

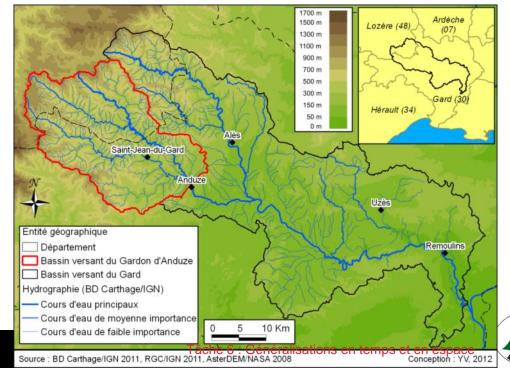
Tâche 6 : Généralisations en temps et en espace

Anne Johannet, Bernard Vayssade LGEI, ARMINES

Première partie, la relation pluie-hauteur à Remoulins

Thèse de Audrey Bornancin **Plantier**

Tâche 6 : Généralisations en temps et en espace



18/10/2013

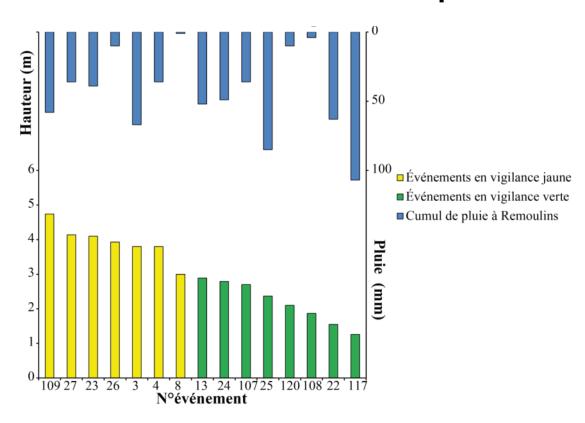
Présentation du bassin

- **✓** Bassin versant du Gardon d'Anduze
 - ✓ Superficie =1848 km²
 - ✓ Confluence du Gardon d'Anduze et du Gardon d'Alès

✓ Topographie variée : Cévennes, piémont cévenol, Gardonnenque, gorges calcaires

Stations de mesures utilisées

- Limnimètres à Anduze, Alès, Ners et Remoulins
- Pluviomètres à Ners et Remoulins



18/10/2013

Base de données : 15 événements de crue (1994-2008)

