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A spherical bead deposited on a smooth tilted dry plane wall rolls down the slope under the uniform
acceleration of gravity. We describe an analogous experiment conducted using a plane wall that is
coated with a thin layer �of order 50–100 �m� of a viscous liquid. The steady motion of the sphere
under gravity involves a combination of rotation and sliding. We examine the dependence of the
experimentally observed steady translational and rotational speeds on the physical parameters in the
system. In particular, the interplay between viscous forces and interfacial forces leads to nontrivial
exponents for the scaling of the speeds with the characteristics of the sphere and the viscous liquid.
The overhang situation, in which the sphere rolls down the underside of an inclined lubricated plane,
is also examined. In this case, the steady motion is still observed for a certain range of angles and
bead sizes; that is, the sphere does not always detach from the surface. The adhesive force arises
dynamically from the motion of the sphere and can exceed classical quasistatic capillary forces.
Such a force should also play a role in other problems of lubrication mechanics such as humid
granular flows. © 2009 American Institute of Physics. �DOI: 10.1063/1.3207884�

I. INTRODUCTION

In his pioneering work on projectile motion Galilei1 dis-
covered around 1602 that a solid sphere deposited on an
inclined plane rolls down with a constant acceleration. Con-
versely, when the whole experiment is immersed in a viscous
fluid, viscous dissipation leads to the steady motion of the
sphere.2,3 We study here an intermediate case where the
plane is lubricated with a thin layer of viscous liquid, which
introduces capillarity, or interfacial forces, into the problem.
While the case of a fully immersed sphere has been de-
scribed widely as a benchmark for many practical applica-
tions ranging from lubrication4,5 to the flow of suspensions6

or vesicles,7 our interfacial situation has received less atten-
tion. This configuration may, however, capture some elemen-
tary mechanisms relevant to the flow of wet granular media,8

the rupture of capillary bridges,9,10 or the classical printer’s
problem.11–13 We address several questions: Does the sphere
obtain a steady motion? Does it rotate or slide? How does the
velocity evolve as a function of the experimental param-
eters? In particular, will the sphere remain attached to the
wall if the tilt angle exceeds 90°?

One common feature of our experiment with the fully
immersed situation is with regard to the paradoxical impli-
cation of the Stokes equation. At low Reynolds numbers, the
flow field is reversible, leading to a symmetrical pressure
field around the sphere. This symmetry prevents a normal
force from arising and a sphere denser than the surrounding
fluid is expected to sink progressively and eventually touch
the plane. Although solid-solid friction may be observed ex-

perimentally �sliding motion of the sphere�, the classical cal-
culation by Goldman et al.14 of the stress and torque experi-
enced by an immersed sphere translating and rotating with a
finite gap separation in the vicinity of a plane remains the
starting point before taking additional friction effects into
account. Some authors have proposed to include roughness
effects,2,15,16 elastic deformation of the solids,17 pressure-
dependence of the fluid properties,18 or fluid inertia for
higher Reynolds numbers.19,20 In addition, a large pressure
drop toward the back of the moving sphere may also initiate
the formation of cavitation bubbles, whose presence breaks
the symmetry of the Stokes flow and induces a lift force
�normal to the plane� on the sphere.5,11,16,21

In the following sections, we will first describe our ex-
perimental setup in Sec. II and extract the relevant physical
parameters through dimensional analysis in Sec. III. After
exploring the translation of the sphere as a function of the
experimental parameters in Sec. IV, we present some ap-
proximate theoretical ideas in Sec. V, and finally we focus on
experiments performed in the overhang situation.

II. EXPERIMENTAL SETUP

The experiment is sketched in Fig. 1: A solid sphere is
placed on the top of a tilted glass plate 40 cm long that has
already been coated with a thin layer of viscous oil. For a
given inclination angle �, the position and the rotation of the
sphere are recorded with a video camera. The steady trans-
lation speed V and the rotation speed � are then measured.

