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Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction
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The back-reaction of a radiated wave on the emitting source is a general problem. In the most general case,
back-reaction on moving wave sources depends on their whole history. Here we study a model system in which a
pointlike source is piloted by its own memory-endowed wave field. Such a situation is implemented experimentally
using a self-propelled droplet bouncing on a vertically vibrated liquid bath and driven by the waves it generates
along its trajectory. The droplet and its associated wave field form an entity having an intrinsic dual particle-wave
character. The wave field encodes in its interference structure the past trajectory of the droplet. In the present
article we show that this object can self-organize into a spinning state in which the droplet possesses an orbiting
motion without any external interaction. The rotation is driven by the wave-mediated attractive interaction of
the droplet with its own past. The resulting “memory force” is investigated and characterized experimentally,
numerically, and theoretically. Orbiting with a radius of curvature close to half a wavelength is shown to be a
memory-induced dynamical attractor for the droplet’s motion.
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I. INTRODUCTION

Moving wave sources are submitted to a back-reaction
resulting from the energy-momentum conservation law. This
process is complex when the emission itself depends on
the source motion, a general case for isolated sources. The
interplay between waves and sources is pivotal in under-
standing the very nature of elementary particles and their
interactions [1,2]. The back-reaction can be considered as
a signature of a spatiotemporal nonlocality. This has driven
prequantum models of the electron [3–5] and is still present
in current field equation theories [2,6,7]. This nonlocality is
central in the theory of the recently observed gravitational
waves. For these waves on a curved space-time, the back-
reaction on the source dynamics is defined by the entire past
history of the source [8–11].

Back to earth, about a decade ago, peculiar objects
composed of a self-propelled droplet bouncing on a vertically
vibrated liquid bath [12–21] have been shown to possess a
wave-driven path-memory dynamics [22–24]. The drop can
be considered as a pointlike source which is dressed and
piloted by the wave field emitted by its previous impacts on the
surface. These waves are sustained for a tunable characteristic
memory time. For long memory times, the dynamics of
these “walkers” becomes complex and bears similarities
with quantum particles [25–33]. In particular, in confined
geometries, quantized eigenstates emerge resulting from the
interplay between the drop trajectory and its associated wave
field mode [27–35]. These states were observed in several
geometries and interpreted as attractors of the dynamics. In
the absence of external force, however, none of these nontrivial
attractors had yet been observed.
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In the present article, we explore the possible existence of
an intrinsic set of such nontrivial attractors. Using this model
system, we investigate if the memory-based back-reaction of
the wave can produce stable dynamical eigenstates in the
absence of any external interactions. In particular, we study the
ability to produce self-orbiting states with quantized angular
momentum sustained only by a memory force built by the drop
past motion. The possibility of such modes was theoretically
demonstrated by Oza et al. [29]. It was obtained in their
investigation of the circular orbits induced by a Coriolis force
transverse to the drop motion. They found that in the very long
memory limit, orbital states could result only from the wave
field in the case of a vanishing Coriolis force. However, these
authors concluded that these modes would be intrinsically
linearly unstable for all realistic walkers [13,29]. Here we ex-
amine experimentally and theoretically another configuration
in which such modes can be generated using magnetic walkers
gently released from a harmonic potential confinement.

II. PATH-MEMORY-DYNAMICS MODEL

A walker is composed of a droplet bouncing on a vertically
vibrated liquid bath and the waves it generates by its successive
impacts on the surface. Due to the vertical bath oscillations,
the droplet generates at each bounce a localized standing wave
packet. The droplet can be seen as a massive pointlike particle
propelled and piloted by its self-generated waves sustained by
the vertical oscillation [20,22,24]. The resulting global wave
field thus contains in its interference structure a memory of the
past trajectory of the droplet.

In the vicinity of the Faraday instability, each droplet
bounce triggers a quasisustained standing wave that can be
approximated by a zero-order Bessel function J0 with a Fara-
day wave vector kF = 2π/λF and λF = 4.75 mm centered at
the point of impact [22–24,27]. This building block of the wave
field is sustained for a characteristic tunable memory time τ

that depends on the relative distance of the vertical acceleration
to the Faraday threshold. We can define a nondimensional
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memory parameter Me = τ/TF with TF = 25 ms the Faraday
period. The wave field h(r,t) in r and at time t is thus given
by [22,23,27]

h(r,t) = h0

0∑
j=−∞

e− t−tj

τ J0(kF|r − rj |), (1)

where rj is the position of the j th past bounce occurring at
time tj and h0 is the amplitude of a single bounce disturbance.
The past trajectory of the droplet is thus encoded within its
associated wave field. For this reason, the droplet is said to
have a “path-memory dynamics” [22]. The force driving the
droplet into motion originates from the wave field asymmetry.
At each bounce, the droplet lands on a local slope that gives it
a kick.

