup:

t

λ
=

Azz

b
+ ln

Azz

b
. (4.16)

The evolution in radius with time can be found by substituting the implicit expression
(4.16) in (4.15). The above estimates demonstrate that in the case of very thin jets,
or very dilute polymer solutions with molecules only having moderate extensibility
the intermediate exponential thinning stage may be absent, so that the third stage of
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dominating finite extensibility effects may become important immediately after the
initial thinning stage (see, for example, Clasen et al. 2006b).

It should be noted that the expressions derived above can be generalized to describe
the thinning of a liquid filament extended by any constant force F . The first term
of the right-hand side of (4.8a) reads then −F/πr2 and we obtain a solution for the
radius evolution during the second stage of elastocapillary thinning from (4.13):

r

R0

=

√
GπR2

0

F
exp

(
− t

2λ

)
(4.17)

and for the third stage from (4.15):

r

R0

=

√
F

GπR2
0

√
1

Azz

− 1

b
. (4.18)

4.6. Calculating the evolution in ligament radius

The results presented above allow us to predict the evolution in the ligament radius
and thus the critical time to breakup tbr as a function of the initial jet radius
R0 and measurable fluid properties. If the duration of the short initial stage is
neglected, the thinning kinetics are completely determined by the fluid relaxation time
λ, the surface tension γ , the elastic modulus G of the fluid, the finite extensibility
parameter b of the polymer and the jet radius R0. The elastic modulus G of dilute
polymer solutions is small and cannot readily be measured directly, but can be
estimated using the well-known expression from kinetic theory (Bird et al. 1987)
G = 3nkBT . Here, n= cNA/Mw is the number density of polymer molecules of the
solution, kB is the Boltzmann constant and T is the absolute temperature. In our
case, with c =100 ppm and Mw ∼ 7.5 × 106 g mol−1 we obtain n ∼ 8 × 1012 cm−3 and
G ∼ 0.1 Pa. This value should be regarded as an order-of-magnitude estimate. The
finite extensibility parameter b can be estimated from the number of Kuhn-steps in a
polymer chain, b =3NK . For polyacrylamide we obtain b ≈ 3.3 × 105.

Predictions for the kinetics of ligament thinning and breakup in the jet are then
obtained by integrating (4.8) using these fluid properties. Results for the evolution
in ligament radius for the range of nozzle radii R0 used in experiments are shown
in figure 18(a). The broken line shows predictions of the asymptotic theory for the
intermediate quasi-equilibrium elastocapillary regime from (4.13). However, for the
molecular parameters relevant to our polyacrylamide chains, finite extensibility affects
the kinetics of constant-force thinning almost from the beginning, leading to faster
thinning than the exponential equilibrium as can be seen in figure 18(a).

Some general conclusions follow from these results. For a fixed relaxation time, the
breakup time depends on the initial radius of the ligament and on the macromolecular
extensibility. The dependence on the initial radius can be traced back to the equality
Azzr

4 = A0
zzR

4
0 which gives the value of elastic strain at the end of the initial fast

necking phase when we cross over from the inertiocapillary to the elastocapillary
regime. From (4.13), this strain scales as R−2

0 , which leads to a prolonged stage of
elastocapillary thinning in the ligament for larger R0. This provides a preliminary
explanation of the increasing longevity of the ligaments in the gobbling regime for
larger nozzle sizes.

4.7. Breakup time: theory versus experiment

We are finally in a position to evaluate the jet breakup time tbr as a function of the
initial jet radius by calculating the evolution of the ligament radius from R0 to breakup
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Figure 18. Numerical calculations of the thinning kinetics for the viscoelastic ligaments
that interconnect the beads along the jet for nozzle inner radii of Ri = 0.075, 0.1,
0.125, 0.205, 0.42 mm. Predictions for λ= 12 ms, b =3.3 × 105, G = 0.1 Pa; and (a): A0

zz = 1,

(b): A0
zz = 3 × 103 (for Ri =0.42 mm) to A0

zz = 3.1 × 105 (for Ri = 0.075 mm). The broken line
shows the prediction of the asymptotic theory for the elastocapillary quasi-equilibrium regime.
The open symbols are experimentally observed ligament radii.