The viscous fluids used for most of the experiments are
silicone oils with surface tension �=20.6 mN /m, density
� f =950 kg /m3, and viscosity � in the range of 1–100 Pa s.a�Electronic mail: jbico@pmmh.espci.fr.
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One set of experiments was performed with castor oil, with
�=35 mN /m, � f =960 kg /m3, and �=0.75 Pa s. The vis-
cosity of the liquids was determined as a function of tem-
perature with a rheometer �AR1000, TA Instruments� to ac-
count for variations in the temperature of the room. The fluid
properties are summarized in Table I. The viscous coating is
achieved by spreading the viscous liquid with a blade set at a
fixed gap from the plate in the range of 50–500 �m. Great
care was taken during the spreading to avoid the classical

formation of interfacial ribs.11 Prior to the experiments, the
film thickness h� is carefully measured with a displacement
confocal micrometer �LT 9000, Keyence�. As the plane was
tilted, the liquid tended to drain with a typical speed
� fg sin �h�

2 /�. The relative error in the thickness due to
drainage can then be estimated by � fg sin �h�

2 /�V. This er-
ror was below 10% for all our experiments. High precision
ball bearings with radii a spanning from 1.6 to 16 mm were
purchased from hardware suppliers. They were available in
different materials with respective solid densities �s=1.44
�Delrin®�, 2.33 �aluminum�, 3.81 �ceramic�, 8.34 �chrome
steel�, 8.52 �brass�, and 14.9 �tungsten carbide� g /cm3. Op-
tical microscopy observations showed that most metal and

ceramic spheres had micrometer scale roughness. However,
the aluminum and Delrin spheres were found to be signifi-
cantly rougher. Nevertheless, the maximum amplitude of
roughness was determined to be lower than 10 �m for these
latter materials. The physical characteristics of the spheres
are summarized in Table II.

The typical experimental positional data reported in Fig.
2 exhibit steady translational and rotational velocities. The
sphere is observed to simultaneously rotate �rate �� and slide
�speed V� during its motion �a� /V�1�, which suggests the
absence of solid-solid friction between the sphere and the
wall. This steady motion of the sphere is reached after a
short transient regime. A simple estimate of the characteristic
distance Ltrans traveled during this regime is given by
Ltrans�V2 /g sin �, which is found to be less than the sphere
perimeter.

A complementary setup was also constructed to confirm
the steadiness of the motion: The sphere is placed on the
inner face of a rotating drum coated with the viscous liquid.
In this case, the height reached by the bead and the corre-
sponding tilt angle � are determined as a function of the
velocity V of the base �Fig. 3�. Although this apparatus was
not suitable for accurate experiments �the sphere rolls on its
own track and therefore h� is not carefully controlled�, it did
prove the steadiness of the phenomenon: After a transient
regime the spheres remained in a steady position for several
hours. Stable overhang positions were also found. In contrast
to the immersed case,21 the sphere does not detach from the
surface over a certain range of the experimental parameters.

FIG. 1. �Color online� �a� Tilted plate configuration: A sphere is placed on a
inclined plate coated with a thin layer of viscous liquid. The motion of the
sphere is studied for an imposed tilt angle. �b� Typical experiment illustrat-
ing the complex shape of the liquid meniscus around the sphere.

TABLE I. Fluid material properties.

Liquid
Surface tension

�mN/m�
Density
�g /cm3�

Range in viscosity
�mPa s�

Silicone oils 20.6 950 1–100

Castor oil 35 960 0.75

TABLE II. Material properties of the spheres.

Material
Density
�g /cm3�

Range in radius
�mm�

Tungsten carbide 14.9 2.38–6.35

Brass 8.52 3.18–6.35

Chrome steel 8.34 1.59–15.87

Ceramic 3.81 3.18–15.87

Aluminum 2.33 12.7

Delrin® 1.44 3.18–12.7
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FIG. 2. �Color online� Typical experiment with �s=14.9 g /cm3,
a=3.18 mm, h�=150 �m, �=30 Pa s, �=20.6 mN /m, and �=13° �error
bars: 1 /30th s for time, 0.2 mm for the position, 0.1 rad for the angle�.
Steady linear and rotational velocities are measured, V=1.9 mm /s,
�=0.34 rad /s, which leads a sliding coefficient a� /V=0.57.
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III. DIMENSIONAL ANALYSIS

The parameters that dictate the independent linear and
rotational velocities V and � are the angle of inclination �,
the sphere radius a and density �s, the film thickness h�, the
fluid viscosity �, surface tension � and density � f, and the
gravitational constant g. By dimensional analysis, the whole
problem is described by six independent dimensionless pa-
rameters. We selected the following combination of these
parameters:

�V

�
, �,

�sga2

�
,

h�

a
,

� fVh�

�
,

� fgh�
2

�V
. �1�

The nondimensional velocity, or capillary number,
Ca=�V /� compares viscous stresses in a meniscus to inter-
facial stresses. The ratio Bo=�sga2 /�, referred to as the
Bond number, compares gravitational forces on the sphere to
capillary forces. The quantity � fVh� /� is the Reynolds num-
ber and compares inertia to viscous effects based on the rel-
evant length scale of the liquid flow �h��. Finally, the ratio
� fgh�

2 /�V compares the characteristic draining velocity of
the fluid to the speed of the sphere. All of our experiments
were conducted with a liquid viscous enough, or a film thin
enough, to provide low values of the Reynolds number �the
maximum value reached in our experiments is 10−2� and
slow draining dynamics �� fgh�

2 /�V�0.1, however most
common values are orders of magnitude lower�. Therefore
we assume that the last two parameters in Eq. �1� are not
important for determining the motion of the sphere. The as-
sumption of creeping flow is also experimentally confirmed:
Translational and rotational velocities are inversely propor-
tional to the fluid viscosity over two decades of viscosity
�Fig. 4�. We thus expect the sphere motion to depend on
three nondimensional parameters,

��V

�
,
a�

V
� = F��,

�sga2

�
,
h�

a
� . �2�

IV. EXPERIMENTAL RESULTS

A. Different regimes

As expected, the sphere velocity increases for steeper
slopes �Fig. 5�a��. However, three different regimes, related
to the detailed shape of the liquid film, are observed succes-
sively as the angle is increased. For lower slopes, the menis-
cus around the sphere is nearly circular. This circular shape
is suddenly destabilized, a cusp appears at the rear of the
meniscus, and the sphere velocity jumps to a higher value
when � reaches a certain threshold �Fig. 5�b��. Although the
threshold angle depends on the sphere size, the transition
always occurs for Ca�1, which indicates a strong interplay
between viscous and capillary stresses in the meniscus re-

FIG. 3. Drum configuration: The sphere is placed on the inner face of a
rotating drum �inner diameter 18 cm� coated with a layer of viscous liquid.
Spheres of different radii and densities occupy different angular positions.
The position reached by the sphere and the corresponding tilt angle are
measured for an imposed drum velocity. The white arrow indicates a sphere
rolling steadily in an overhang position.

FIG. 4. �Color online� Translational and rotational velocities obtained by the
sphere as a function of the liquid viscosity, with �s=3.8 g /cm3,
a=3.18 mm, �=24°, h�=60 �m, and �=20.6 mN /m �error bars: 5% for
�, 1% for V and ��.

(a)

(b)

FIG. 5. �Color online� �a� Three distinct kinematic regimes are observed as
the slope is progressively increased, �s=14.9 g /cm3, a=1.59 mm �small
symbols�, a=3.18 mm �large symbols�, h�=120 �m, �=30 Pa s, and
�=20.6 mN /m �error bars: 2% for �, 5% for Ca�. �b� Views from under-
neath the glass plane illustrating the three regimes: circular meniscus for
Ca�1, cusp shape with a tyre print for Ca	1, and overhang case with a
single ridge for �	90°.
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gion when the cusp appears. Oblique ridges are also ob-
served between two parallel wedges in the wake of the
sphere, leading to the appearance of a “tyre print.” This in-
terfacial instability is reminiscent of the printer’s ribbing in-
stability that has been described extensively in literature.11,12

In the printer’s situation, a viscous liquid is carried through
the gap h between two counter-rotating rollers of radius R:
For low rotation speeds, the liquid splits into two uniform
coating sheets, but for high speeds the sheets are regularly
ridged. Following Ref. 12 the onset of instability is then
experimentally found when Ca�62h /R �Fig. 7 in the refer-
ence�, which is in qualitative agreement with a linear stabil-
ity analysis of the liquid flow. Although the flow geometry is
different in the case of a sphere rolling on a plane, taking
h�h� would lead to the criterion Ca�O�1� for the printer’s
instability to develop, which confirms the similarity of the
two instabilities. Close to the transition, states with circular
or cusp shapes coexist in a narrow window of capillary num-
ber �or tilt angle�. Within this window, the observed state
depends on the initial conditions.