In the memory range hitherto explored and in the absence
of external perturbations walkers are observed to move in a
straight line [12,20–24]. However, if set into an initial curved
trajectory, one can imagine other possible dynamical solutions
due to the persistency of previously generated waves. In the
following, we study the characteristics for sustaining, in a
circular self-orbiting mode, the walker confined by its own
centripetal memory force exerted by the wave field it has
emitted during its previous bounces.

III. EXPERIMENTS

The experimental difficulty of testing this idea is that these
memory-induced modes require preparing an initial wave field
corresponding to a given past trajectory. A “preparation”
process is thus needed to force the walker into a trajectory
close to that expected for the self-organized mode. The
corresponding wave field can therefore be built over time.
For this purpose, we first set the drop in rotation on a small
orbit by means of an external force and maintain it in this state
during a time much longer than the memory time. Only then
can the external force be removed to see if the walker keeps
orbiting. For this reason we used the experiment in which the
walker is submitted to a magnetic central force [31].

To apply a force on the droplet, the oil droplet is loaded with
a ferrofluid [31]. By means of two large Helmholtz coils, the
whole bath is submitted to a constant vertical magnetic field
that polarizes the droplet. In the center of the cell, an additional
radial gradient of magnetic field creates a magnetic trap for the
drop. This trap was generated by a sharp cone of pure iron that
creates a radial gradient by concentrating the magnetic lines
of the global field [Fig. 1]. In this setup the magnetic field is
entirely produced by the coils. The pure iron has very little
hysteresis so that the magnetic field can be entirely removed
in less than 1 ms by switching off abruptly the current in the
coils. The experimental procedure is the following. The droplet
is first magnetically trapped. By tuning the distance between
the iron bar and the surface, we choose a situation in which
the droplet follows a circular orbit corresponding to the first
quantized level of radius of curvature Rc/λF ≈ 0.37. The drop
is left orbiting for at least 30 s; then the magnetic force is
switched off. Figures 2(a) and 2(b) show the evolution of the
droplet trajectory when the central force is removed for two
values of the memory parameter. At short memory (Me = 10)
when an abrupt transition is imposed, the drop escapes
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FIG. 1. Experimental realization of self-orbiting modes. (a)
Scheme of the core of the experimental setup. The whole bath is
submitted to a global magnetic field generated by two coils that
are not shown here. A magnetic field maximum is created by the
concentration of flux lines due to a sharp rod of pure iron. (b) Top
view of the walker in a self-orbiting mode in a long memory regime
(Me ≈ 140). The droplet has a diameter D ≈ 0.7 mm and a velocity
V ≈ 7 mm s−1. The magnetic field that initially trapped the walker,
had been turned off 3 s before this picture was taken. The recent
trajectory is superimposed. The nondimensional radius of the free
orbit is Rc/λF = 0.385 ± 0.01.

tangentially almost instantaneously [Figs. 2(a) and 2(c)]. In
contrast, at long memory (Me = 140) the drop remains trapped
in the orbiting motion [Figs. 1(b), 2(b), and 2(d); see Movie
S1 in the Supplemental Material [36]]. This effect is optimized
when the magnetic field is progressively removed with a
characteristic transition time of 1 s.

As shown in Fig. 2(b) the drop keeps orbiting after
the complete switch-off. The measurement of the temporal
evolution of the orbit radius [Fig. 2(d)] reveals that it undergoes
a slight increase at the switch-off. The orbits are then affected
by a wobbling motion and the orbital motion survives for
a time that ranges from two to six orbital periods after the
complete switch-off. This time is up to a few times the memory
time τ . Later, a divergence destroys the orbit altogether.
These observations show that the self-orbiting modes do
exist. In our experimental conditions, however, they become
unstable. It is natural to wonder if this is due to an intrinsic
instability as predicted in Refs. [13,29] or if, the limited
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FIG. 2. Typical trajectories observed when the confinement is
turned off for two values of the memory parameters. (a) Short memory
(Me ≈ 10). (b) Long memory (Me ≈ 140) (see Movie S1 [36]). (c,d)
Temporal evolution of the normalized trajectory radius Rc/λF along
these two trajectories (black: magnetic field on, green: transition time,
and red: no central force.

lifetime originates from the presence of experimental noise. In
the experiment, possible origins for the noise are the presence
of wave reflection from the bath walls or ambient air flows.
Though difficult to measure, these various noise sources could
easily generate variations of a few percent in the wave field
amplitudes.

To clarify this point we performed a numerical analysis of
existence of the self-orbiting modes and of their stability in
the presence of noise.