(r = 0). The results for tbr obtained from figure 18(a) are presented in figure 11 as the
dotted line. While these results do show the systematic dependence of the breakup
time on the nozzle radius also observed in experiments, the predicted breakup times
are an order of magnitude below the experimental observations. Furthermore, the
numerical calculations in figure 18(a) show a pronounced first stage of inertiocapillary
thinning (§ 4.3) with a fast initial drop in filament radius over an order of magnitude,
which is not observed in the experimental images of figures 1 or 3. The reasons for
this are manifold; from inadequacy of the estimates for molecular parameters to the
very simple dumbbell model selected to describe the polymer chains. Nonetheless, the
FENE model correctly describes the results obtained in capillary breakup extensional
rheometry (§ 2.1). A comparison of the observed diameter evolution in the CaBER
device after a step strain with the predictions of the FENE model in figure 2 leads to
a realistic estimate of the modulus G =0.1 Pa and finite extensibility b = 3.3 × 105 as
suggested by molecular estimates, and the theory matches the experiment in figure 2
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rather well. The source of discrepancy between experiments and theory in the constant-
force thinning of a thin jet must therefore lie elsewhere.

One option that is certainly worth further examination is related to the ‘initial’
state of polymer molecules in the fully developed jet exiting the nozzle. It is quite
plausible that the polymer molecules are partially oriented and elongated after exiting
the syringe nozzle. Fluid elements at the exit undergo a small local die swell (leading
to R0 > Ri) and the velocity field in the jet must rapidly rearrange to develop a
plug flow profile (Apelian, Armstrong & Brown 1988) resulting in potentially large
non-zero initial elastic stresses in the jet. The short residence time of fluid elements
in the present experiments (compared to the fluid relaxation time) gives an intrinsic
Deborah number De0 = λ/τR = 12/1 	 1 (McKinley 2005). This also indicates that
any effects of this initial configuration can propagate substantially along the jet as
the growing fluid column begins to exhibit the Rayleigh plateau instability described
in § 4.3. Numerical calculations of drop ejection with a FENE dumbbell model
(Yarlanki & Harlen 2008) show that this rearrangement in the velocity field near the
stick-slip singularity at the nozzle exit coupled with the high shear rates near the wall
of the needle can indeed cause significant molecular elongation. Such simulations
also show that this preorientation is radially inhomogeneous with a thin sheath
of prestretched material surrounding a relaxed core of unstretched material. Of
course, a radially averaged theory of the type presented in § § 4.2–4.4 will not be
able to capture this radial elastic boundary layer and quantitative comparison with
our experiments must await advances in time-dependent free-surface viscoelastic
simulation. However, to demonstrate the importance of this prestretch we consider a
simplistic case in which we generate a uniform average level of axial prestretch A0

zz in
the polymer molecules entering the jet. In the model equations above, we thus should

use A0
zz > 1; A0

rr =A0
zz

−1/2
and we also have to incorporate this contribution of the

initial extension into the upstream value of the axial force in the jet in (4.2):

F = πγR0 + GπR2
0

(
A0

zz − A0
zz

− 1
2
)
.

Repeating the numerical calculations for the evolution of the ligaments between
beads in the jet, we can determine the value of the prestrain A0

zz that gives a
reasonable fit to the experimental observations of breakup times. The results are
shown in figure 18(b) for a prestretch ranging from A0

zz = 3 × 103 for the larger nozzle
radii to A0

zz =3.1 × 105 for the smallest nozzle (A0
zz/b = 0.009−0.93). For comparison,

also experimental measurements of the thinning ligament radius determined from
sequences of video images for the specific case of gobbling close to critical conditions
are shown in figure 18(b) and these are in accord with the numerical data. The
prestretch introduced in the numerical calculations of figure 18(b) prevents the
occurrence of a first stage of inertiocapillary thinning that was observed in figure 18(a).
Furthermore, the required prestretch values lead, for smaller nozzle radii, to initial
ratios A0

zz/b > 0.1, the value that marks the onset of finite extensibility effects and
the third stage type thinning described in § 4.5. For very small nozzle radii, this
stretch is continuously increasing over the course of the numerical calculations and
prohibits the establishment of the second stage of elastocapillary thinning given by
(4.13). Finite extensibility effects play a role right from the beginning when the jet
exits the nozzle, again in reasonable agreement with the experimental observations in
figure 18(b).

