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Rise of Liquids and Bubbles in Angular Capillary Tubes
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We discuss the rise of a liquid inside an angular capillary tube.
It is shown that for a wetting liquid, the height of the rise is (as
usually) inversely proportional to the length which characterizes the
confinement. The exact laws deduced from energetic considerations
are found to be in excellent agreement with the data. We then show
how such tubes can be used to prevent bubbles from being trapped.
The rising velocity of a bubble is finally discussed, in the particular
case of a square tube. C© 2002 Elsevier Science (USA)
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INTRODUCTION

Porous materials exhibit various structures (sponge-like, as-
sembly of fibers, packed spheres, etc.), and it is interesting to
know to what extent the classical laws for a capillary tube remain
valid in such geometries, and how they must be adapted. Here,
we consider the simple case of capillary rise in a medium hav-
ing corners, a question of current interest because of the devel-
opment of microfluidics, where square or rectangular channels
are used for driving liquids. We successively study the rise in a
square tube, and along fibers closely packed (taking into account
the nature of the packing). We finally describe an application of
such model systems, namely the possibility for preventing bub-
bles from being trapped, as often occurs in circular capillary
tubes.

RISE IN A DIHEDRON

If a corner formed from two solid plates is put in contact with
a wetting liquid, a meniscus generally rises inside the corner
(Fig. 1). Different questions can be addressed, such as the con-
ditions for observing a rise and the final height and shape of the
meniscus.

Neglecting the curvature of the liquid/air interface in the plane
(x, z), a balance between the Laplace pressure (related to the
confinement of the liquid in the dihedron) and the hydrostatic
pressure can be written,

γ

R
= ρgz, [1]
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R is the radius of curvature of the interface at a height z; γ

and ρ are the liquid surface tension and density; and g is the
acceleration of gravity. R is geometrically related to the distance
d between the corner and the interface,

d = R

(
cos θ

sin(α/2)
− 1

)
, [2]

where α is the corner angle and θ the contact angle made by
the liquid on the solid. The distance d is positive (which means
that the liquid rises) if the angles verify the classical relation of
Concus and Finn (1):

α + 2θ < π. [3]

For α → 0, we find the classical condition of impregnation of a
porous medium (θ < π/2). Note also that a rise is possible only
for α < π .

The liquid behavior inside the dihedron depends discontinu-
ously on the value of α + 2θ . If the latter quantity is smaller than
π , there is no solution of the Young–Laplace equation meeting
the solid surface with the prescribed contact angle θ and the liq-
uid fingers rise (ideally) to infinity (1). Putting together Eqs. [1]
and [2] shows that the profile of the interface in the plane (x, z) is
hyperbolic (1), as reported in 1712 by Taylor (the one of Taylor’s
expansions) and Hauksbee (2, 3),

d(z) ∼ κ−2

z
, [4]

where κ−1 is the capillary length (κ−1 = (γ /ρg)1/2).
Practically, the height does not diverge because of the finite

curvature of the corner at a small scale. Ramos and Cerro (4) even
deduced from this remark a method for measuring the contact
angle of the liquid on the tube wall. Nevertheless, the rise can
be very high, and the phenomenon is amplified in a low-gravity
environment, as shown by Weislogel and Lichter (5): then, the
liquid fingers invading the corners can mobilize all the liquid.
Tang and Tang (6) recently improved the calculation by taking
into account the curvature of the liquid/vapor interface in the
plane (x, z). The liquid surface is found to be slightly raised as
compared with Eq. [4], which is logical since the considered
curvature has the same sign as the largest one, and thus also
contributes to the rise.
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FIG. 1. Side and top views of a dihedron put in contact with a bath of wetting
liquid. α is the corner angle, θ the contact angle of the liquid on the solid, and
R the radius of curvature of the meniscus at a height z.

SQUARE TUBES

1. Experiments

We now consider a glass tube of square section (α = 90◦)
brought in contact with a reservoir of liquid (Fig. 2). According
to Eq. [3], the liquid should invade the corner if the contact angle
is smaller than π/4. In addition, it is observed experimentally
that a meniscus stands at the center of the capillary (height h), as
in usual capillary rise. The fingers progressing along the corners
can easily be detected with a blotting paper placed at the top
of the tube (i.e., much higher than the position of the central
meniscus): for wetting liquids, it is indeed observed that after a
while, the paper becomes impregnated.