IV. THE NUMERICAL INVESTIGATION
OF THE SELF-ORBITING MODES

We use a discrete iterative model for the walker dynamics
reported by our group [22,25,27,31,37] which describes
accurately the walker’s behavior observed in various exper-
imental situations (the details are given in Ref. [37] and in
Appendix A). In this model, both the droplet trajectory and
the resulting wave field are computed iteratively. The wave
field is given by Eq. (1). The drop motion results from several
forces. The wave force, or memory force, is related to the local
slope of the interface at the point of bouncing. It is opposed
by a tangential frictionlike force Fγ due to both the shearing
of the air layer between the droplet and the bath and to the
formation of the dip in the interface that will be the source of
a new wave. The above-described experiment is simulated by
adding an external central force Fm to initially trap the drop.
As in the experiment, the force is switched off after some time.
Figure 3(a) shows the temporal evolution of the orbital radius
for short and long memory, respectively, and insets Figs. 3(b)
and 3(c) show the corresponding trajectories after the magnetic
force has been switched off. In the long memory regime, the
orbiting motion is here (where the noise is weak) stable.

We assess the influence of the noise on the stability of the
self-orbiting motion. This Monte Carlo type of analysis has

FIG. 3. Numerical investigation of the stability. (a) Temporal
evolution of the normalized radius of curvature Rc/λF along three
trajectories (pink, Me = 11; blue, Me = 15; black Me = 27. The
central force is turned off at t = 0 s. Insets (b,c) associated trajec-
tories for Me = 11, and Me = 27. (d) Temporal evolution of the
normalized radius of curvature Rc/λF for a fixed value of the memory
(Me = 27) and several values of noise amplitude expressed in
radius unit ε = σ/R, with R the instantaneous radius: pink, ε = 2 ×
10−2; blue ε = 1.6 × 10−2; red ε = 1.2 × 10−2; black ε = 4 × 10−3.
(e) Probability of capture p in the self-orbiting mode (color code
on the right) when varying the noise amplitude ε and the memory
parameter Me. Each probability is calculated over 20 realizations.

been chosen to account for the nonlinear nature of the walker
dynamics. The added noise consists of a random fluctuation of
the landing position within an equiprobable disk area of radius
σ = εR, with R the orbit radius. Figure 3(d) shows examples
of the effect of the added noise on the stability of the released
walker for increasing values of ε. The simulation is repeated 20
times for each set of parameters. A probability p of capture in a
stable orbit is then computed by measuring the radius after the
force switch-off. It is represented as a function of the memory
parameter Me and the normalized noise amplitude ε [Fig. 3(e)].

These results permit a general description of the stability of
the self-orbiting modes. In the simulations they exist above a
critical memory threshold Mec = 16. In the absence of noise
[see Fig. 3(a)] the orbit is briefly disturbed by the external
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force switch-off and restabilizes after undergoing a brief
wobbling motion of decreasing amplitude. In the presence
of a noise of moderate amplitude, the wobbling is observed to
be sustained without any disruption of the self-orbiting [see
Fig. 3(d)]. There is a noise amplitude threshold [depending
on the memory, see Fig. 3(e)] above which the wobbling
amplification leads to a disruption of the orbital motion. As in
the experiment this disruption occurs after a time delay that has
a statistically distributed value. The complex dependence with
memory of the noise level required to destabilize the initial
orbit is beyond the scope of the present article.

V. DISCUSSION AND CONCLUSION

It is interesting to discuss these results in the light of the
theoretical work of Oza et al. [29]. Their analysis has been
triggered by Coriolis experiments with walkers [27,28]. They
demonstrate that self-orbiting modes could be obtained in the
limit of vanishing rotation and very large memory.

This limiting case is very difficult to realize experimentally
in the case of a force generated by the rotation of the entire
bath. Stopping the bath would indeed generate secondary flows
both in air and liquid phases. Even in the current magnetic
force configuration which is far less disturbing, we find that
self-orbits ultimately destabilize. The question is on whether
it results from an intrinsic instability of these modes or from
noise-induced effects. While our model shows the latter, a
linear stability analysis had led Oza et al. [29] to conclude to
an instability for any realistic walkers.

At least two possible origins of this divergence come
to mind. While our model maintains the discrete iterative
character of the phenomenon, the MIT model [13] takes a
continuous limit. This limit lends itself to a convenient ana-
lytical framework. However, it may depart from the particular
case of walker dynamics as the bouncing is dominated by
discontinuities. In various dynamical systems, it has been
shown that the stability of discrete dynamics can strongly
differ from their continuous counterpart. As for the stability
itself, Oza et al. [29] performed a linear stability analysis of
these states. However, the walker dynamics is intrinsically
nonlinear. This is why we proposed a Monte Carlo approach.
Our results show that the self-orbits can be maintained over a
long time with or without the presence of wobbling motion.
It suggests that even if the orbits were linearly unstable, the
nonlinearities play a stabilizing role. This would account for
the observed wobbling orbits observed in the simulations. A
stability analysis of the circular orbit would consider it unstable
while, in a nonlinear perspective, the wobbling does not lead
to a bursting of the orbital motion and the angular momentum
of the droplet is preserved.

