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Buckling of elastomer sheets under non-uniform
electro-actuation

Hadrien Bense, * Miguel Trejo, Etienne Reyssat, José Bico and Benoı̂t Roman

Dielectric elastomer sheets undergo in-plane expansion when stimulated by a transverse electric field.

We study experimentally how dielectric plates subjected to a non-uniform voltage distribution undergo

buckling instabilities. Two different configurations involving circular plates are investigated: plates freely

floating on a bath of water, and plates clamped on a frame. We describe theoretically the out-of-plane

deformation of the plates within the framework of weakly non-linear plate equations. This study

constitutes a first step of a route to control the 3D activation of dielectric elastomers.

1 Introduction

Dielectric actuation was discovered in the 1880s by W. Röntgen,1

but practical studies have started flourishing only recently after
the seminal work from Pelrine et al.2 In dielectric actuation, the
opposing sides of a sheet of elastomer are coated with compliant
electrodes. Applying a high voltage V to this soft capacitor tends
both to compress the membrane across its thickness and to
stretch its surface (Fig. 1). In contrast with piezoelectric
ceramics, dielectric elastomers can undergo very high strains
of up to 500%,3 which have inspired numerous potential appli-
cations ranging from bioinspired actuators4,5 to soft grippers,6,7

bearing-free motors8 or energy harvesting systems.9,10 However,
dielectric elastomers are prone to electromechanical instabilities
when high electric fields are applied. Thinning down the
membrane indeed results in higher electric fields (for a fixed
applied voltage) which amplifies the actuation and eventually
leads to a ‘‘pull-in’’ instability and electrical breakdown.11,12 A
common solution to avoid this destructive instability consists in
strongly prestretching the membrane (up to 300%, depending
on the elastomer used). Due to the non-linear elastic properties,
the polymer stiffens when prestretched, which prevents the
pull-in instability. Other types of instabilities are nevertheless
common. Impressive shape bifurcations can for instance be
observed in pressurised membranes.13–16 Harnessing buckling
instabilities is moreover a key for many potential applications
such as dynamic surface patterning,17,18 flow regulation in
micro-fluidic devices,19 tuning of variable focal lenses20 or
haptic displays (e.g. Braille screens).21,22

In the present study, we propose to investigate how a non-
uniform spatial distribution of the applied voltage induces
different out-of-plane buckling patterns. In contrast to most
studies, buckling is here not due to the clamped edges of the
polymer, but only to the inhomogeneous actuation of the
membrane. Our experiments are inspired by recent works on
the non-uniform growth of plant leaves or material swelling
that leads to complex 3D shapes.23–25 The present study thus
constitutes a first step towards 3D electrical morphing. Spectacular
strains are generally obtained by applying strong mechanical
tension prior to actuation. However, since such prestrains would
hinder the formation of 3D shapes we do not apply any significant
pre-stretch to the membrane.

We focus on model axisymmetric configurations where
active circular domains are surrounded by passive materials
with well-defined boundary conditions. Actuation is therefore
non-homogeneous as one region is subjected to voltage while
the rest of the membrane is not. In the first configuration,
the membrane floats freely at the surface of a bath of water
that plays the role of the counter-electrode (Fig. 2a).

Fig. 1 Principle of dielectric actuation. A membrane of the dielectric
elastomer (polyvinylsiloxane) is coated with conductive powder (carbon
black) on both sides. As an electric field is applied to the membrane, the
attraction between opposite charges on both sides and the repulsion of
charges of the same sign on each side both tend to squeeze and stretch
the membrane.
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Nevertheless out-of-plane displacements of the membrane
are limited by hydrostatic pressure. Using the analytical and
numerical tools developed for this configuration, we investi-
gate a second system where the membrane is clamped in a
circular horizontal frame, the sagging effect of gravity being
suppressed by applying a pressure Dp below the membrane
(Fig. 2b). In contrast with most previous studies performed
on thin pre-stretched DEAs that rely on nonlinear elasticity, we
will use the weakly non-linear equations of thin elastic plates
to investigate the buckled morphologies obtained with these
configurations.