Hauteurs maximales et cumuls de pluie

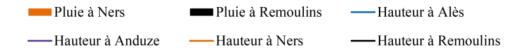

Tâche 6 : Généralisations en temps et en espace

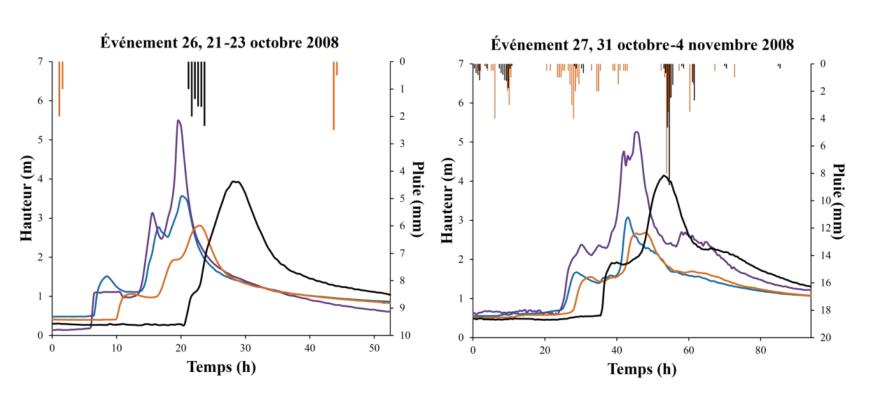
18/10/2013

Modèles utilisés

Perceptron multicouche

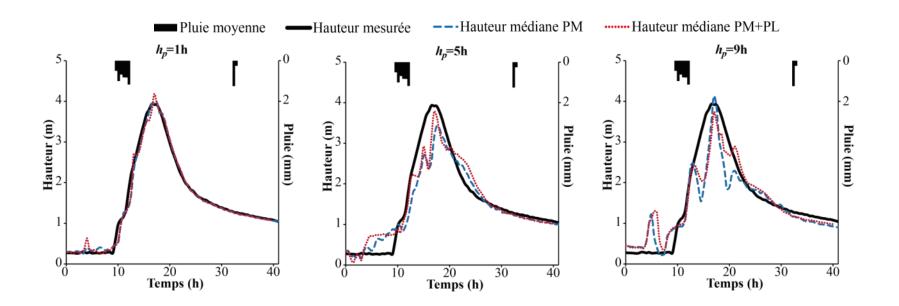
Perceptron multicouche avec termes directs


Conception des modèles

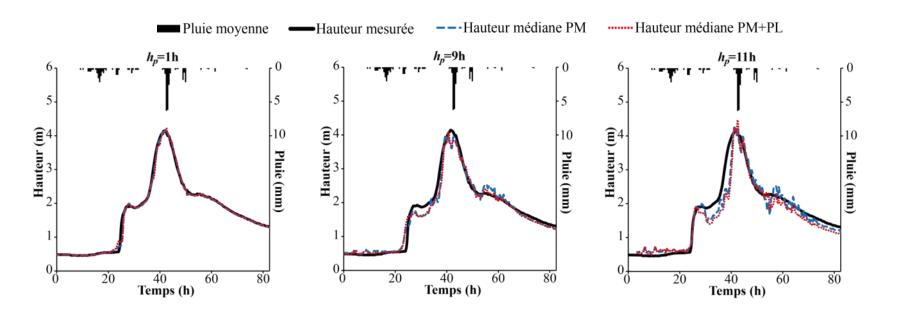

Répartition des événements

- ✓ ensemble d'apprentissage = 12 événements (tous les événements sauf le 13, 26 et 27)
- ✓ ensemble d'arrêt = événement 13 (septembre 2000)
- ✓ ensemble de test = événements 26 (octobre 2008) et 27 (novembre 2008)
- Retard imposé aux variables
- √ Sélection de la fenêtre temporelle des hauteurs
- ✓ Pour chaque h_p , 20 modèles issus d'initialisations différentes

Événements en test



8


Médiane des hauteurs prévues pour l'événement 26

Médianes		h_p =1h	$h_p=5h$	$h_p=9h$
CDDD (0/)	PM+PL	100	65	88
<i>SPPD</i> (%)	PM	96	80	79
D (h)	PM+PL	1	1	0,5
R (h)	PM	0,5	0,5	0,5

Médiane des hauteurs prévues pour l'événement 27

Médianes		h_p =1h	h_p =9h	$h_p = 11h$
CDDD (0/)	PM+PL	99	89	102
SPPD (%)	PM	98	89	102
R (h)	PM+PL	1	-2	1
	PM	1	-0,5	1

Synthèse

- Bassin versant du Gardon à Remoulins
 - > superficie plus de 3 fois supérieure au Gardon d'Anduze
 - topographie variée
- Utilisation
 - > des hauteurs amont à Anduze, Alès et Ners
 - de la pluie à Ners et Remoulins
- Modèles à perceptron multicouche et modèles avec termes directs
- Retard imposé aux variables et sélection de la fenêtre temporelle des hauteurs
- En test, anticipation jusqu'à 9h, voire 11h

11

Deuxième partie, généralisation aux bassins versants non jaugés de la bordure cévenole