The good agreement between the experimental measurements of the ligament
thinning kinetics and the numerical calculation in the elastocapillary and finite
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extensibility regimes further support the necessity of incorporating the prestretch in
order to describe quantitatively the evolution of the elastic ligaments during gobbling.
For completeness the breakup times obtained from the numerical calculations
including the prestretch are also shown in figure 11 (dashed line) and are close
to the apparent breakup times. Further improvements in this simple constant-force
thinning theory require a more realistic description of macromolecular behaviour
during rapid elongation. However, even the simplified dumbbell model we have used
provides quite satisfactory predictions of the general trends observed in the breakup
times.

5. Conclusion
The ‘gobbling’ phenomenon observed at the transition from dripping to jetting for

thin jets of dilute polymer solutions is essentially a form of delayed dripping: the result
of the dynamic interaction of capillary breakup in a falling viscoelastic jet with a large
terminal drop that serves as a sink for the mass and momentum of the incoming fluid.
In the ‘true gobbling’ regime the jet breakup proceeds independently of the terminal
drop motion; the polymeric additive primarily controls the longevity of the slender
fluid filaments that form between beads in the latter stages of jet breakup. The presence
of a finite relaxation time regularizes the complex dynamics observed in dripping-
jetting transitions of Newtonian and generalized Newtonian fluids (Coullet et al.
2005; Yildirim & Basaran 2006). The viscoelastic filaments do support a significant
tensile force which is transferred to the terminal drop and thus controls its dynamics.
Our momentum balances show that this force can be estimated as the capillary force
present in the upstream segment of the jet. The gobbling behaviour can be predicted
quantitatively by a theory combining elementary mass and momentum balances for
the jet and for the terminal drop in conjunction with theory for viscoelastic filament
thinning and breakup that takes into account the existence of (constant) tensile forces
in the ligaments between drops and finite extensibility of the polymeric molecules.

As a result of the persistence of the axial force, the breakup of these finite length
fluid columns proceeds differently from the capillary breakup of an infinitely long
liquid jet, which constitutes the foundation of the Rayleigh approach to jet breakup
theory. The distinction is of minor concern for simple Newtonian fluids for which
the breakup time is controlled by the early stage of capillary instability; however,
it becomes crucial in the case of polymer solutions that are prone to substantial
strain-hardening. It is anticipated that much of the previous work on viscoelastic jet
breakup based on the Rayleigh approach should be revisited from this point of view.
Since the transition is very sensitive to the viscoelastic characteristics of the polymer
solutions, rheological properties of very dilute polymeric solution may be deduced
from similar ‘ video-rheology’ experiments.

The authors would like to acknowledge gifts from Schlumberger Foundation and
the Class of ’51 Fellowship fund at MIT which enabled this work to be carried out
collaboratively in the Hatsopolous Microfluids Laboratory.

Appendix A. Derivation of the parabolic trajectory of the terminal
gobbling drop

We consider a short and rapidly flowing capillary jet between the nozzle and the
terminal ‘gobbling drop’. Although a convective capillary instability develops on the
jet (figure 1), the jet appears stationary when considered on large time scales, with



Gobbling drops of polymer solutions 35

high-frequency capillary perturbations superimposed on this time-averaged steady
state. The mass balance and linear momentum balance for the terminal drop is given
by (3.11) and (3.12). Using (3.11) and (3.7), the momentum balance (3.12) can be
rewritten as

ρVdUd

dt
= ρ

Q

U0

(U0 − Ud)
2 + ρVg − πR0γ. (A 1)

Because Q, U0 and R0 are all time-independent, (3.11) and (A 1) have simple first
integrals. We can define the non-dimensional variables:

v =
V
V0

and τ =
t

t0
, with V0 =

F

ρg
and t0 =

√
V0U0

gQ
≡

√
γ

ρg2R0

,

(A 2)
where V0 compares the axial force to gravity and t0 is the time scale on which
the weight of the free falling jet balances the capillary force (ρgR2

0 · t2
0 ∼ γR0). Then

introducing (3.11) into (A 1) we get

− d

dτ
(vv̇) = v − 1, (A 3)

where v̇ = dv/dτ . Substituting μ = v2/2 into (A 3) results in

d2μ

dτ 2
= −

√
2μ + 1. (A 4)