2 Spontaneous buckling of free
floating plates
2.1 Dielectric membranes

The dielectric membranes used in the experiments are made of
polyvinyl siloxane elastomers (Elite Double 8 from Zhermack).
They are obtained by spin-coating a 4 ml mix of equal quan-
tities of the ‘‘catalyst’’ and ‘‘base’’ liquids on a flat wafer of
radius b = 5 cm. Using a spinning rate of 300 to 600 rpm for
15 s provides membranes of thickness h ranging from 100 to
300 mm. The Young’s modulus of the polymer, E = 250� 15 kPa,
is estimated with a standard tensile test on a strip. Carbon
black powder is manually deposited on the surface of the cured
polymer with a brush through a circular stencil of radius a. The
part covered with carbon black is referred to as the active part,
whereas the remaining uncovered part of the membrane is
designated as the passive part. The powder is applied until the
black colour of the patch saturates. This coating is electrically
conductive and its surface resistivity of a few hundred kO does
not increase significantly upon additional applications of
powder. Carbon black particles strongly adhere to the polymer
so that the electrode preserves sufficient conductivity when
stretched although we observe an increase of the resistivity of
500% for a typical strain of 40%. Nevertheless the resistivity
recovers its initial value when the strain is released. The relative
dielectric permittivity er of PVS is accessed through a classical
electrical measurement of the capacitance of a membrane coated
with carbon black on both sides, leading to er = 2.5 � 0.6.

2.2 Experimental setup

Once carbon black powder has been applied on the upper face,
the membrane is gently deposited at the surface of a bath of
soapy water where it floats freely. The surface tension of pure
water is 72 mN m�1 but easily drops as low as 50 mN m�1 due
to various pollutants. We deliberately add surfactants to impose
a low but controlled surface tension g C 30 mN m�1 and
enhance the electric conductivity of water. The voltage is
imposed through a thin metallic wire (of radius of 10 mm)
contacting lightly the circular electrode. The wire is connected
to a high voltage amplifier (Trek model 609 � E) driven by a
signal generator, while water is connected to the electrical
ground and thus plays the role of a second compliant electrode.
Indeed the charged carbon black electrode attracts opposite
charges until the elastomer–water interface is equivalently
charged. Voltages applied to the system typically range from
200 V to 5 kV. To measure out-of-plane deformations of the
membrane, we use a laser sheet directed on the active part of
the membrane with an oblique incidence. The deflections of
the laser line are recorded using a camera placed above the
setup and are directly proportional to the local vertical displa-
cements of the membrane (Fig. 4). Note that all experiments
(including the one of Section 4) are quasistatic. The applied
voltage is increased with steps of 100 V for every 30 s, approxi-
mately. On these time scales, the response of PVS is purely
elastic. Therefore we do not expect time to play any role in our
experiments.

Fig. 2 Experimental configurations explored in this study. In both situa-
tions, the deflection of the membrane is monitored through the deviation
of a laser sheet in oblique incidence. The black disk of radius a corresponds
to the conductive part at the center of the pink membrane of radius b.
(a) Disk floating on water. A single patch is coated on the upper side of the
membrane and is connected to the generator. Water plays the role of the
counter electrode and is connected to the ground. Surfactant molecules
are added to the water to impose a fixed surface tension (of 30 mN m�1)
and increase the electric conductivity of the solution. (b) Disk clamped on
a circular rigid frame. Conductive domains are symmetrically coated on
both sides of the membrane. Air is gently blown from underneath to
compensate for the weight of the membrane.
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2.3 Electro-mechanical coupling

Applying an electric voltage V across the membrane results into
two complementary effects: charges of the same sign exert an
in-plane repulsion, whereas opposite charges attract each other
through the thickness of the layer. Both contributions can be
derived from energy considerations. The electrostatic energy of

a capacitor is
1

2
CV2, where C is the capacity. When the voltage V

is fixed, an external generator provides an electrical work QV,
where Q = CV is the charge. The total electric energy under fixed
voltage therefore reads for a planar capacitor:

Uelec ¼
1

2
CV2 �QV ¼ �1

2
e0erV2S

h

where e0 = 8.85 � 10�12 F m�1 is the vacuum permittivity and S
the area of the electrode. Differentiating Uelec with respect to h
(keeping S and V constant) shows that the charged electrodes
apply a compressive pressure:

pelec ¼
1

S

@Uelec

@h
¼ 1

2
e0er

V

h

� �2

Similarly, differentiating Uelec with respect to S (keeping h and V
constant) results in a term equivalent to a negative surface tension:

2gelec ¼
@Uelec

@S
¼ �1

2
e0er

V2

h

where the factor 2 accounts for the two coated interfaces when we
extend the analogy with the tension in a soap film. Although the
effect of surface tension is generally neglected in solid mechanics,
capillarity may deform very soft objects as demonstrated in
flourishing recent studies.26,27

What are the consequences of pelec and gelec on a free
membrane completely covered by an electrode (such as in
Fig. 1)? Far from the edge, the effective negative surface tension
results in a positive equibiaxial planar stress sr = sy = �2gelec/h.
Besides, the electrical pressure leads to a compressive stress
through the thickness, hence sz = �pelec. The stresses in the
membrane are therefore given by:

sr ¼ sy ¼ �sz ¼
1

2
e0er

V

h

� �2

For low enough deformations (in our experiment they are
always less than 20%), linear Hooke’s law applies and leads
to the strain distribution:

er ¼ ey ¼
�ez

1þ 2n
¼ 1

2E
e0er

V

h

� �2

where n is the Poisson ratio of the material that constitutes the
membrane.