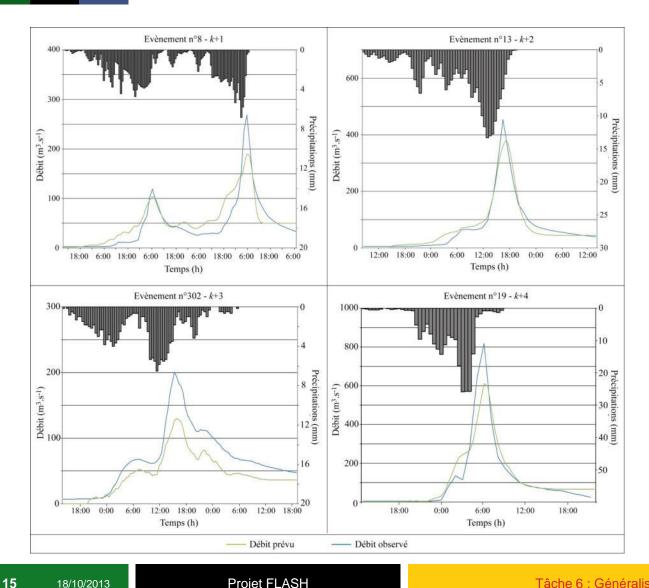
Thèse de Guillaume Artigue

Tâche 6 : Généralisations en temps et en espace

18/10/2013

Modèle utilisé Perceptron multicouche récurrent

- Bassin versant du Gardon de Mialet à Mialet (3 pluviomètres),
- Combinaison d'une partie linéaire et d'une partie non linéaire,
- Modèle récurrent,
- Prise en compte du cumul courant moyen de l'épisode comme information d'état.



Modèle utilisé

- Apprentissage sur 58 évènements pour lesquels l'un au moins des pluviomètres a dépassé 100mm en 48h entre 1992 et 2008 : sélection sur la pluie pour une prise en compte des évènements peu réactifs.
- Validation croisée partielle sur 17 évènements considérés soit comme intenses (>1m3/s/km²), soit de « forme impulsionnelle » (un signal de pluie peut clairement et directement être relié au débit).
- Dimensionnement des fenêtres temporelles d'entrée grâce à l'analyse des corrélogrammes croisés pluie/débit pour chaque pluviomètre.
- Utilisation de l'arrêt précoce.
- Modélisation pluie-débit spécifique.

Résultats à Mialet

- Quatre évènements différents,
- Quatre horizons de prévision : de 0,5 à 2h,
- Aucune utilisation des pluies futures,
- En moyenne, sous- estimation de 30% relativement constante et synchronisation correcte.

Généralisation: méthode

Le modèle conçu sur et pour Mialet est appliqué à d'autres bassins de la bordure cévenole :

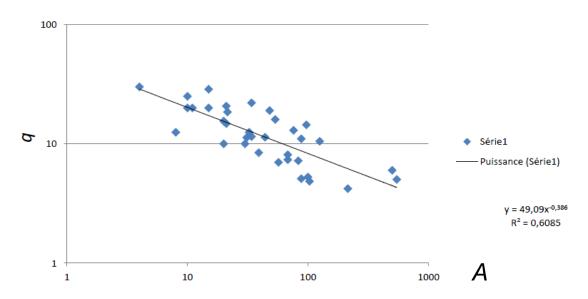
16

Généralisation: méthode

Le modèle conçu sur et pour Mialet est appliqué à d'autres bassins de la bordure cévenole :

N°	Bassin	Surface (km²)	Pente drain	Longueur drain (km)	Delta z drain (m)	Pente BV	Delta z BV (m)
1	Ardèche	280	4.10%	27.6	1129	35%	1222
2	Baume	210	3.80%	30	1132	35%	1352
3	Chassezac	500	2.30%	54.7	1263	28%	1505
4	Ganière	55	3.70%	18.5	687	30%	807
5	Auzonnet	39	2.40%	19	450	25%	560
6	Galeizon	88	2.30%	28.8	654	30%	765
7	Galeizon+	39	3.20%	18.8	597	29%	697
8	Salindre	21	6.30%	10.2	644	33%	694
9	Avène	57	2.30%	18	413	12%	550
10	Lyonnais	4	2.80%	2	56	18%	203
11	Amous	21	3.80%	10	375	24%	503
12	Alzon	15	3.20%	8	144	24%	412
13	Saumane	100	3.70%	19.8	729	36%	881
14	Anduze	545	2.30%	41	923	32%	1084
n	Mialet	220	3.00%	29	864	33%	993