This equation simply represents the motion of a material point of unit mass in a
force field with the potential

Φ(μ) =
2
√

2

3
μ3/2 − μ. (A 5)

Therefore, the energy integral for this equation is

E = 1
2
μ̇2 + Φ(μ) = 1

2
μ̇2 + 2

3

√
2μ3/2 − μ, (A 6)

or, using physical variables

E = 1
2
v2v̇2 + 1

3
m3 − 1

2
v2. (A 7)

If we use μ = v2/2 and ν =(v̇2 + 2v/3 − 1) as coordinates, then the level lines of
the total energy E (which are trajectories corresponding to solutions of (A 3)), are
just hyperbolae in the μ, ν plane; the non-trivial trajectory corresponding to E =0 is
given by the equation

v̇ =
√

1 − 2
3
v. (A 8)

This equation can be solved explicitly for an initially zero drop volume (i.e. v(0) = 0)
to give

v̇ = 1 − 1
3
τ ; v = τ − 1

6
τ 2. (A 9)

In dimensional form we thus obtain an expression for the evolution in the volume of
the terminal drop V(t):

V = πR2
0

(
U ∗t − 1

6
gt2

)
; U ∗ =

√
γ

ρR0

, (A 10)

where the velocity scale U ∗ is the characteristic velocity of capillary waves on the jet
of radius R0 (Rayleigh 1879).
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Figure 19. The rate of evolution of the volume of the terminal drop versus the scaled drop
volume v = V/V0; broken lines: trajectories corresponding to non-zero initial volume; solid
line: the trajectory corresponding to negligible initial drop volume and expressed by (A 9).

Essentially, this analysis is (with minor modification due to the different prefactor
in the force formulation) the solution derived by Clanet & Lasheras (1999) for the
surface tension driven motion of a terminal drop at the end of a water column.
The hyperbolic structure of the field level lines {μ(t), ν(t)} shows that all trajectories
eventually tend to this solution. This is confirmed by the direct numerical calculations
presented in figure 19. Motion along the trajectories can also be described analytically
by elliptic integrals.

This solution describes the slow dynamics of the evolution of the terminal drop
volume; at a certain point, the drop suddenly detaches, and a new cycle starts. It
is rather difficult, if not impossible, to adequately specify the initial conditions for
the new cycle. However, this proves to be of minor concern, provided that the initial
volume of the new terminal drop is small enough. It is obvious from figure 19, that all
solutions starting with sufficiently small initial value of v(t = 0) are quickly attracted
to the solid line expressed by the elementary solution (A 9) that corresponds to
negligible initial volume. Therefore, this particular solution describes a robust feature
of the ‘gobbling’ behaviour.

Rearranging (3.11), the velocity of the terminal drop can be expressed as:

Ud =
dL

dt
= U0

(
1 − V0

t0Q
v̇

)
.

Here, L(t) is the current position of the terminal drop. As the above discussion has
shown, one is justified in using the elementary solution (A 9) for v(τ ) to describe the
drop evolution in the gobbling regime. This results in the parabolic solution

Ud(t) = U0 −U ∗ + 1
3
gt; L(t) = Lmax +

(
U0 − U ∗) t + 1

6
gt2; U ∗ =

√
γ

ρR0

. (A 11)

Appendix B. Dynamic theory for an accelerating jet
An obvious drawback of the elementary theory is that it does not take into account

the variation in the fluid velocity along the jet caused by gravitational acceleration.
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At flow rates close to critical conditions such variations become significant even for
very thin jets. Indeed, the relative velocity variation can be estimated as

δU

U0

∼ gLmax

U 2
0

.