The relevant terms of the strain tensor in setting the
mechanics of a thin plate are limited to in-plane components
(er,ey,ery). The same in-plane strains are obtained when the plate
is squeezed by a pressure �s0 and no surface tension, with

�s0 ¼
1

n
e0er
2

V

h

� �2

(1)

This equivalent pressure �s0 = pelec/n is larger than the actual
electrostatic pressure. In the particular case of elastomers, the
value of n is close to 1/2, and the whole strain distribution
(including in this particular case the thickness strain ez) is then
correctly reproduced by assuming that the electrostatic pressure
is doubled and that there is no effect of surface tension. This
simplifying picture is used in most studies of dielectric
actuation.2,11,28 In this article, we study the case presented in
Fig. 2a, where the electrodes (disk with radius a) do not cover
entirely the elastic membrane (disk with radius b Z a), and we
show how this configuration can lead to buckling even if the
boundaries of the membrane are free. In this more general
problem, electrostatic forces can still be replaced by an equi-
valent pressure on the covering electrodes, even in non-planar
solutions, as we demonstrate in another article29 using varia-
tional methods.

In the following,

e0 ¼ �
n
E
s0 ¼

1

2E
e0er

V

h

� �2

(2)

will be called the ‘‘actuation strain’’ which is the strain that an
unconstrained piece of active membrane would achieve in the
absence of external mechanical loading. Note finally that e0 can
be generalized to other types of deformations such as thermal
expansion, swelling or even biological growth.

2.4 Membrane stresses in the flat configuration: below the
buckling threshold

Using the equivalent pressure derived above, we now estimate
the strain distribution in the freely floating membrane illu-
strated in Fig. 2a. As the membrane is deposited at the surface
of water, surface tension forces tend to stretch it. The corres-
ponding induced strain is g/Eh, where g is the surface tension of
water (g C 30 mN m�1, due to the presence of a surfactant in
water), and is on the order of 10�3. For a 200 mm thick
membrane with free edges, an equivalent strain would be
obtained when applying a voltage (2gh/e0er)

1/2 B 700 V. The
actual impact of surface tension is therefore significant. How-
ever, the mechanics of the membrane remain linear before
buckling. If we consider this slightly prestretched state as a
reference for the membrane, we should discard the effect of
surface tension when we derive the stresses and strains induced
by the electric field. In this linear regime, both effects are
simply additive. Additivity nevertheless fails as the membrane
buckles. In Section 3 the reference state is the unstrained
membrane, and the effect of surface tension is taken into
account. We assume that the problem remains axisymmetric
and that the membrane only undergoes in-plane deformations.
Mechanical equilibrium reads:

@rsr
@r
� sy ¼ 0 (3)

We note u(r) the radial displacement. We impose the effective
pressure �s0 according to eqn (1) in the active domain. Using
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E* = E/(1 � n2), Hooke’s relation can be expressed as:

sr ¼ E� er þ neyð Þ þ n
1� nsz (4)

sy ¼ E� ner þ eyð Þ þ n
1� nsz; (5)

and includes sz = s0 in the active domain, and sz = 0 in the
passive zone. In the case of radial in-plane displacements, the
radial and orthoradial strains are related to the radial displace-
ment u(r): er = du/dr and ey = u/r, respectively. Inserting these
strains into eqn (3) leads to the differential equation, valid
separately in both active and passive regions:

r2u00 + ru0 � u = 0. (6)

where the symbol .0 stands for the derivative with respect to r.
Solutions of Lamé’s equations30,31 are of the form u(r) = ar + b/r,
where the coefficients can be different in the active ‘‘A’’ (r o a)
and passive ‘‘P’’ (a o r o b) zones and should be determined by
matching the different boundary conditions.