18/10/2013

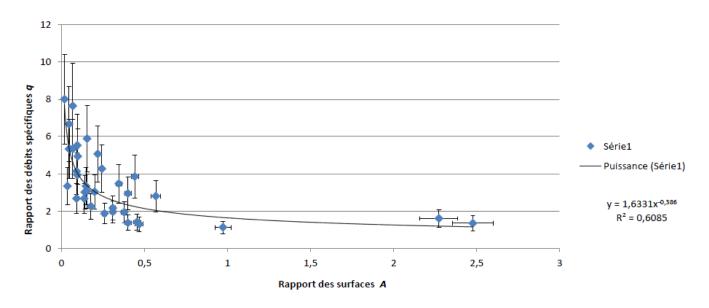

Généralisation: constat

- Les principales caractéristiques topographiques des bassins n'influent pas sur le décalage temporel auquel on aurait pu s'attendre...
- La modélisation pluie-débit spécifique ne suffit pas à corriger les erreurs d'amplitude observées :
 - A Mialet, le débit spécifique maximum de la base est 3,75 m³/s/km²,
 - Sur les évènements testés en généralisation, il est de 30 m³/s/km².
- Le principal problème est la correction de l'amplitude.

Généralisation: retour aux fondamentaux

- Recherche de débits spécifiques extrêmes sur des bassins méditerranéens : 35 valeurs conservées, essentiellement pour Aude 1999 et Gard 2002.
- Recherche d'une loi reliant débit spécifique q et surface A (type loi de Myer).

Selon cette relation, le débit spécifique de pointe de Mialet devrait être 6,31m³/s/km²



Généralisation : retour aux fondamentaux

On s'attache à rendre la relation adimensionnelle en traçant :

$$Q = f(S)$$

Où Q est le rapport du débit spécifique de pointe du bassin visé au débit spécifique de pointe « théorique » du Gardon de Mialet (6,31 m³/s.km²) et S est le rapport de la surface du bassin visé à la surface du bassin versant du Gardon de Mialet.

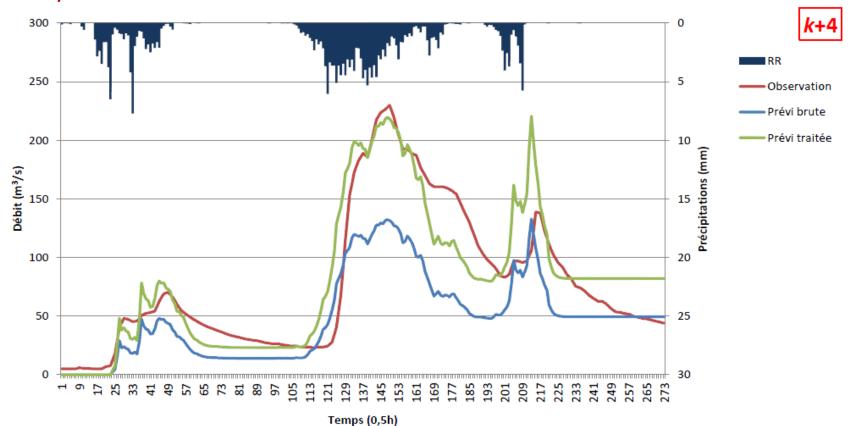
Généralisation : retour aux fondamentaux

- Grâce à la relation obtenue, on peut déterminer un coefficient multiplicateur du débit prévu pour Mialet applicable à un autre bassin en fonction de sa surface.
- Plus la surface est grande, plus le coefficient est petit.

B∨	Surface	Coeff correctif
Lyonnais	4	7.67
Alzon	15	4.60
Salindre	21	4.04
Amous	21	4.04
Galeizon amont	39	3.18
Auzonnet	49	2.92
Ganière	55	2.79
Avène	57	2.75
Galeizon	88	2.33
Saumane	100	2.21
Baume	210	1.66
Ardèche	280	1.49
Chassezac	500	1.19
Anduze	545	1.15 Tâche 6 : Gér

Le tableau présente l'amélioration obtenue en valeur sur quatre critères :