We have measured the level h reached by the visible central
meniscus, using as a liquid cyclohexane which totally wets the
glass (θ = 0◦); h is plotted in Fig. 3 as a function of the inverse of
the (inner) size a of the tube. It is found to vary linearly with the
degree of confinement, as in usual capillary rise. The interesting

R
a

h

∞

z

FIG. 2. Liquid rise inside a square tube (side view and cross section above
the height h, showing the fingers along the corners). The main central meniscus
rises to a height h, measured in Fig. 3. Above h, fingers develop along the corners

under the action of the Laplace pressure associated with the radius of curvature
R(z) of the liquid/vapor interface in the plane of the cross section.
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FIG. 3. Height h of the central meniscus (defined in Fig. 2) in a square
tube of inner size a. The liquid used is cyclohexane, of surface tension γ =
25.5 mN/m and density ρ = 820 kg/m3. The straight line is a fit to Eq. [7].

question here is to determine and understand quantitatively the
slope of this variation.

2. The Princen Model

Princen has proposed to model the rise in the following way
(7, 8). For a capillary invariant by a translation, the height results
from a balance between capillary force and gravity. Considering
an infinitesimal displacement of the contact line along the axis
gives the constant capillary force of the process,

F = pγ cos θ, [5]

where p is the perimeter of a section of the tube (4a for a square).
Considering the weight of the liquid, we must take into ac-

count the liquid column up to the central meniscus, and the
fingers along the corners above (Fig. 2). Hence the total weight
W of the liquid can be written,

W = ρgha2 + 4ρg
∫ ∞

h
(1 − π/4)R2(z) dz, [6]

where the radius of curvature R obeys Eq. [1] (the other radius
of curvature is neglected). Thus, the weight can be easily calcu-
lated. Balancing W with F finally yields the equilibrium height
h for the central meniscus,

h = (2 + √
π )

κ−2

a
, [7]

where we have taken θ = 0. The straight line drawn in Fig. 3
is a fit to Eq. [7] (2 + √

π is about 3.77) and is found to be in
excellent agreement with the data. A much quicker argument
for deriving the height would consist of reducing the weight
to the contribution of the central meniscus, which immediately
yields 4κ−2/a for the height h. The fingers’ contribution is thus
found to lower this quantity by about 6%. Note finally that the
calculation supposes an infinite extent for the fingers, although

the tubes used for experiments have a length of the order of
10 cm. Varying the total height of the tube, we observed that
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the central meniscus keeps the same height (taking a shorter
tube does not make the meniscus rise), which could be due to
the possibility for the liquid to adjust its curvature on the sharp
edges at the extremity of the tube.

ASSEMBLIES OF FIBERS

The same kind of arguments can be used to describe the imbi-
bition in an assembly of fibers (7, 8), as may exist in fabrics or in
brushes. We restrict our study here to the case of close-packed
fibers (of radius b), and consider triangular and square lattices
(Fig. 4). The liquid is still taken to be wetting (θ = 0).

For a triangular lattice, the perimeter of each interstice is
πb, so that the capillary force F (per interstice) is given by the
relation,

F = πbγ. [8]

The weight of liquid (per interstice) still decomposes in the cen-
tral meniscus contribution plus the fingers one, which can be
written,

W = (
√

3 − π/2)ρghb2 + 3ρg
∫ ∞

h
S(z) dz, [9]

where the section S is

S(z) = b2

(√
R2(z)

b2
+ 2

R(z)

b
− Arc cos

b

R(z) + b

− R2(z)

b2
Arc sin

b

R(z) + b

)
. [10]

The radius of curvature R(z) is still given by Eq. [1]. Solving
the equation F = W leads to the following expression for the
height of the central meniscus:

h = 11.32
κ−2

b
. [11]

For a square lattice, the section of each interface is twice larger
than previously, which gives for the capillary force,

F = 2πbγ. [12]

b 

FIG. 4. Two types of close-packed assemblies of fibers or rods (of radius b).

The first lattice is taken to be triangular (maximum close packing), and the second
one square.
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FIG. 5. Height of the central meniscus inside an assembly of close-packed
cylinders of radius b. The lattice can be either triangular (maximum packing) or
square, the corresponding data being respectively symbolized by triangles and
squares. The full line is a fit to Eq. [11] and the dotted one Eq. [14].

The weight per interstice is also larger,

W = (4 − π )ρghb2 + 4ρg
∫ ∞

h
S(z) dz, [13]

where S(z) is given by Eq. [10]. Again, the equilibrium height
is obtained by solving the equation F = W . It naturally obeys
the same scaling law as previously (Eq. [11]), but the numerical
value is found to be significantly smaller:

h = 4.49
κ−2

b
. [14]

We achieved such assemblies by packing millimetric rods to-
gether. The height of the meniscus inside such assemblies is
plotted in Fig. 5 as a function of the inverse of the rod radius,
using once again cyclohexane as a rising liquid. The data are
compared with Eqs. [10] and [14], and a good agreement is
found.