We enforce the continuity of u(r) and of sr(r) (equilibrium
condition) at the boundary r = a. The 1/r term should not be
present in the active zone because of its divergence for r = 0.
As a result, stresses and strains are equibiaxial in this region
(er = ey = a when u = ar). Finally, this stress induced by activation
vanishes at r = b in the case of a freely floating membrane.
Using these four conditions, we determine the corresponding
constants a, b in both regions. We obtain in the active region
the following displacement, strains and stresses:

uAðrÞ ¼ e0

2
ð1� nÞ a2

b2
þ 1þ n
1� n

� �
r

leading to

eAr ¼ eAy ¼
e0

2
ð1� nÞ a2

b2
þ 1þ n
1� n

� �
4 0

and

sAr ¼ sAy ¼ n
s0
2

1� a2

b2

� �
o 0

In this area, strains are extensional, but lower than e0, and
stresses are compressive. Indeed, constraining the deformation
of the active zone by a passive one logically results into
compressive stresses. Similarly, the state of the passive zone
is given by:

uPðrÞ ¼ e0
a2

2
ð1� nÞ r

b2
þ ð1þ nÞ

r

� �

so that:

sPr ¼ n
s0
2

a2

b2
b2

r2
� 1

� �
o 0

sPy ¼ �n
s0
2

a2

b2
1þ b2

r2

� �
4 0

In this passive region, the radial stress is compressive, whereas
the orthoradial stress is tensile, both stresses decaying away

from the active patch (note the strong discontinuity in orthoradial
stress and in radial strain at the boundary r = a).

A calibration of the electromechanical response of the
membranes requires a precise estimation of the strain field,
which is carried out through Digital Image Correlation (DIC).
Talc powder is lightly sputtered on the surface of the membrane
in order to obtain random spots of typical size 50 mm. Pictures of
the membrane are taken using a digital camera with a resolution
of 20 mm per pixel. We use Correli DIC software32 to obtain
the deformations er = ey of the membrane in the active zone
(r/a o 1). In order to validate the theoretical description, we
finally plot er as a function of the theoretical strain divided by

er: etheor

�
er ¼

1

8
3þ a2

b2

� �
e0
E

V2

h2

� �
, for n = 1/2. Within low enough

strains, the experimental strains obtained for several values
of a and h collapse on a straight line of slope er = 2.4 � 0.1,
which confirms our electrical measurements (see Fig. 3). How-
ever, it is visible that collapse starts to deteriorate for higher
strains. This scatter might be due to some non-linear effect
(including the buckling of the membrane), or to a systematic
error on the measurement. In the following section, we describe
the buckling threshold and the deflection of the membrane.

3 Out of plane buckling
3.1 Experimental observations

As the applied voltage is increased, the active part tends to
expand, in conflict with the external passive zone so that radial
compressive stresses build up along the whole membrane. As a
consequence, the membrane undergoes an axisymmetric buckling
instability above a critical applied voltage. In contrast with classical
Euler buckling where a compressed beam is bent along its whole
length, we observe that buckling is localized inside the active zone
in the vicinity of its boundary (Fig. 4a). We also observe that the
global mode of the instability depends on the size of the active zone.

Fig. 3 Radial strain in the active zone as a function of
1

8
3þ a2

b2

� �
e0
E

V2

h2

� �

for different thicknesses: ( ) h = 150 mm, ( ) h = 210 mm, ( ) h = 250 mm,
(b) h = 260 mm. The slope corresponds to the relative dielectric constant
of the polymer (er = 2.4).
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Rising the voltage beyond the buckling threshold induces an
increase of the amplitude but does not modify this mode (Fig. 4b).

The deflection of the membrane is limited by its bending
rigidity and also by the hydrostatic pressure of the underneath
water. As in other systems involving compressed floating sheets,
we expect buckling modes to be dictated by a competition
between bending stiffness and gravity.33,34 Balancing both effects

leads to an elastogravity length scale, ‘eg ¼ 2p
Eh3

12 1� n2ð Þrg

� �1=4

,

which sets the wavelength of the incipient buckling mode of a
long 1D strip floating on water. For a typical membrane of
thickness h = 200 mm, we obtain leg E 1.4 cm. In Fig. 4a, we
use leg as a scale bar. We observe that the buckling pattern is
localized and the width of the corresponding annulus is compar-
able with this length scale for a c leg. Conversely, the deforma-
tion involves the whole diameter of the active zone for lower
values of a. To assess the onset of the buckling threshold and its
evolution, we monitor the profile as a function of the applied
voltage (Fig. 4b). We characterize this actuation by the actuation
strain e0 (see eqn (2)) that we compare with the critical compres-
sive strain leading to the buckling of a long 1D strip lying on

water, e1D ¼
rgh 1� n2
� �
3E

� �1=2

¼ 2p2

3

h

‘eg

� �2

. Results are dis-

played as dots in Fig. 5. The evolution of the amplitude is not
as sharp as in the case of a classical pitchfork transition that we
would expect for the buckling of the membrane. We interpret this
smoother transition as a consequence of imperfections, due for
instance to a slight deformation of the membrane caused by its
contact with the wire and to the possible migration of charges
outside the active region. A critical applied voltage (i.e. a critical
actuation strain in the graph) for the buckling threshold can
nevertheless be estimated. In the following section we develop the
non-linear equations describing this electro-activated buckling.