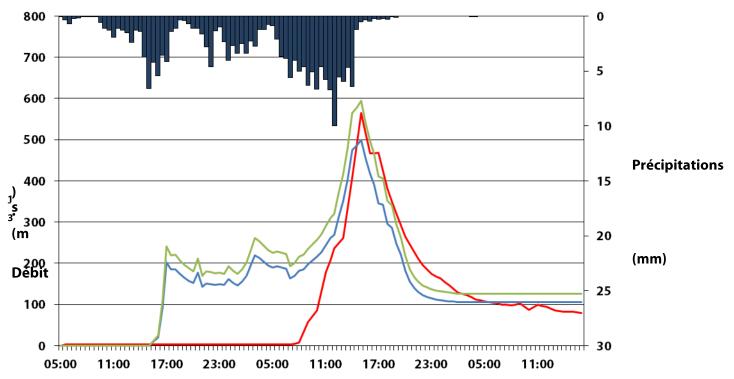
	Nash	PPD	SPP D	Lag (h)
amélioration k+1	0.15	47%	41%	0.00
amélioration k+2	0.22	46%	39%	0.00
amélioration k+3	0.16	47%	40%	0.00
amélioration k+4	0.14	48%	39%	0.00


- Aucune amélioration temporelle mais les critères de Nash et de pic sont largement améliorés.
- Cela ne doit pas masquer des disparités : prise en compte délicate de l'humidité initiale, difficultés sur les débits spécifiques extrêmes...

22

Baume à Rosières, 210km², 252mm en moyenne : bassin proche de celui de Mialet.

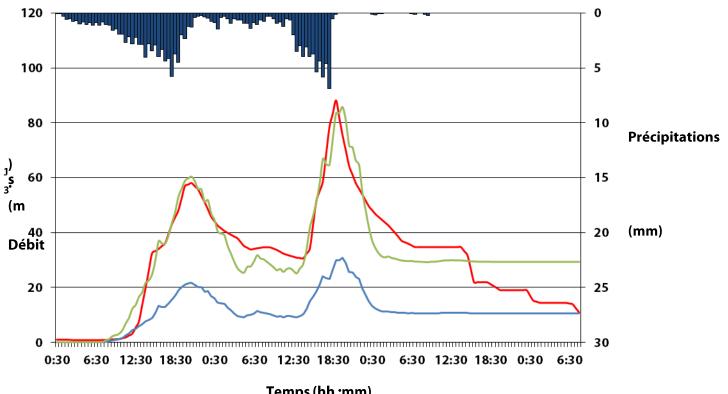
h_p =2 heures



18/10/2013

Chassezac à Gravières : 500km², 189mm en moyenne : bassin plus grand et plus complexe que celui de Mialet.

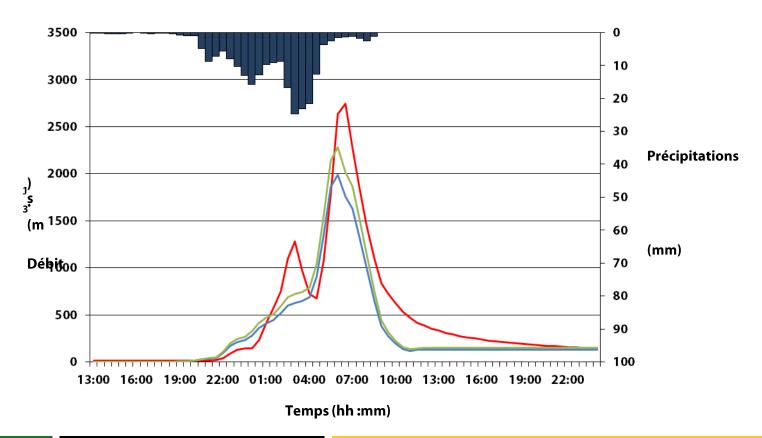
h_p =2 heures



Temps (hh:mm)