In the orbiting states, the dynamical interplay of the droplet
motion and the waves can be best understood by using a
decomposition of the wave field reflecting the symmetries of
the problem. Using Graf’s theorem, it is possible to reformulate
the global wave field [given by Eq. (1)] on a basis of Bessel
functions centered on the orbit axis of symmetry [31,34,38]
(see Appendix B). The radius of the orbit R determines
the efficiency of excitation of each eigenmode. Conversely,
when evaluated at the droplet position, the contribution of
each central Bessel function to the tangential and radial

FIG. 4. Theoretical characterization of the forces acting in self-
orbits. (a) The computed orbit and wave field at long memory
(Me = 100). The dotted lines are the zeros of J0. (b) The wave-
induced radial forces and the centrifugal pseudoforce Finert (dashed
red line) as a function of the normalized orbit radius R/λF. The
estimation wave-induced force is shown for several values of the
memory parameters (solid line, from light gray to black: Me = 11,
15, 19, 23, 27) with Ch0kF

meff
= 8.05 × 10−2 N/kg and meff = 3.82 ×

10−7 kg. Equilibrium is possible when the two curves cross. Vertical
lines indicate the first zeros of the J0 Bessel function R0 and R1. The
arrows indicate the stable orbits in the vicinity of R0 and R1. (c) The
possible orbits (black lines: stable solutions; gray: unstable solutions)
(d) The evolution with memory of the contributions of the first
Bessel modes to the tangential force F

//

Me with an equilibrium speed
V = 10.9 mm/s which enables to estimate γ = 7.8 × 10−6 kg/s.
(e) The evolution with memory of the contributions of the first
Bessel modes to the radial force F ⊥

Me. The dashed lines represent
the contribution of the first three centered Bessel modes. The vertical
line indicates the critical memory parameter Mec; the horizontal line
shows the asymptotic value of F ⊥

Me = Finert when J0(kFR) = 0.

forces can be obtained (see Appendix B). It is convenient
to analyze the drop dynamics by decomposing the memory
force FMe = −C[∇h]r(t) into its tangential F//

Me and radial F⊥
Me

components [see Fig. 4(a)], with C the wave coupling constant.
For the self-orbiting mode to exist, the self-propulsion of
the walker must be maintained for increasing Me. Velocity
results from the balance between F

//

Me and a friction force
Fγ = −γV : V = 1/γ F

//

Me. Both C × h0 and γ are constants
that we estimate from the experiments [21,22]. Their values
are in accordance with those predicted by the hydrodynamic
analysis done by Moláček and Bush [19,24].

We compute the equilibrium radius from Eq. (1) for the
radius measured experimentally. This latter is close to the
first zero of the J0 Bessel mode R0 (as will be discussed
below). Figure 4(d) shows the variations of F

//

Me as a function
of the memory parameter Me. In addition, the contribution
of each central Bessel function to F

//

Me can be evaluated
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using Graf’s theorem calculated at the droplet position. F
//

Me
is nearly constant above Mec. At long memory, it takes
the limiting value of 2Ch0

TF

∑
n>0 J 2

n (kFR0)/(R0ω) (see the
Appendix B). Apart from the axisymmetric J0 Bessel mode,
all the Bessel modes could contribute to the local tangential
slope. However, when evaluated near the first zero of the
J0 Bessel mode only Bessel functions of order n = 1 and
2 have significant contributions to the tangential propulsion
(representing, respectively, approximately 52% and 38% of the
tangential slope). These modes rotate at the angular frequency
ω of the droplet maintaining a constant local slope at the point
of impact, resulting in a sustained propulsion, as observed
experimentally. In other terms such a structure is intrinsically
endowed with an “arrow of time”. When their two-dimensional
(2D) trajectory is circular, the space-time symmetry is helical.

We can now examine the situation in the radial direction.
The droplet rotating on an orbit of radius R is submitted to
the memory-induced force F⊥

Me. This latter satisfies F⊥
Me =

−C∂h/∂r|r=R and can be computed directly from Eq. (1).
Figure 4(b) shows F⊥

Me for different memory parameters Me
as a function of the normalized radius of the orbit R/λF (see
Appendix B). The inertial pseudoforce Finert = −meffV

2/R is
also plotted with the constant droplet velocity approximation.
The radial balance can only be reached for a discrete set of
radii for which Finert = F⊥

Me above a critical memory parameter
Mec ≈ 16. The number of crossings, associated to larger radii,
increases with increasing memory. The solutions in Fig. 4(b)
for which the slope of the memory force is positive at the
crossing are trivially nonstable. For the others, the radii of
the self-orbits decrease towards the zeros of the J0 Bessel
functions (dotted vertical lines) as the memory increases
[Fig. 4(c)]. In the following, we will focus on the smallest orbit
observed experimentally associated with the first zero of the
J0 Bessel function, i.e., with R/λF = Rc/λF = 0.38 ± 0.01.