3.2 Non-linear equations for the buckled state

We now describe the buckling and post-buckling evolution of
the system, using axisymmetric weakly non-linear plate equa-
tions. Because strains remain low in our experiments, we will
consider the whole system as a plate with a uniform thickness.
We also follow the assumption of Föppl–Von Kármán plate
equations which considers that out-of-plane displacement w(r)
is coupled to in-plane strains.30 We first write the equilibrium
of membrane stresses in the frame of reference of the plate,
assuming that the slope is small (w0{ 1). The radial strain now
reads er = u0 + w02/2, while ey = u/r remains unchanged. Using
Hooke’s relations (eqn (4) and (5)), in-plane equilibrium in
eqn (3) now leads to:

r2u00 þ ru0 � uþ 1� n
2

rw02 þ r2w0w00 ¼ 0: (7)

Fig. 4 (a) Different buckling profiles at V = 5 kV and h = 210 mm, for
different radii of the active zone (from left to right: a = 0.5 cm, a = 1 cm,
a = 3 cm). The upper row is a picture of the membrane taken from above,
while the lower one highlights the profile of the membrane. Scale bar:

elastogravity length scale ‘eg ¼ 2p
Eh3

12 1� n2ð Þrg

� �1=4

� 1:4 cm. (b) Super-

position of laser profiles obtained for increasing applied voltage (from
0 kV to 5 kV, h = 210 mm, a = 1.5 cm). While the amplitude of the instability
increases progressively, the global buckling mode remains the same.

Fig. 5 Maximal amplitude A of the deflection normalized by leg as
a function of the applied voltage characterised by e0/e1D. Experimental
data (circles) are compared to numerical integration of eqn (7) and (8)
(continuous line) for a membrane of thickness 200 mm. We did not use any
fitting parameter. Inset: Superposition of numerical (blue) and experi-
mental (red) profiles at the point indicated by the arrow. (a) a = 6 mm,
(b) a = 30 mm.
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which is valid separately in the active and in the passive zone.
The second equation accounts for the torque balance of the
plate, which in this axisymmetric case reads:35

DD2w ¼ Nrw
00 þNy

w0

r
þ q (8)

where D ¼ Eh3

12 1� n2ð Þ is the flexural rigidity, and Nr = hsr and

Ny = hsy are the in-plane forces per unit length, which contain
the electrical actuation, since they derive from eqn (4) and (5).
The last term q = �rgw corresponds to the hydrostatic pressure
of the lifted water. In addition to the boundary conditions
mentioned in the previous section, 4 other conditions have to
be implemented to solve the non-linear coupled differential
eqn (7) and (8).34 Symmetry imposes w0(0) = w00 0(0) = 0. The
effect of surface tension is taken into account through in-plane
stresses applied as boundary conditions. At the edge of the
membrane, the radial tension balances the surface tension of
water Nr(b) = g and in the absence of momentum the curvature
along the radial direction vanishes, w00(0) = 0. We solve these
coupled system equations using the bvp4c routine from Matlab.

3.3 Numerical results versus experiments

For high enough loads, out-of-plane equilibrium profiles of the
membrane are obtained. We represent in the inset of Fig. 5 the
profiles calculated (without any adjustable parameter) for
the highest values of e0 achieved experimentally: V = 4000 V,
i.e. e0 = 1.7 � 10�2 for a = 6 mm and V = 5000 V, i.e. e0 =
2.7 � 10�2 for a = 30 mm. Both profiles are non-dimensionalized
by leg and compared with the corresponding experimental
profiles (in red). The agreement between experiments and
numerical calculations is fairly good although the small oscilla-
tions predicted for the wider active zone are not perfectly
observed in the experiment. We interpret this minor discrepancy
as a consequence of slight inhomogeneities of the membrane.
We determine the maximum amplitude of the calculated profile
for decreasing loads and compare it to the experimental data
(Fig. 5). Although the numerical estimation reasonably matches
the experimental data, the predicted transition to the out-of-
plane state is sharper than the experimental one as we would
expect for a perfect bifurcation instability.

Since our model captures correctly the physics of the pro-
blem, we now use it to determine how the buckling threshold
depends on the size of the active region. Dimensional analysis
of eqn (4)–(8) shows that the normalized critical actuation
strain e0c/e1D should be a function of Poisson’s ratio n and
the two non-dimensional parameters (a/b, leg/b) if the surface
tension of water is neglected. The additional traction induced
to the membrane by capillarity tends to increase the threshold
and involves an extra non-dimensional parameter gb2/rgleg

4.
We represent in Fig. 6 the prediction of the threshold e0c/e1D as
a function of the aspect ratio a/b for a particular case relevant
for our experiments corresponding to h = 210 mm and b = 5 cm,
i.e. (leg/2b = 0.14 and gb2/rleg

4 = 7.8). Note that this plot is not
universal and is shifted for different values of the two non-
dimensional parameters.