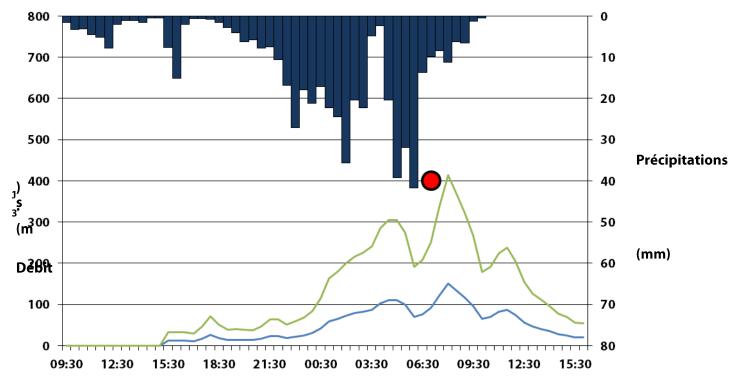
Ganière à Banne : 55km², 159mm en moyenne, bassin 4 fois plus petit que celui de Mialet

$h_p=2$ heures



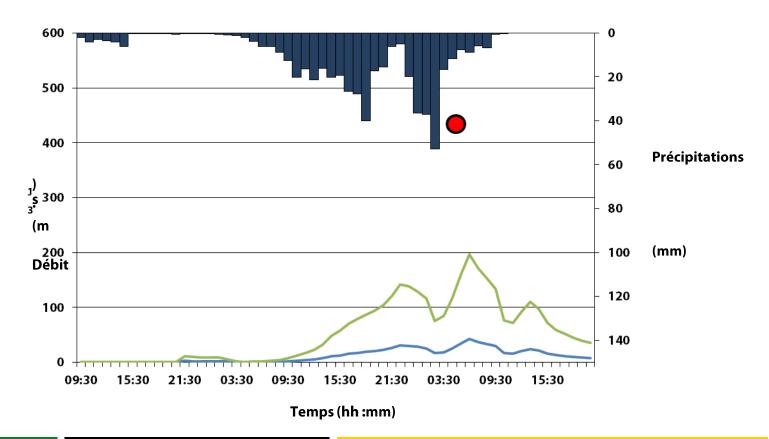
18/10/2013

Gardon d'Anduze : 545km², 235mm en moyenne, bassin plus grand englobant celui de Mialet


h_p =1,5 heures

Avène : 57km², 529mm en moyenne, petit bassin à mi-chemin entre relief et plaine d'Alès : peu de pentes en aval.

h_p =1,5 heures


Temps (hh:mm)

27

Alzon : 15km², 525mm en moyenne, petit bassin très réactif, débit spécifique extrême.

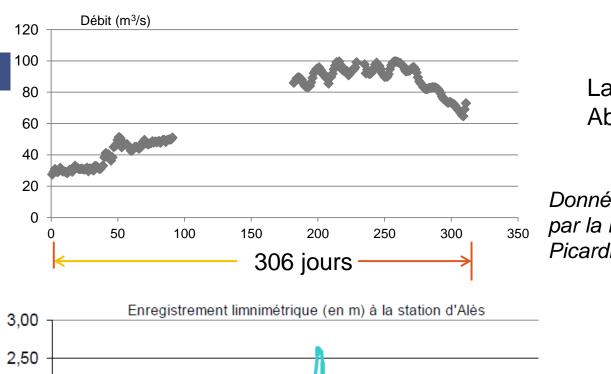
h_p =2 heures

Généralisation : analyse et perspectives

- Quelques problèmes de prise en compte de l'humidité initiale sur certains bassins,
- Problèmes de prévision des débits spécifiques extrêmes, même avec de fortes corrections... mais ces bassins sont petits et la lame d'eau a été estimée à partir d'un pixel RADAR, alors que le modèle est établi avec une information issue des pluviomètres

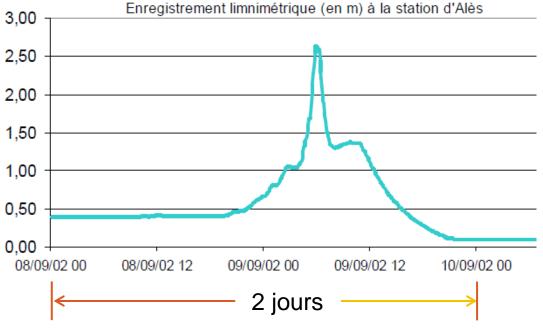
Pistes:

- Utilisation de deux relations débit spécifique vs surface du bassin : l'une pour les épisodes faibles, l'autre pour les plus forts => marge d'erreur.
- Introduction d'indices de pluie antérieure...
- Elargissement des évènements et bassins disponibles pour la généralisation...