Finally, a third, overhang regime is observed when the
inclination angle is above 90° �the maximum bound depends
on the radius of the sphere as will be discussed in Sec. V B�.
The shape of the liquid-air interface undergoes another insta-
bility: The cusp vanishes and a single wedge replaces the
tyre print previously observed �Fig. 5�b��.

B. Dependence on the physical parameters

Before further theoretical considerations, we examine
here the evolution of the sphere velocity with the relevant
physical parameters �specifically �, a, �s, h�, and ��. The
results are presented in Figs. 6–8 in terms of a dimensionless
speed or capillary number. In classical sedimentation dynam-
ics, the balance of the gravitational force ��a3�sg sin ��
with viscous drag ��a�V� leads to a terminal speed propor-
tional to a2�sg sin � /�. However our measurements show
stronger power-law dependencies over two decades in sin �
and one order of magnitude in a and �s: The velocity V

scales with �sin ��1.6
0.05 �Fig. 6�, with a3.2
0.05 �Fig. 7�, and
with �s

1.35
0.05 �Fig. 8�. The different exponents for sin � and
� are also counterintuitive, at least based on naive physical
inspection, and indicate the importance of the deformation of
the liquid-air interface. The results bring to mind the problem
of liquid droplets running down a nonwetted surface. In that
situation the translation speed of the droplet is found to be
proportional to sin � / ��g�1/2.22,23 Also, we note that although
the transition from “circular” to “cusp” regimes for �V /�
�1 leads to a jump in velocity, this jump does not affect the
scaling exponents.

The combination of these experimental scaling laws with
the dimensional analysis from Sec. III suggests a scaling of V
with �h��−0.5. According to this prediction, thicker films lead
to a slower motion of the sphere, in qualitative agreement
with experimental data. However the detailed motion of the
sphere was observed to be more complex: While h� remains
small in comparison with a �a /h�	10�, V� �h��−0.5
0.05 as
expected �Fig. 9�. Erratic motions �unsteady velocity, irregu-

FIG. 6. �Color online� Dependence of the steady translational speed on the
angle: V scales with �sin ��1.6
0.05 �full line�. For �V /��1 both circular
�full symbols� and cusp �open symbols� regimes coexist. Tungsten carbide
spheres a=3.18 mm, �s=14.9 g /cm3, h�=120 �m, and �=20.6 mN /m
�error bars: 2% for sin �, 5% for Ca�.

FIG. 7. �Color online� Dependence of the steady translational speed on the
sphere radius: V scales with a3.2
0.05 �full lines�. �s=7.8 g /cm3,
h�=90 �m, �=20.6 mN /m, upper data �=40°, and lower data �=11.5°
�error bars: �1% for a, 5% for Ca�. In the later case, a transition from
circular �full symbols� to cusp �open symbols� regimes is observed for
Ca	1, which leads to a jump �of 60%� in velocity.

FIG. 8. �Color online� Dependence of the steady translational speed on the
sphere density: V scales with �s

1.35
0.05 �full line�. Both experiments corre-
spond to cusp regimes �error bars: 1% for �s, 5% for Ca�.
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lar spinning� were sometimes observed for thicker films,
which suggests intermittent friction of the sphere with the
plane. This last regime is expected to match the fully im-
mersed situation when h� eventually reaches the order of a.
Following the recent work from Ref. 21, the values of V are
expected to depend on the existence of cavitation bubbles,
and to be proportional to the sedimentation velocity a2��s

−� f�g /� corrected by a function of �. Our experimental re-
sults for thick films �a /h��10� are in agreement with this
limit. Indeed, the steady velocity of the sphere �for nonerratic
experiments� becomes independent of the film thickness
when a /h��10, and the translation speed extracted from the
work of Ashmore et al. �where �s−� f has been replaced by �s

since buoyancy is negligible in our experiments� gives the
right order of magnitude of the experimental velocity
�dashed lines in Fig. 9�.