Two regimes may be identified as the diameter of the active
zone is compared with leg.

(i) In the case 2a { leg, the membrane buckles along a
length scale a. In terms of orders of magnitude, the critical

stress is expected to scale as sc � �E
h2

a2
as in classical Euler

buckling.36 If we use the stress computed for the active region

before buckling, sr ¼
1

2
Ee0

a2

b2
� 1

� �
, we deduce:

e0c �
h2

a2
1

1� a2

b2

i:e:
e0c

e1D
� ‘eg

b

� �2
1

a2

b2
1� a2

b2

� � (9)

This expression is represented by the blue dashed line in Fig. 6
with a fitting prefactor to match the numerical results. This
simplified scaling law thus correctly captures the divergence of
critical active strain for buckling as the size of the active zone
vanishes.

(ii) In the opposite case 2a c leg, buckling occurs on a
typical size leg. The critical stress is now expected to scale as

sc � �E
h2

leg2
, which leads for the critical actuation strain:

e0c

e1D
� 1

1� a2

b2

(10)

This relation is plotted as a black dashed line in Fig. 6 with a
numerical prefactor fitted to the numerics. The matching with
the numerically computed threshold is very good. As intuitively
expected, the critical actuation strain diverges in both limits

Fig. 6 Normalized critical buckling (actuation strain as a function of the
aspect ratio for the particular case h = 210 mm and b = 5 cm (i.e. leg/2b =
0.14 and gb2/rleg

4) = 7.8). Red line: numerical resolution of eqn (4)–(8).
Circles: experimental data. Blue dotted line: fit with the simplified form

(eqn (9)) f ðxÞ ¼ �3:3� 10�3

x2 x2 � 1ð Þ corresponding to the limit 2a { leg (i.e. a/b {

0.07 for our system). Black dotted line: fit with the simplified form

(eqn (10)) gðxÞ ¼ 3:62

1� x2
corresponding to the opposite limit 2a c leg.
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a - 0 and a - b, where the system is almost homogeneous. In
the first limit, stronger stresses are required as smaller buck-
ling lengths are considered. Conversely, buckling tends to be
suppressed as the constraining role of the passive zone gets
relatively weaker. We note finally that the buckling threshold is
nearly constant in the range leg/2 o a o 0.7b, ec C 0.5e1D. In
this limit, the compressive stresses due to activation are indeed
on the order of sr B Ee0 (independently of a/b), and have to
match the critical buckling stress sc B Ee1D. Our experimental
data lie mostly in this regime (circles in Fig. 6). They are in
fair agreement with these predictions without any adjustable
parameter.

4 Buckling of clamped plates

The previous floating free configuration is interesting as a
model case since the different physical ingredients leading to
the buckling instability can be precisely quantified. However,
most practical applications involve a membrane held on a
frame. In this section, we study the buckling of a clamped
membrane, subjected to a non homogeneous voltage distribution.
In contrast with many studies from the literature conducted with
highly prestretched membranes,2,37 we tried to limit prestress as
much as possible. We will nevertheless evaluate how slight
residual stresses may modify significantly the mechanical beha-
viour of the membrane.

4.1 Experimental set-up and preliminary observations

The membranes are prepared following the same procedure as
in the previous configuration. Opposite conductive patches of
radius a are now coated on each side of the membrane. In order
to limit possible strains due to the manipulation of the
membrane during the framing step, we lay an annulus cut in
thick paper on the spin-coated layer before curing. The liquid
polymer penetrates the paper, which enhances the adhesion
of the cured membrane on the flexible paper frame. The
reinforced membrane can then be peeled and manipulated
without inducing additional strain. The polymeric sheet is
finally clamped in a rigid acrylic frame with a circular opening
of radius b = 5 cm and held horizontally. The membrane would
tend to sag over its own weight leading to an induced strain on
the order of (rpgR/E)2/3 B 2.5 � 10�2, where rp is the density of
the polymer. This strain is large compared with the typical
buckling strain, as we will see. Therefore, in order to compen-
sate for this additional tension, we gently blow air from under-
neath. The pressure of this air cushion is tuned until the profile
of the membrane monitored with the laser sheet appears
uniformly flat (Fig. 2b). First experimental observations show
that buckling occurs beyond a critical voltage that decreases as
wider active domains are considered. We also observe that the
buckled profiles obtained with this configuration take the
axisymmetric shape of a dome localised in the active region.
In the following section we compare the observed profiles with
the theoretical framework adapted from the previous free
floating configuration.