This contribution ranges from 0.15 to 3.5 from our experiments and thus turns out
to be important. In this Appendix the periodic jet theory presented previously is
extended to the case of a fluid velocity U (z) that varies along the jet. As in the
previous case, we assume that the flow in the jet can be considered to be inviscid and
the flow in the jet is quasi-steady on the time scale of ‘gobbling’. Then the mass and
momentum balances for a slender jet under steady state conditions become

πR2U = Q = const, (B 1a)

d

dz

(
ρπR2U 2

)
= ρgπR2 +

d

dz
(πγR) . (B 1b)

In (B 1b) the left-hand side is the linear momentum flux out of the control volume
and the terms on the right-hand side are the contributions of gravity, and of the net
axial force due to surface tension and pressure at any cross-section respectively. The
z-axis is directed downwards; R(z) and U (z) are the local jet radius and velocity.
Integrating (B 1) we find the velocity distribution along the length of the jet:

z =
U 2

2g
− U 2

0

2g
+

γ

ρgR0

(√
U

U0

− 1

)
, R = R0

√
U0

U
, (B 2)

R0 and U0 being the jet radius and velocity near the nozzle. Alternatively, in
dimensionless variables (B 2) becomes

Bo
z

R0

= 1
2
We

(
U 2

U 2
0

− 1

)
+

√
U

U0

− 1,

where We = ρU 2
0 R0/γ is the Weber number and Bo = ρgR2

0/γ the Bond number
based on the initial jet radius.

For Bo 
 1 the velocity profile U (z) can be readily approximated by a quadratic
function, and R(z) is then evaluated using this approximate expression and (B 2).
Notice that the velocity increases with distance from the nozzle, while the jet radius
and therefore the net axial force decrease. Assuming that the jet radius and velocity
are specified as functions of z, we can write the mass and momentum balances for
the terminal drop as before in the form of (3.11). The only difference is that U (z)
and F = πγR(z) should now be evaluated at the current location L(t) of the terminal
drop using the jet profile determined by solving (B 2). This leads to the following set
of differential equations:

dL

dt
= Ud; (B 3a)

VdUd

dt
=

Q

U
(U − Ud)

2 + Vg − F

ρ
; (B 3b)

dV
dt

= Q

(
1 − Ud

U

)
, (B 3c)

with U = U (L) and F = πγR(L). These equations can be integrated numerically. It is
convenient to take initial conditions corresponding to the instant immediately after
the terminal drop detachment, so that at t = 0, V =0 and L =Lmax . Equations (B 3)
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Figure 20. Oscillations of the terminal drop in a jet accelerating under gravity. Drop position
and volume variation during an individual ‘gobbling cycle’ for a nozzle with an initial jet radius
R0 = 0.188 mm and a breakup time of tbr = Lmax/U0 = 26 ms. Solid lines: numerical solutions
of the dynamic theory for an accelerating jet (B 3) for different values of U0 = 0.313, 0.35 and
0.41 m s−1. Dotted lines: analytical solutions of the elementary theory from equations (3.13)
and (3.16) of § 3.3.

require one more initial condition, the initial velocity Ud of the growing terminal drop.
It is straightforward to check numerically that all solutions corresponding to different
values of the initial velocity rapidly converge to a unique solution corresponding
to the finite acceleration of a drop of initially vanishing volume that starts with a
velocity:

Ud(t = 0) = U (Lmax ) −
√

γ

ρR(Lmax )
. (B 4)

For a given initial jet radius R0 and a specified maximum length Lmax , solutions
of (B 3) with the initial conditions stated above depend only on the flow rate Q (or
equivalently the initial jet velocity U0). An example is presented in figure 20. The
profiles are evaluated for an initial jet radius R0 = 0.188 mm and three different jet
velocities U0 = 0.313, 0.35 and 0.41 m s−1 that correspond to the three characteristic
cases visualized in figure 3; (1) ‘incipient gobbling’ with vanishing oscillation
amplitude, (2) ‘moderate gobbling’ with an amplitude equal to half of the critical
length and (3) ‘critical gobbling’ with an amplitude equal to the maximum length of
the jet. In these examples, the values for Lmax are deduced from the breakup time
measured experimentally for this particular jet radius: Lmax = U0tbr with tbr = 26 ms.
Note that because of axial acceleration in the jet the actual time required for a fluid
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particle exiting the nozzle to reach Lmax is shorter than tbr . For instance the ‘times of
flight’ corresponding to the three presented case are 22.9, 22.8 and 22.7 ms respectively.

We can finally compare these calculations to the results of the elementary theory
of § 3.3. The dynamic theory generally gives smaller oscillation amplitudes due to a
smaller initial acceleration of the terminal drop. A direct comparison of experimental
data for the position and mass of the end drop to the results of the elementary theory
has been given in figure 9. The experimental data is well described by the dynamic
theory of an accelerating jet.
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