We can understand this evolution using the decomposition
in centered Bessel modes. Figure 4(e) shows the memory-
induced force F⊥

Me as a function of Me together with the
contributions of centered Bessel modes n = 0, 1, and 2. With
increasing memory, the role of the central J0 Bessel function is
the leading contribution of the wave field to the radial force. At
long memory (Me � Mec), the radial force takes the simple
expression

F⊥
Me � Ch0kFMe J0(kFR)J1(kFR). (2)

F⊥
Me is the product of three terms: J1(kFR) arises from the

radial derivative at kFR of the J0 mode, J0(kFR) is the J0 mode
excitation amplitude by the droplet bounces at a radius R, and
Me is the number of bounces that contributes to the global
wave field [22]. We can now understand why the radii R/λF

of the self-orbiting modes tend to the zeros of the J0 Bessel
function as Me increases [see Figs. 4(b) and 4(c)]. It results
from a self-organized mechanical balance. Since Finert does
not depend on the memory parameter, the product Me J0(kFR)
has to remain constant to maintain the force balance Finert =
F⊥

Me. Hence, at critical memory parameter Mec, the walker
maximizes the contribution of each bounce to reach a sufficient
wave force to balance inertia. This becomes possible above
Mec and with a radius that is at a maximum of J0(kFR). As
memory increases, the number of bounces that contributes

to the wave force increases; their individual contributions to
the global wave field must decrease. In the long memory limit,
each individual contribution tends to zero. The self-orbit radius
then satisfies

R

R0
≈ 1 + β

Me
with β = meff

Ch0

[
V

kFR0J1(kFR0)

]2

, (3)

where kFR0 is a zero of the J0 Bessel function. Equations (2)
and (3) are similar to those found in Oza et al. [29]. This
fine-tuning balancing the centrifugal inertial force can be
interpreted as a spatiotemporal self-organization of the walker.
This self-orbiting mode is an attractor of the dynamical system.

The previous analysis takes the point of view of the particle:
The wave field is only considered through its interaction with
the droplet only and not per se. For instance, the added angular
momentum brought by the wave field to the droplet is the
result of a local coupling and is thus different from the angular
momentum of the whole wave field. We now discuss the
global features of the wave field, its energy Ewave, and angular
momentum Lwave.

As the wave is monochromatic, the energy stored in the
wave field Ewave is proportional to the square of the surface
displacement h(r,t) integrated over the surface of the bath
(see Appendix C). This energy is normalized by the wave field
energy induced by a single bounce modeled as a J0 Bessel
function. Figure 5(a) shows the dependence of the normalized
energy Ewave stored in the wave field as a function of the
memory parameter Me for a self-orbiting mode and for a
droplet moving in a straight line.

While Ewave increases with memory for the rectilinear
motion, it slowly decreases for the self-orbiting mode, reaching
a finite value in the high memory limit. However, the wave
energy resulting from a single bounce does not depend on the
considered trajectory: Each impact generates a wave modeled
by a J0 Bessel function of equal amplitude. Since all the
individual bounces produce coherent waves, each wave source
interferes constructively or destructively depending on their
relative position. The contribution of each new source to the
energy of the global wave field can thus be either positive
or negative. Hence, the energy of the global wave field holds
a wave information of the droplet’s past trajectory. It is the
wavelike signature of the droplet path.

Since centered Bessel functions form an orthogonal basis, it
is possible to decompose the dimensionless wave field energy
on these Bessel modes:

Ewave =
∑
n�0

Ewave,n, (4)

where Ewave,n is the energy of the Jn centered Bessel function
normalized by the energy of a J0 Bessel function correspond-
ing to a single bounce. Figure 5(a) shows the contributions of
Bessel modes of order n = 0, 1, and 2 to the global wave field
energy. Only these first three modes contribute significantly to
the wave field energy. The energy of the centered J0 is given by
Ewave,0 = Me2J 2

0 (kFR) (see Appendix C). At first sight, this
energy could diverge with memory. However, as mentioned
previously, this mode is responsible for the radial force balance
of the droplet [see Fig. 4(c)]. Hence, the radius of the self-orbit
undergoes a self-tuning to maintain Ewave,0 constant. As a
result, with increasing memory, kFR tends to a zero of the J0
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FIG. 5. Energy stored in the global wave field and its modes.
(a) The evolution of the global wave field energy of a walker with
the memory. While it diverges for a free walker walking linearly
(in red), it reaches a finite value for a self-orbiting mode (black line).
The contribution of the first three centered Bessel modes are shown in
dashed lines. The vertical line indicates the critical memory parameter
Mec. The horizontal line indicates the energy of the self-orbit mode
for long memory. (b) The surface profile at approximately the time
of impact of the droplet with the surface. The colors distinguish
the protrusions in red from the troughs in blue. (c,d,e) show the
contributions to the surface height of the first three centered Bessel
wave modes J0, J1, and J2, respectively. The radius of the orbit (black
line) is slightly larger than that of the first nodal line of J0 (dashed
black line). As shown in Fig. 4 the centripetal force exerted on the
drop is essentially due to J0 while the tangential force is due to J1

and J2.