Tâche 6 : Généralisations en temps et en espace

Troisième partie, prévision des crues de la Somme. Rôle de la nappe

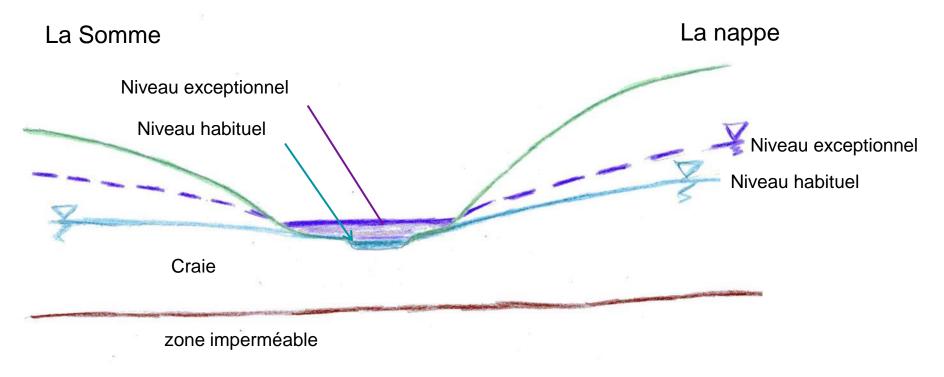
Bernard Vayssade



30

La Somme à Abbeville

Données fournies par la DREAL Picardie



Le Gardon à Alès

Extrait du PPRI Région d'Alès

Rôle de la nappe sur l'écoulement de la Somme

60 à 80 % du débit de la Somme viennent de la nappe

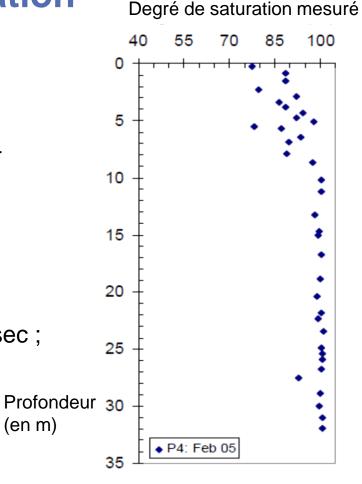
La nappe de la craie

Perméabilité très variable avec :

- la nature de la craie
- la fracturation
- le degré de saturation

Source : CNED, Académie en ligne

Influence de la saturation en eau

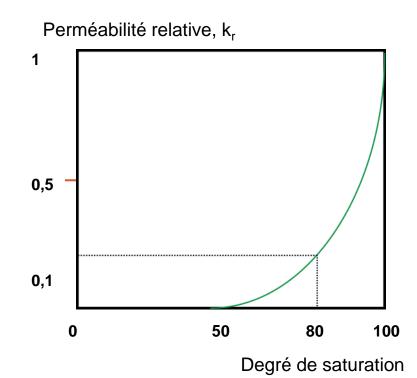

Degré de saturation :