RISE OF A BUBBLE IN A CLOSED TUBE

Let us now consider a tube closed at both ends, with a bubble at
the bottom (Fig. 6). We consider a bubble of volume much larger

air

liquid

2r
FIG. 6. Air bubble trapped (or possibly rising) in a closed tube of inner
radius r filled with a wetting liquid.
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than a3 (noting a the characteristic size of the tube), which forces
it to elongate as drawn in Fig. 6. We still take as a liquid a wetting
fluid (θ = 0), which remains on the wall. If this were not the case,
the film would be likely to dewet, and contact lines would exist;
together with the contact angle hysteresis generally associated
with partial wetting, this would provide another reason for the
bubble to be trapped.

In his classical paper on bubbles in a tube partially filled
with a wetting liquid (9), Bretherton showed that a bubble is
trapped if

r < 0.918κ−1, [15]

i.e., if the tube radius r is smaller than about the capillary
length κ−1 (κ−1 = (γ /ρg)1/2). This results from the fact that
the liquid/air interface must deform for rising. Of course, this
critical radius no longer exists if the tube is open.

In his approach, Bretherton did not take into account the pos-
sible presence of a microscopic wetting film around the bubble,
which can connect both parts of the liquid as shown by Di Meglio
(10). Such a film would allow the bubble to rise, but the velocity
would be very small because of the thinness of the wetting films.
We can evaluate a typical rise velocity. First, the thickness of the
wetting film results from a balance between a Laplace pressure
and a disjoining pressure, which leads to a thickness h of the
order of 10 to 100 nm (10, 11). The velocity of gravitational
drainage through such a film is given by a Poiseuille law, for a
flow between a solid and a free surface,

V = h2

3η
ρg, [16]

where η is the liquid viscosity. The rising velocity is finally
deduced from conservation of matter: it is of order hV/R, and
thus is found to be extremely small. For typical values of the
different parameters, the bubble velocity should be of the order
of 10−13 m/s (i.e., 10 µm in 3 years)! These values can be larger
if the tube walls are rough: because of the possible imbibition
of the roughness, the two parts of the liquid can be connected
by much thicker channels (12).

It can be of interest, in different applications, to find a solu-
tion to get rid of such bubbles in a short time. The simplest way
consists of making thicker the film around them. This can be
achieved by using angular tubes, which trap fingers in their cor-
ners, as emphasized above. The situation with a tube of square
section is illustrated in Fig. 7.

We conducted a series of experiments with such a tube. The
capillary was first filled with a wetting liquid (a silicone oil
of viscosity η = 17 mPa · s). A bubble was then introduced at
the bottom of the tube, which was finally sealed. It was ob-
served that the bubble rises at a constant velocity, of the order of
10 µm/s. We also found that this velocity does not vary with

the bubble length, for a bubble longer than the size a of the tube
(experiments were done by varying the bubble length by about
LAR CAPILLARY TUBES 165
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FIG. 7. Air bubble rising at a velocity VB in a closed square tube of inner
size a partially filled with a wetting liquid. The cross section shows the angular
channels which help to drive the bubble.

a factor of 30, between 2 mm and 6 cm). The rising velocity VB

is plotted in Fig. 8 as a function of the size a of the tube. The
smaller the size, the thinner the fingers in the corners and thus
the slower the motion. Figure 8 indicates that VB scales as a2,
in agreement with Eq. [16], providing that the mean thickness h
of the liquid channel scales as a.

This behavior can be understood more quantitatively. Let us
suppose that the liquid/air interface keeps a static shape despite
the flow. This shape (and thus the radius of curvature of the free
interface) can be deduced from a minimization of the surface of
the bubble, which gives for a wetting liquid, as shown by Dong
and Chatzis (13),

R = 1

2 + √
π

a, [17]

where the numerical coefficient is about 0.275. This radius of
curvature is, of course, the same as the one calculated above for
the law of capillary rise (Eq. [7]).