Bessel function [see Eq. (3)]. This self-organization leads to
a memory independent finite limit at long memory satisfying
Ewave,0 � (kFR0β)2J 2

1 (kFR0). The energy of the other modes
only depends marginally on the memory parameter. At long
memory, Ewave,n>0 � 2J 2

n (kFR0)/(nωTF)2. When evaluated in
kFR0, the amplitude of the Bessel functions tends rapidly to 0
with increasing n. Hence, only modes n = 1 and 2 contribute
significantly to the wave field energy. The variations of the
contribution between the different modes just above Mec

originate in the evolution of the self-orbiting radius towards
R0. Figures 5(b)–5(e) show the wave field associated to the
self-orbiting mode in the long memory limit together with its
decomposition in centered Bessel modes. In agreement with
the energy analysis, the J1 Bessel mode is dominant. Note
that, in the infinite memory limit, the amplitudes of all the
nonzero Bessel functions are fixed. In contrast, J0 being to
oppose inertia, its amplitude depends on droplet mass.

The projection onto the Bessel mode orthonormal basis
enables a calculation of the angular momentum of the wave
field since Lwave = ∑

n>0 Lwave,n where Lwave,n is the angular
momentum of the centered Jn Bessel function. For an angular
frequency ω, Lwave,n = nEwave,n

ω
[39]. As discussed before

[Fig. 5(a)], in the case of self-orbiting modes, the energy
contributions of all the nonzero Bessel modes rapidly reach
a finite limit at long memory. Hence, the normalized angular
momentum of the wave field also tends to a finite value. The
symmetries of the trajectory are present in the wave field.
The trajectory being spatiotemporally helical, it possesses
an intrinsic angular momentum. As memory increases, the
contributions of all the bounces along the trajectory for
one revolution become more alike. Consequently, the axial
asymmetry along the droplet path decreases on the scale of
one turn. However, when integrated over the memory time,
a constant asymmetry is recovered. The constant velocity of
the droplet is a direct consequence of the helical symmetry of
its trajectory. Note that similar angular momentum exchanges
have been observed in optical tweezers using Bessel beams.
The orbital angular momentum of the light beam sets trapped
microparticles into rotation [40]. In the case of walkers,
contrary to standard static external potentials that are limited
to spatial symmetries, the dynamical potential associated with
the wave field holds the whole spatiotemporal symmetry of
the trajectory.

The self-orbiting mode is surprising, in particular because
the rotation center does not coincide with the center of mass.
As shown above, this is a direct consequence of the role of the
wave field. It is interesting to compare this motion with the
more standard situation in which two identical droplets orbit
symmetrically around their center of mass. This binary motion
has already been studied [12,21,37] and it was shown that the
orbits could only have discrete sizes. For in-phase bouncing
droplets, the discrete set of possible radii is also related to
the successive zeros of the J0 Bessel function. However, in
this latter case the orbiting results from a mutual attraction: It
exists even at short memory, being due to the effect on each
drop of the wave emitted by the other.

For self-orbiting modes, the effect of the memory secondary
sources in the radial direction is similar to that of a virtual drop
that would be bouncing with the same phase and diametrically
opposed to the real one [27]. A self-orbit is thus in a sense
a binary spinning system composed of a massive pointlike
object (the droplet) set in rotation by its interaction with a
virtual counterpart. This mirror droplet is the echo of the
past trajectory brought to the present by the wave field.
This spatiotemporal nonlocal dynamics of the walkers makes
possible the rotation around a center different from the center
of mass. It is tantalizing to attribute an effective mass to the
wave field to recover the rotation around the center of mass for
a walker. In the case of short-memory limit already, the walker
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behaves as if it was slighty heavier [13,27,29,31,41,42], but
in the case of self-rotating states, the wavelike counterpart
of the droplet should then be endowed with an identical
mass, similar to a twin droplet rotating system. The effective
angular momentum of the self-orbiting droplet should then be
doubled when compared with that of an undressed droplet.
It is interesting to note that a charged self-orbiting droplet
would in this case possess a half-integer gyromagnetic ratio
that cannot be found when mass and charge have a similar
spatial distribution.