To conclude this section, the different empirical power-
law dependencies observed for the nondimensional groups
are combined. As shown in Fig. 10, the large collection of
experimental data collapses into the general scaling law

�V/� � �sin ��1.6��sga2/��1.35�a/h��0.5, �3�

with an accuracy of 0.05 for each exponent, and prefactors
0.014 and 0.023 in the circular and cusp regimes, respec-
tively. Both regimes coexist in the vicinity of Ca	1. Equa-
tion �3� predicts a dependence of the speed on the liquid
surface tension V��−0.35. A last series of experiments was
finally conducted with a liquid of different surface tension
�castor oil, �=35 mN /m� and was in good agreement with
the other results �inset in Fig. 10�. The validity of these re-
lations is limited to thin lubricant coatings �a /h�	10�.
Thicker coatings appear to tend to the immersed situation
where the velocity is given by Ca� f���a2��s−�l�g /�. How-
ever, the erratic motion of the sphere often observed in this

thick-layer regime also suggests that solid friction �i.e.,
sphere-wall contact� becomes an important ingredient of the
motion. Lower bounds for h� are also obviously reached
when h� or the gap between the sphere and the wall is com-
parable to the surface roughness �of micron scale�. Although
Eq. �3� is limited to ��90°, overhang situations are also
observed. The speed of the overhang spheres follow a differ-
ent law that will be described in Sec. V B.

C. Sliding versus rotation

The sliding coefficient, a� /V, indicates if the sphere
slides �a� /V=0� or rolls �a� /V=1� down the inclined
plane. In the fully immersed situation this coefficient tends to
the asymptotic value 0.25.21 In the present configuration,
a� /V reaches much higher values �a� /V�0.6�. As the ve-
locity of the sphere was increased, we observed two succes-
sive regimes, with a transition corresponding to Ca�1 �Fig.
11�. For lower velocities, the sliding ratio was close to unity
and the motion of the sphere was partially erratic, revealing
transient solid friction between the sphere and the wall. In
this first regime a� /V was found to decrease as Ca in-
creased. Beyond the transition �Ca	1�, the values for the
sliding coefficient tended to scatter around an average value.
This value was found to slightly increase with the ratio a /h�

�Fig. 12�. As intuition would suggest, thicker lubricating lay-
ers resulted in an increase in sliding. Finally, the effect of the
sphere density was explored: Less dense spheres tend to slide
more than denser ones �Fig. 12�. These observations confirm
the important lubricating role played by the viscous fluid.

FIG. 9. �Color online� Dependence of the steady translational speed on the
film thickness. While a /h�	10, V scales with h�

−0.5
0.05 �full lines�. Com-
parison with the fully immersed case adapted from Ref. 21 �dashed lines�
when V eventually becomes independent of h�. The four series of experi-
ments were conducted with �=23.5°, a=3.18 mm, ��� �s=14.9 g /cm3,
��� �s=7.8 g /cm3, ��� �s=3.8 g /cm3, and �� � �s=1.4 g /cm3 �error bars:
10% for a /h�, 5% for Ca�.

FIG. 10. �Color online� Final collapse of the experimental data for
��90°. The ranges for the physical parameters are 1.6 mm�a�16 mm,
1.4 g /cm3��s�14.9 g /cm3, 1 Pa s���100 Pa s, and 0.02�sin ��1
�error bars: 10% for the abscissa, 5% for Ca�. The liquids used for most
experiments are silicone oils ��=20.6 mN /m�, but a series of data were
obtained with castor oil ��� � �=35 mN /m�. For Ca	1 �cusp regime�,
the linear velocity of the sphere scales as �V /�
=0.023�sin ��1.6��sga2 /��1.35�a /h��0.5 �full line�. The same scaling is ob-
served for Ca�1 �circular regime�, but the prefactor becomes 0.014 �dashed
line�. Inset: sphere velocity vs radius with a film of castor oil.
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V. DISCUSSION

A. Common rolling regime

We have attempted to provide theoretical arguments to
rationalize the experimentally measured scaling laws. Unfor-
tunately, the flow is a three-dimensional free-surface prob-
lem, which introduces many complexities and even thinking
about two-dimensional variants of this finite capillary num-
ber problem appears nontrivial. Nevertheless, we believe that
some of our thoughts are worth sharing. One approach is to
use the steady-state force and torque balances to obtain the
three unknown quantities V, �, and the gap thickness h0

between the sphere and the plane �see Fig. 13�. For example,
the flow in the narrow gap under the sphere can be consid-
ered similar to the lubrication calculation of Goldman et al.14