Volume d'eau contenue dans le sol

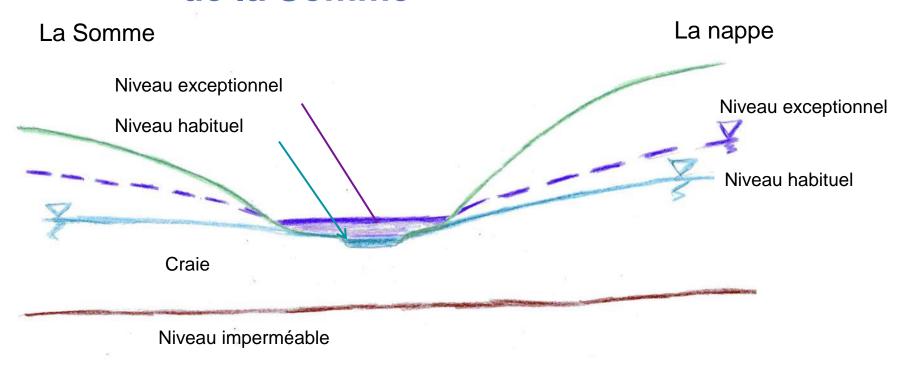
Volume de vide du sol

Au sein de la nappe phréatique, le degré de saturation vaut 1

Au dessus de la nappe, le sol est aéré, voire sec ; le degré de saturation est inférieur à 1.


Exemple de profil de saturation dans la craie de la Somme (BRGM)

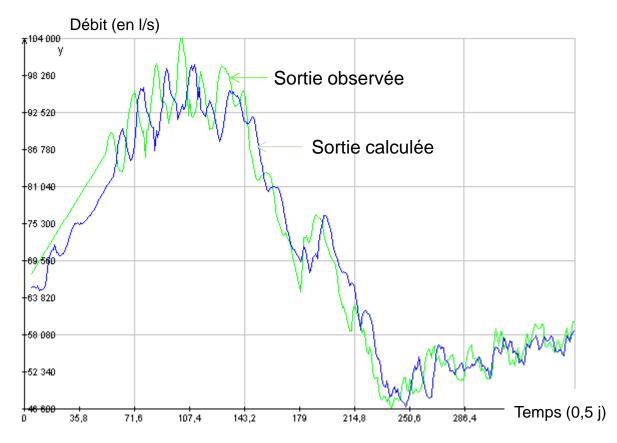
(en m)



Variation de la perméabilité relative k_r d'une roche avec le degré de saturation

- Perméabilité à saturation, k_{100}
- Perméabilité à un degré de saturation donné, k_n , où n varie entre 0 et 100 %
- On introduit souvent $k_r = \frac{k_n}{k_{100}}$

Rôle de la nappe sur l'écoulement de la Somme

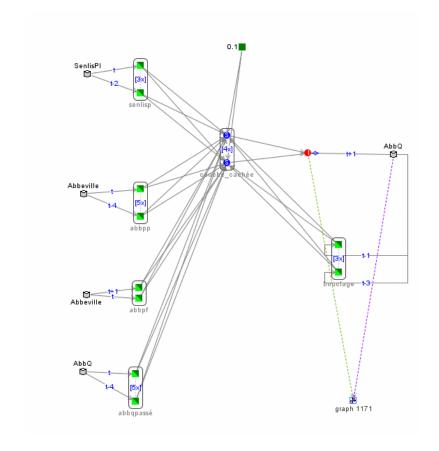


60 à 80 % du débit de la Somme viennent de la nappe

Application d'un réseau de neurones à une crue de la Somme

En appliquant la même démarche méthodologique que celle d'Audrey Bornancin-Plantier

Extrait du mémoire de Délizar Ben Nessib


L'architecture du réseau

piézomètre

pluviomètre

pluviomètre

débit

Extrait du mémoire de Délizar Ben Nessib

Prévision du débit à Abbeville

	Horizon (jour)	Test	Apprentissage
Critère de Nash	1	0,993	0,992
	2	0,981	0,983
	3	0,966	0,977
	4	0,953	0,976
	5	0,934	0,968
	6	0,930	0,964
	7	0,920	0,960
Critère de persistance	1	-0,128	0,194
	2	-0,123	0,220
	3	-0,119	0,274
	4	-0,049	0,387
	5	-0,105	0,297
	6	0,037	0,330
	7	0,056	0,339

Conclusions

- Les débits peuvent être prévus lors d'une crue de nappe avec un réseau de neurones jusqu'à un horizon de plusieurs jours
- L'information prépondérante est alors fournie par les piézomètres
- Comme pour l'étude à Anduze il conviendra d'évaluer l'apport :
 - de l'ajout des liens directs
 - du calcul de la médiane à partir de plusieurs prévisions