We have shown that self-orbits are attractors for free
walkers. Thus it is natural to wonder if more generally
these attractors play a role in nonisolated dynamics at long
memory. Figure 6(a) shows the trajectory of a droplet in a
wide potential (defined by �≈2; see [35]) at very high values
of the memory (e.g., Me � 500). The motion is then highly
chaotic (intermittence) and in frequent occurrence the droplet
is observed to be trapped in orbiting motion. It performs one or
several successive orbits before escaping and getting trapped
in another self-orbit motion elsewhere. The observation of the
waves [Fig. 6(b)] reveals that the local structure of the wave
field is then very similar to that observed in self-orbits [see
Fig. 1(b)]. These small scale orbits are statistically relevant;
if the radius of curvature RS is measured along the whole
trajectory a peak is observed centered at a value RS = 0.37λF.
The presence of these elementary orbits, each endowed with
a fixed elementary unit of angular momentum, appears to be
general. It is also observed at very high memory for other
types of confinement, when the walker is enclosed in corrals,
for instance [Fig. 6(c)]. These small orbits are the first building
blocks of complex trajectories observed at high values of
the memory parameter (Me > 100) in confined geometries.
In previous articles investigating the walker dynamics in
an attractive potential, it was shown that the dynamics of
walkers could be analyzed in terms of time scales [34].
While the short time scale effect is simply responsible for
the walker’s propulsion, the intermediate scale can generate
spontaneously pivotal structures around which the droplet
performs U turns. At a larger time scale, these pivots can
become the building blocks of a self-organization into a
global coherent orbital motion [34]. However, this is only
possible in very narrow ranges of values of the width of the
confining potential well. In all other cases the pivots cannot
become coherently spatially organized in a global mode and
the resulting frustration results in chaotic motion [35]. At
long memory, the dynamics of a confined walker is essentially
determined by a self-organization between the droplet motion
and its wave field. This is why the signature of self-orbiting
attractors emerges systematically.
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FIG. 6. Spontaneous transient self-orbiting loops. At very long
memory, the trajectory of a confined walker exhibits generically
the spontaneous formation of multiple transient self-orbiting loops.
(a) Trajectory in a wide potential well at Me = 500. (b) Photograph
of the wave field structure in this regime showing, in the vicinity of
the drop, the self-organized structure of a small self-orbit. (c) The
same transient self-orbits observed when a long memory walker is
confined in a circular corral.

APPENDIX A: PATH-MEMORY MODEL

We consider a vibrated bath of silicon oil with an ac-
celeration amplitude γm typically between 4.2g and 4.5g

(the Faraday threshold γF is at 4.5g). In the latter range, a
submillimetric drop is bouncing in the period-doubling regime
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and is self-propelled. The horizontal dynamics is decoupled
from the vertical one.

1. Vertical dynamics

We restrict ourselves to the period-doubling regime: two
oscillations of the bath per drop bounce. The position of the
bath is denoted zb = zb,0 sin ω0t with ω0 = 2 × 2π/TF and
TF = 25 ms the Faraday period. The vertical dynamics is
sequentially decomposed as follows.

The drop takes off for the first time at t0 when the gravity
is balanced by the bath acceleration. Once t0 determined, the
following takeoffs occur sequentially at times {t0 + nTF}n∈N.
The drop takes off with an initial vertical speed vz,0 =
ω0zb,0 cos ω0t0 and an altitude z0 = zb,0 sin ω0t0. Once in the
air, the vertical dynamics of the drops is dictated by the
equation z̈b = −g with the initial conditions given above.

The landing time tl corresponds to the time at which the
drop altitude matches the bath surface again. The time spent
in the air is denoted �tair = tl − t0 while the contact time is
given by �tsurf. = TF − �tair.

Experimentally, the bath oscillates at a frequency of
80 Hz and at an amplitude zb,0 ≈ 1.8 × 10−4 m. Thus, the bath
acceleration is about 4.3g. With these parameters, the initial
take-off phase is at ω0t0 = 0.21, �tair = 19.5 ms = 0.78 TF,
and �tsurf. = 5.5 ms = 0.22 TF. These numerical value are in
accordance with those of Moláček and Bush [24].

2. Horizontal dynamics

The drop is modeled as a point. When the drop is in the air,
we numerically solve the horizontal equation of motion with
a Runge-Kutta method (ODE45, with MATLAB).

The speed just before the nth landing is noted v and can be
decomposed into a term v‖ tangential to the surface and one v⊥
perpendicular. The transfer of horizontal momentum depends
on the angle between the incoming speed and the normal of the
surface n. If the surface field h is of small amplitude compared
to the Faraday wavelength, the relation between the horizontal
speed just before v‖(t−n ) and the speed just after v‖(t+n ), at the
nth landing, is given by v‖(t+n ) − v‖(t−n ) = − |v⊥| ∇‖h.