4.2 Theoretical buckling in the clamped membranes

The equations dictating the shape of the membrane are the
same as in the previous configuration. In the absence of
hydrostatic pressure, the q term in eqn (8) now vanishes.
Clamping the membrane in a frame also modifies the boundary
conditions: u(r = b) = w(r = b) = w0(r = b) = 0. Using these
equations, we calculate the critical buckling actuation strain e0c

for values of a/b ranging from 0.01 to 1. This last case corre-
sponds to the classical derivation from Timoshenko:36

e0c ’
14:7

12 1� n2ð Þ
h2

a2
’ 0:82

h2

a2
. We thus represent in Fig. 7 the

value of e0c normalized by (h/a)2 as a function of a/b. The data
from the numerics are well represented by an empirical relation:

e0c ¼
h2

a2
0:27þ 0:56

a

b

� �
(11)

Counter-intuitively, buckling is relatively easier for a small
patch than for a wider one. Indeed, out of plane deformation is
not strictly bound to the active zone and can also involve part of
the passive one, leading to a lower buckling threshold.

The buckling actuation strain measured in our experiments
is however 5 to 100 times higher than expected from these
numerical calculations (Fig. 8). We interpret this significant
shift as due to the prestrain induced during the curing
stage.38 We estimate this strain through DIC by comparing
a membrane initially clamped to a paper frame and then
released. We evidence a prestrain ep on the order of
2 � 10�3, which is large in comparison with typical values
predicted for the buckling strain (e0c B 10�3). As a conclusion,
although the paper frame limits additional non-uniform pre-
strains due to the manipulation of the membrane, a uniform
prestrain is still present in the samples. In the following
section, we therefore include an initial extensional prestrain
ep in the calculation to better capture the features experimen-
tally observed.

Fig. 7 Numerical prediction of the normalized critical buckling strain
e0ca2/h2 as a function of the aspect ratio a/b, for a clamped plate, in the
absence of gravity or prestrain. The data are well fitted by a linear

regression: e0c ¼
h2

a2
0:27þ 0:56

a

b

� �
. For a = b, we recover Timoshenko’s

classical result e0c � 0:83
h2

a2
for the buckling of a clamped disk.
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4.3 Comparison of the amplitude and the mode shape

As in the previous floating configuration, the profiles of the mem-
branes are deduced from the deflection of the laser line (insets in
Fig. 8). Membranes are mainly deformed in the active region,
although residual sagging is also present in the passive part. We
also plot the normalized amplitude of the deflection A/a as a
function of the applied strain normalized by the predicted value
corresponding to eqn (11) (without any prestrain). The bifurcation is
quite imperfect and extrapolated thresholds are 5 to 100 times larger
than expected. In order to provide a better comparison between the
numerical resolution of eqn (7) and (8) and the experimental data,
we added a uniform prestrain ep, which results in a boundary

condition Nrðr ¼ bÞ ¼ Eh

1� nep. For each sample ep is tuned to

obtain a good match between the calculated and observed profiles.
The fitting prestrain values range from 7 � 10�4 to 4 � 10�3,

which is in agreement with the values obtained through DIC.

The comparison between experiments and numerical calcu-
lations shows us the important impact of prestrain on the
buckling behaviour of the membrane that we study in more
detail in the following section.

4.4 Buckling in a prestretched membrane

In the absence of prestrain, the radial stress in the active region
is given, before buckling, by the integration of eqn (3)–(6)

(in-plane deformation): sr ¼
E

1� n �e0
1þ n
2

a2

b2
� 1

� �
þ 1

� �	 

.

Adding a prestrain ep shifts the stress by the quantity

spr ¼
E

1� nep. We plot in Fig. 9 the critical actuation strain e0c

as a function of (h/a)2 for different values of the prestrain and a
fixed aspect ratio a/b = 0.1. Without prestrain e0c varies linearly
with (h/a)2 for a fixed value of a/b as commented in Fig. 7. One
obvious consequence of the prestrain is to shift the critical load
to higher values as expected from the shift in stresses. For a
better comparison, we define an effective strain e = e0 � Zep,

with Z ¼ 1þ n
2

a2

b2
� 1

� �
þ 1

� ��1
’ 3:9, which accounts for the

prestrain. Hence, when e 4 0 the voltage induced strain is

Fig. 8 Circles: normalized amplitude of the deflection A/a as a function of
the applied strain normalized by the value predicted by eqn (11) e0/e0c.
Continuous line: numerical resolution (eqn (7)–(8)). Inset: Superposition of
numerical (blue line) and experimental profiles (red dots) for the point
indicated by the arrow. (a) h = 150 mm, a = 6 mm, ep = 0.0007, ec = 2.11 �
10�4 (inset V = 3600 V, i.e. e0 = 0.03). (b) h = 150 mm, a = 15 mm, ep =
0.004, ec = 4.38 � 10�4 (inset V = 3400 V, i.e. e0 = 0.027).