However, the presence of the meniscus brings additional ef-
fects into our system. For instance, the cusp observed at the
rear of the sphere breaks the symmetry of the Stokes flow
and results in a finite normal force. Capillary forces also tend
to attract the sphere toward the wall in the same manner as

the cohesion of sand castles relies on capillary bridges be-
tween sand grains.24 Interestingly, the corresponding capil-
lary force is almost constant while the volume of the liquid
bridge is small. �In practice, the capillary force eventually
vanishes when the volume of liquid is not enough to fill the
space between the asperities of the surfaces roughness.24 In
this situation the vanishing force only relies on a decreasing
number of minute capillary bridges between asperities.� In
the case of a smooth nonmoving sphere and a plane the ad-
hesion force is given by25 Fcap=4
a�. In the present rolling
case, the shape of the meniscus is more complex and the
expression for Fcap should certainly be corrected. In addition
to the normal capillary attraction, the asymmetry of the me-
niscus may finally lead to distributions of tangential forces
and a torque acting on the sphere. In this way, the forms for
the tangential force and normal force balances, as well as the
torque balance around the center of the sphere should read,
respectively,

4

3

a3�sg sin � =

16


5
��V − a��a ln�a/h0� + Fm, �4�

where Fm represents the capillary force arising from the
asymmetry of the meniscus,

4
3
a3�sg cos � = Fcap + Fvisc, �5�

where Fvisc is the viscous lubrication force resulting from a
nonsymmetric Stokes flow, and

FIG. 11. �Color online� Sliding coefficient a� /V as a function of the di-
mensionless sphere velocity �error bars: 5% for Ca, 3% for a� /V�. In the
first regime, the value of a� /V is close to unity and the erratic motion of the
sphere often observed experimentally indicates transient contact between the
sphere and the wall. Note that data corresponding to different experimental
parameters have been combined in the same sets of ranges of a /h�. We
believe the slight dependence of the sliding coefficient on multiple param-
eters may explain the observed scatter.

FIG. 12. �Color online� The sliding coefficient a� /V increases when
the relative thickness of the liquid is reduced and as the solid density
is increased: ��� ��s=14.9 g /cm3�, ��� ��s=7.8 g /cm3�, ���
��s=3.8 g /cm3�, and ��� ��s=1.4 g /cm3�. �=20.6 mN /m and �=23.5°
�error bars: 5% for a /h�, 3% for a� /V�. The rotation of the lighter spheres
sliding at low values of Ca tended to be erratic and poorly reproducible,
which is probably due to intermittent solid friction.

FIG. 13. �Color online� �a� In the reference frame of the sphere, force and
torque distributions acting on the sphere. �b� The symmetry of the pressure
profile under the sphere is expected to be broken by a capillary cutoff, which
would lead to a positive normal force.
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0 =
4


5
��V − a��a2 ln�a/h0� + �m, �6�

where �m is the torque on the sphere due to the asymmetry of
the meniscus. Lacking a detailed description of the flow, we
are unable to estimate the contribution of the meniscus in
this complex geometry.

With the hope of simplifying the geometry, we finally
considered experimentally the case of rolling cylinders.
However the motion was not steady: Some liquid coating the
surface of the cylinder eventually accumulated in the menis-
cus in front of the cylinder leading to a growing bulge. As
the bulge grew, the motion of the cylinder became unsteady:
The direction of the cylinder axis oscillated, which led to a
zigzagging motion down the plane. In the case of the sphere,
the coating fluid can flow azimuthally around the sides and
does not accumulate in front of the sphere. The last observa-
tion reinforces the importance of the three dimensionality of
the flow for our problem.