The drainage velocity is obtained by balancing viscous fric-
tion with gravity (inertia can very generally be neglected in such
confined flows). Ransohoff and Radke determined the viscous
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FIG. 8. Velocity VB of an air bubble rising in a closed square tube (of inner

size a) partially filled with a wetting silicone oil of viscosity η = 17 mPa · s and
density ρ = 980 kg/m3. The straight line is a fit to Eq. [20].
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pressure drop along a corner (14). They found a Poiseuille-type
law,

∇ P = C
ηV

R2
, [18]

where V is the mean velocity of the flow, and C a numerical
constant which depends of the opening angle of the corner, and
which is about 94 for a square angle. Balancing this pressure
gradient with the gravity ρg, we find the flow velocity,

V = ρgR2

Cη
= 7.5 × 10−4 ρga2

η
. [19]

The rising velocity for the bubble is easily deduced from con-
serving the flow rate. We thus obtain

VB = 4.8 × 10−5 ρga2

η
. [20]

The latter relation can be directly compared with the experimen-
tal data in Fig. 8 (straight line). The agreement is quite good,
although some values are smaller than the predicted value which
could be related to the blunt nature of the corner as mentioned by
Ransohoff and Radke (14). Note that in this approach, the flow
was simplified by considering a quasi-static shape for the inter-
face. This can be justified by the modest value of the capillary
number Ca = ηV/γ , which is written 5 × 10−5(κa)2, and thus
always remains smaller than 10−5. Bretherton (9), Ratulowski
and Chang (15), and Thulasidas et al. (16) have described the
situation where the bubble displacement is forced (for either a
circular or square tubes). In square tubes, the corners fill all the
more since the capillary number is high, which eventually pro-
duces an axisymmetric bubble at high forced velocity, as shown
by Kolb and Cerro (17, 18). The pressure drop across the bub-
ble scales as Caα (α ranging from 0.5 to 1.4 depending on the
geometry) and is independent of the bubble length for long bub-
bles. If this pressure drop is balanced with a hydrostatic pressure
through the bubble, the bubble velocity is found be proportional
to its length, which was not observed in our experiments. The
difference between the two results results from immobility of
the liquid slugs in sealed tubes. In the case of circular bubbles,
the bubble velocity was calculated by Thulasidas et al. (Eq. [18]
in (16)), and found to obey the same scaling as in Eqs. [18] and
[19], but with a significantly larger numerical coefficient: in our
case, as sketched in Fig. 7 and shown by Eq. [17], the radius
of curvature of the fingers is smaller than a/2, which increases

the friction of these nearly square bubbles compared with that
of circular bubbles.
QUÉRÉ

This discussion finally suggests other tricks for getting rid of
trapped bubbles. For example, introducing a thin vertical fiber
(radius b = 100 µm) along the inside of a circular tube (radius
r = 600 µm) produces the same effect. In the latter example,
the rising velocity was observed to be a constant, of the order
of 25 µm/s with a silicone oil of viscosity 17 mPa · s. More
generally, special defects (such as grooves, or threads) could be
designed on the surface tube, for the cases where one wants to
avoid bubble trapping in small capillary tubes.

CONCLUSION

We have discussed the capillary rise in angular tubes. Our
data were found to be in quantitative agreement with Princen’s
models, which suppose that the weight of the liquid can be de-
composed in the weight of a central meniscus (the visible part
of the rise) plus the one of the fingers which invade the corners.
Because of the presence of these filaments, the final height was
found to be smaller than the “classical” height of capillary rise
(i.e., obtained when neglecting these fingers). We could also take
advantage of these filaments for connecting two liquid regions
in the tube (for wetting liquids). In this spirit, we showed that a
long bubble does not remain trapped in a thin closed square tube
(as it would be in a circular one), but rises because of gravity.
The rise velocity was analyzed, which allowed us to measure the
viscous friction associated with a flow inside the fingers. This
friction was found to be in good agreement with the predictions
of Ransohoff and Radke.
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12. Bico, J., Tordeux, C., and Quéré, D., Europhys. Lett. 55, 214 (2001).
13. Dong, M., and Chatzis, I., J. Colloid Interface Sci. 172, 278 (1995).
14. Ransohoff, T. C., and Radke, C. J., J. Colloid Interface Sci. 121, 392

(1988).
15. Ratulowski, J., and Chang, H. C., Phys. Fluids A 1, 1642 (1989).
16. Thulasidas, T. C., Abraham, M. A., and Cerro, R. L., Chem. Eng. Sci. 50,

187 (1995).

17. Kolb, W. B., and Cerro, R. L., Phys. Fluids A 5, 1549 (1993).
18. Kolb, W. B., and Cerro, R. L., J. Colloid Interface Sci. 159, 302 (1993).


	INTRODUCTION
	RISE IN A DIHEDRON
	FIG. 1.

	SQUARE TUBES
	FIG. 2.
	FIG. 3.

	ASSEMBLIES OF FIBERS
	FIG. 4.
	FIG. 5.

	RISE OF A BUBBLE IN A CLOSED TUBE
	FIG. 6.
	FIG. 7.
	FIG. 8.

	CONCLUSION
	REFERENCES