Fig. 9 Numerical study of the effect of the prestrain on the buckling
threshold. (a) Buckling threshold e0c as a function of (h/a)2 for different
values of the prestrain. The aspect ratio a/b is arbitrary set to 0.1 for all
cases. (b) Evolution of the effective strain ec� Zep as a function of (h/a)2 for
various values of the prestrain. For ep = 0 (dashed line) ec varies linearly
with (h/a)2. However this proportionality is lost when ep 4 0.
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compressive enough to compensate for the initial prestrain.
The plots of effective strain at buckling as a function of h2/a2 do
not collapse on a same master curve and the linear dependence
with (h/a)2 is lost. The effect of prestrain is therefore not simply
additive. Indeed, the stresses induced by the electrostatic
loading are not equi-biaxial in the passive part of the
membrane, and therefore do not simply compensate the prestress.
This effect is modest in the present case, however practical
applications can involve highly prestretched membranes to avoid
pull-in instabilities. Although exploring the non-linear elastic
domain is beyond the scope of the current work, we highlighted
the fact that the consequences of prestrain in activated
membranes are non-trivial.

4.5 Secondary buckling bifurcation

So far, our experiments were restricted to the limit of small slopes
w0 { 1, i.e. to moderate applied loads. Although non-linear
buckling instabilities were observed, axisymmetry was maintained
in the observed patterns. An interesting secondary instability is
however observed in the last case of membranes held on a rigid
frame. Beyond a second critical voltage, azimuthal wrinkles
appear at the border of the active zone (Fig. 10). Within the range
of our experimental parameters (V is limited to 5 kV), these
wrinkles are only observed for sufficiently large active patches
(typically a 4 1.5 cm for h = 150 mm). Provided that the prestrain
in the membrane is sufficiently homogeneous (and low), their
wavelength is well-defined and does not evolve significantly with
the applied voltage. We did not observe the secondary instability
with the membrane floating on water, presumably because we
were not able to reach higher voltages with our setup. The
observed pattern is very reminiscent of the wrinkles observed
when inflating a mylar balloon39 or at the edges of a very thin
sheet deposited at the curved surface of a droplet of water.40

Similar wrinkles have been reported in dielectric polymers as the

load is released after a very high deformation.14 Such wrinkles are
the consequence of compressive orthoradial stresses. Numerical
calculations of the azimuthal stress sy indeed show the presence
of high compressive stress at the edges of the active zone. Never-
theless the description of the buckling threshold and the value of
the observed wavelength still remain open questions.

5 Concluding remarks

We have shown in this study how a non-uniform voltage
distribution can trigger buckling instabilities in free floating,
or clamped dielectric elastomeric sheets. In the first configu-
ration, the interplay between hydrostatics and the bending
stiffness of the membrane provides a length scale to the
problem. If the diameter of the active zone is large in compar-
ison with this elastogravity length, the buckling is localized in
the vicinity of the border of the active zone. The typical width of
the wrinkles is then set by the elastogravity length. In the
opposite situation, a dimple is formed at the center of the
buckled active zone. We find that the instability is favored
(lower threshold) when actuation is truly heterogeneous:
almost fully active or fully passive configuration is less prone
to buckling (see Fig. 6).

In the second configuration the membrane is clamped in a
frame. In the absence of gravity, the relevant length scale
becomes the size of the system and more specifically, the
diameter of the active zone. A first bifurcation then leads to
the out-of-plane buckling of the active zone into an axisymmetric
dome. For higher voltages, we observe a secondary instability:
azimuthal wrinkles appear at the border of the active zone and
grow as the voltage is further increased. In both configurations,
buckling mechanics can be captured by solving the Föppl–Von
Kármán equations in which the electrical effect is rendered
through an ‘‘actuation’’ strain proportional to the square of
the applied voltage. We validated this numerical approach with
a fair comparison with our experimental results. Using this tool,
we could study in detail the effect of a small prestrain in the
buckling behaviour of the membranes. However, further work
will probably be necessary to extend our study to the very large
prestrain applied in many studies.

We believe that our results constitute a first step towards the
use of dielectric elastomers as model systems to study mechanical
instabilities triggered by non-uniform in-plane actuation.
Applying a voltage modifies the metrics of the dielectric
membrane in the same manner as thermal expansion, swelling
or biological growth would. In terms of applications, such
actuators could be used to obtain 3D shapes through electro-
mechanical instabilities.
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Fig. 10 Secondary instability leading to regular azimuthal wrinkles near
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