B. Overhang regime

For a certain range of parameters, spheres where ob-
served to roll at steady speeds down overhanging planes with
inclinations greater than 90°. Although interfacial forces
would sustain light beads, we observed heavy spheres
steadily rolling in an inverted configuration �e.g., bead indi-
cated by an arrow in Fig. 3�. Comparing the capillary adhe-
sion force to the weight of the sphere simply yields the Bond
number, Bo=�sga2 /�. We focus here on this counterintuitive
regime of overhanging heavy spheres, where Bo cos �	3
which do not occur in the fully immersed situation.21

The maximum slope angle �max allowing the steady mo-
tion of an overhanging sphere was determined as a function
of Bo �Fig. 14�. As expected �max tends to 90° for heavy
spheres and to 180° for lighter ones. Our preliminary experi-
mental data suggest a linear dependence of �max with Bo1/2,
with a maximum value of order Bo�150, which corre-
sponds to a	6 mm for a steel sphere. Counterintuitively,
the linear velocity was not a maximum for �=90°, but was

found to increase with further increases in the slope. An em-
pirical scaling Ca /Bo1.6= f��� collapses the experimental
data to a master curve �Fig. 15�.

Although a comprehensive interpretation of these results
remains an open question, we believe that the adhesive force
results from the interplay of viscous effects and capillarity. In
particular, the free rotation of the sphere is found to be nec-
essary for the adhesion of the sphere on the underside of an
inclined wall. Experiments were carried out with pairs of
spheres of the same radius, a regular sphere of uniform den-
sity, and a lighter one where additional ballast had been con-
centrated on its surface to compensate for the weight differ-
ence. The ballast prevents the second sphere from rotating
and the sphere eventually detaches for any angle higher than
90°. The mechanism for this dynamic adhesion may rely on
a steady detachment in the rear part of the meniscus, leading
to a viscous restoring force.9,10 Our experiments are reminis-
cent of an interesting study by Barquins26 in the context of
adherence and friction on an elastic body. A rigid cylinder
was observed to roll down an elastic incline at a constant
velocity. An overhang motion was also observed, but the
relationship of the velocity as a function of the tilt angle was
symmetric with respect to the vertical �the velocity first in-
creases until � reaches 90°, then decreases�. Although there
are some common features with our experiment, the dissipa-
tive mechanisms are different. In the case of the elastic sub-
strate, the dynamics are mainly controlled by rupture energy
at the rear of the cylinder �where most of the energy is dis-
sipated�, while the extension of the contact area between the
substrate and the cylinder relies on adhesion forces.

VI. CONCLUSION

A sphere deposited on an incline coated with a thin layer
of viscous fluid was observed to move down the plane at a
constant velocity. During its displacement, the sphere slides
as it rolls, which confirms the lubricating role of the thin
viscous layer. The steady translational descent velocity was
explored as a function of the physical variables of the prob-
lem: sphere radius and density, thickness of the liquid layer,
viscosity, surface tension, and inclination angle of the plane.
An empirical scaling law with nonintuitive exponents pro-
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FIG. 14. �Color online� Maximum tilt angle of the slope �max that allows
steady translational motion and dynamic capillary adhesion of the sphere vs
Bond number, Bo=�sga2 /�. The results suggest a window in the size of the
adhering spheres. ��� ��s=14.9 g /cm3�, ��� ��s=7.8 g /cm3�, and ���
��s=3.8 g /cm3� and �h�=120 �m�. Error bars: 2% for Bo1/2, 5° for �max.

FIG. 15. �Color online� Velocity of the sphere vs inclination angle in the
overhang regime, for which we find an empirical scaling Ca /Bo1.6= f���.
��� ��s=14.9 g /cm3�, ��� ��s=7.8 g /cm3�, ��� ��s=3.8 g /cm3�, full
symbols h�=120 �m, and open symbols h�=60 �m �error bars: 5° for �,
8% for Ca /Bo1.6�.
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vides a collapse of the experimental data onto a single master
curve over four orders of magnitude in velocity. For a limited
range of inclinations greater than 90° the sphere can over-
hang and steadily roll down underneath the coated plane. In
this last regime, the adhesion force proves to be mainly de-
pendent on viscous effects. Due to the complexity of the
three-dimensional free-surface flow, we were not able to pro-
vide a theoretical framework to quantify these experimental
results. Additional insights may be gained with the help of
numerical simulations or a more detailed theoretical descrip-
tion of the problem. From the experimental point of view, a
precise estimation of the small gap separating the sphere
from the plane should also provide useful information on the
dynamics. We hope that our preliminary work will motivate
further studies of similar problems.
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