During the “contact” time, the drop loses a part of its
energy due to its interaction with the bath which leads to
v‖(t+n + �tsurf.) = v‖(t+n )e−�tsurf./Tv . The characteristic time is
Tv = 5 ms which means that v‖(t−n + �tsurf.)/v‖(t+n ) ≈ 0.35.
Note that the total horizontal restitution coefficient C‖ =
v‖(t+n + �tsurf.)/v‖(t−n ) is about twice as large. This agrees
with the measurements of Moláček and Bush [24] who give
an approximate value of ≈ 0.7 ± 0.1 in the Weber regime of
interest.

3. Field evolution

The surface field seen by the drop at the phase of impact φ

is updated at each bounce. At the nth landing, the surface field
is h(r,t−n ) [see Eq. (1)].

The gradient of the surface field is taken at the drop
position. The remaining coefficient h0 is chosen so that the
walking speed matches the experimental one (10 mm/s) in the
case Fext. = 0 and at high memory. The field is initialized as
h(r,t = 0) = 0. Note that this numerical model contains no

free parameter [22]. Only the memory Me and/or the external
forces are control parameters.

APPENDIX B: COMPUTATION OF THE FORCE
EXERTED BY THE WAVE FIELD

This force is due to the bouncing of the drop on a locally
slanted surface and is proportional to the local slope. In order to
obtain this force we first compute the global wave field h(r,t)
and expand it on the wave basis of centered Bessel modes
{Jn(kFr)einθ }n∈Z. It gives

h(r,t) = h0

0∑
j=−∞

e− t−tj

τ

+∞∑
n=−∞

Jn(kFr)Jn(kFrj )e−in(θ−θj ).

(B1)
In the case of a circular motion, with a radius R and an

angular velocity ω, without loss of generality we choose at the
time of impact t , the angular position of the drop ωt .

We have the following for all j : rj = R, t − tj = jTF, and
θj = ωt − ωjTF, where θ0 is the angular position of the drop
at t = t0, an arbitrary constant which depends on the choice of
the frame axis. It gives

h(r,t) = h0

TF

+∞∑
n=0

(2 − δn,0)Jn(kFR)Jn(kFr) τ

×
{

cos [n(θ − ωt)]

1 + (nωτ )2 − nωτ sin [n(θ − ωt)]

1 + (nωτ )2

}
, (B2)

with δn,0 the Kronecker symbol.
For the radial force we get

F⊥
Me = Ch0kF

τ

TF
J0(kFR)J1(kFR)

− 1

τ

{
C

h0kF

TF

+∞∑
n=0

Jn(kFR)[Jn−1(kFR) − Jn+1(kFR)]

×
[

τ 2

1 + (nωτ )2

]}
. (B3)

In the long memory limit ωτ � 1, we have the simplifica-
tion

F⊥
Me = Ch0kFMeJ0(kFR)J1(kFR) + O

(
1

Me

)
, (B4)

with Me = τ
TF

which justifies Eq. (2) in the long memory limit.
For the tangential force, we get

F
//

Me = 2C

V

h0

TF

+∞∑
n=1

J 2
n (kFR)

[
(ωnτ )2

1 + (nωτ )2

]
, (B5)

with V = ωR. In the high memory limit ωτ � 1, the force
can be expressed as

F
//

Me = 2C

V

h0

TF

+∞∑
n=1

J 2
n (kFR) = C

V

h0

TF

[
1 − J 2

0 (kFR)
]
. (B6)
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APPENDIX C: COMPUTATION OF THE WAVE
FIELD ENERGY

Let us evaluate the energy stored in the wave field Ewave

normalized by the wave field energy induced by a single
bounce modeled as a J0 Bessel function.

The energy of the wave field for a monochromatic wave
over a domain � of radius R is proportional to the square of
the surface displacement h(r,t) integrated over the surface of
the bath. Using the wave basis of the centered Bessel functions
{Jn(kFr)einθ }n∈Z, the energy can thus be written as

E ∝ h0
2

+∞∑
n=−∞

A2
n

∫∫
�

J 2
n (kFr)d2r. (C1)

In the case of a walker orbiting at a radius R with an angular
velocity ω, from Eq. (7) we obtain A2

n = 1
TF

2 J
2
n (kFR) τ 2

1+(nωτ )2 .
Normalizing the wave energy in the domain � by that of a
single bounce Ebounce gives

Ewave = lim
R→∞

E

Ebounce
�

+∞∑
n=−∞

A2
n . (C2)

It is possible to write Ewave = ∑
n�0 Ewave,n by defining

Ewave,n as the energy of the Jn centered Bessel function
normalized by the energy of a J0 centered Bessel mode
corresponding to a single bounce. In particular, Ewave,0 =
Me2J 2

0 (kFR).
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