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Plants have developed different tropisms: in particular, they reorient the

growth of their branches towards the light (phototropism) or upwards

(gravitropism). How these tropisms affect the shape of a tree crown remains

unanswered. We address this question by developing a propagating front

model of tree growth. Being length-free, this model leads to self-similar sol-

utions after a long period of time, which are independent of the initial

conditions. Varying the intensities of each tropism, different self-similar

shapes emerge, including singular ones. Interestingly, these shapes bear

similarities to existing tree species. It is concluded that the core of specific

crown shapes in trees relies on the balance between tropisms.
1. Introduction
In many tree species, the outer shape of the crown is a criterion for species

identification, especially when trees have grown in isolation. The Mediterra-

nean cypress has a distinctive elongated shape, while birch and oaks show

more spherical shapes, and the Norway spruce has a conical profile. The

growth process that leads to these different silhouettes is not well understood.

It is associated with genetically fixed species-dependent factors like the branching

angles, the phyllotaxy, and more generally the developmental characteristics of

the branching architecture known as the ‘architectural model’ of the species [1].

But crown shapes are also affected by the environmental growth conditions (in

a genetic-dependent manner): trees grow differently if they are isolated or in a

forest [2], if subject to climatic stresses like wind or snow cover [3]. So far, the

few studies about crown shaping have investigated the hypothesis that it may

result from an interplay between a genetically defined architectural development

and branch growth or shedding linked to the light competition [4].

However, tropisms in the outer growing branches can be viewed as another

possible candidate for the control of crown shape. Tropisms are defined as the

reorientation of a growing branch following a vectorial cue from the environ-

ment. Two tropisms are shared by most plants: phototropism is the process

that leads to growth in the direction of light, while gravitropism is driven by

the direction of earth gravity. Genetic differences in tropic sensitivities have

been reported [5,6]. The study of these tropisms is still an active field today, ran-

ging from shoot scale [6–9], to the molecular networks that regulate them [10].

Yet, a question remains largely open: how do these tropisms and their balance

influence the shape of a tree crown?

In this work, we investigate the simple hypothesis that the two tropisms of

the peripheral primary shoots at the tip of the branches can be major players in

driving the shaping of the crown, accounting for the interplay between genetic

control and responses to the local environment. To do so we developed a simple

model of the crown growth. In the literature, popular growth models generally

consider branches and leaves as the elementary bricks of a numerical simu-

lation [11–15]. However, these models usually involve a large number of

empirical parameters, and thus remain too complex to study the specific roles

of phototropism and gravitropism in selecting tree shapes. Recently, Beyer

et al. [16] proposed a simpler and more parsimonious model that considers
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Figure 1. Sketch of a growing tree crown. h and v are unit horizontal and
vertical vectors, respectively, n and t are the unit vectors, respectively, normal
and tangent to the front and the unit vector ‘‘‘‘‘ points towards the mean direc-
tion of light, which is the first bisector of d(h, t). The angle c ¼ w þ p/2
represents the local amount of sunlight intercepted for this axisymmetric
shape. The inset shows a zoom around the front to highlight the conditions
for self-similarity of the growing shape. (Online version in colour.)
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the whole tree as a continuous medium. This approach seems

very promising, but has not yet been fully exploited to

address the combined role of phototropism and gravitropism.

In this study, we propose a new idea: considering the growth

of a tree crown as a continuous front propagation process.

Despite some similarities with other front propagation pro-

cesses, such as crystal growth [17], premixed combustion

[18] or Saffman–Taylor fingering [19], tree growth has

some distinctive features.

In particular, since growth involves photosynthesis and is

controlled through light sensing (photomorphogenesis), our

model includes both photosensitivity (the foliage receiving

more light will grow faster), phototropism (growth is prefer-

entially oriented in the direction of light) and also

gravitropism (growth is preferentially oriented against grav-

ity). As we shall see below, the proposed model requires

only two parameters to describe the shape of the crown (irres-

pective of its size): the intensities of phototropic and

gravitropic growing responses. With this model, we intend

to address the following questions: what is the family of

shapes generated when these two parameters vary? Do

these shapes converge towards steady solutions? How can

these steady solutions be described analytically? And finally

do these solutions fit the major classes of crown shapes

observed in undisturbed isolated trees in nature?
2. Crown growth model
We first assume that average sunlight is uniformly distribu-

ted in the upper hemisphere, but we shall come back to

this strong assumption in the discussion section. When the

crown envelope is convex and axisymmetric, the amount of

light received daily at each point of the front is thus assumed

to be proportional to c, the angle between the local tangent

and the horizontal (figure 1). At each point on the front, n

represents the outward normal unit vector, ‘‘‘‘‘ is the unit

vector that represents the average direction of light, v is the

upward vertical unit vector and k is the in-plane curvature,

positive when the surface is locally concave (figure 1).

According to this nomenclature, the velocity of the front is

written as

U ¼ c
nþ agvþ ap‘‘‘‘‘

jnþ agvþ ap‘‘‘‘‘j
þ gkn, ð2:1Þ

where ag and ap are the intensities of the crown gravitropic

and phototropic responses, respectively, and g is similar to

a ‘surface tension’, but acting on the growth velocity.

Our model is based on two basic assumptions: [A1] the

crown foliage is dense enough all across the crown so that

it may be described as a continuous medium with a continu-

ous boundary line (i.e. a growth front); [A2] all the growing

apices sitting on the front have similar dependency on light

and gravity. Assumption [A1] requires that the development

of the tree crown is sufficient and the crown displays a steady

characteristic shape, a condition that is usually observed in

most species as soon as they have reached the ‘architectural

unit’ (AU) stage, i.e. that they have differentiated all their

branch types [20]. [A2] requires that ‘rogue branches’ do

not occur. It is well known that traumatic reiteration resulting

from accidental branch breakage or from large herbivory

damages produces re-juvenilized branches that behave differ-

ently than regular branches (e.g. suckers). These traumatic
reiterations should be distinguished from regular reiterations

involved in the process of crown morphogenesis (a process

known as branch metamorphosis [1,20]), as these reiterated

branches still compile with regular behaviour and the

crown remains dense.

The first term on the right-hand side of equation (2.1)

includes two important biological mechanisms. First, the

front velocity is assumed to be proportional to c, the light

intercepted, to account for photosensitive growth. Second,

the gravitropism and the phototropism are modelled through

a reorientation of the growth in a direction computed as the

weighted average of the three unit vectors n, v and ‘‘‘‘‘. This

modelling of tropisms is in accordance with the experimental

observations made at the level of a single shoot, and with the

ArC model of shoot gravitropism and phototropism, that was

assessed against experiments [21]. Additionally, it has been

demonstrated experimentally that the sensitivity to gravity

is not dependent on the angle made by the shoot versus grav-

ity. The mechanism subtending this behaviour lies in the

functioning of specialized cells called statocytes (see

[6,7,22,23] for more explanations on the physics and biology

behind this mechanism). For phototropism, the equation

and the definition of phototropic sensitivity are mainly

similar (see [21] and references therein).

The last term in equation (2.1) stabilizes the front

dynamics and smoothes out the front shape by damping

the velocity fluctuations, and hence has a similar role to sur-

face tension in Saffman–Taylor dynamics for example. There

is obviously no surface tension acting at the boundary of the

tree crown. However, recent ecophysiological investigations

have revealed that two biological mechanisms are acting to

reduce the differences in growth velocities of neighbouring

shoots, and hence resulting in a flattening tendency of the

canopy boundary, which is qualitatively similar to surface

tension. The first mechanism is due to lateral sensing of the

spectral signature of the light reflected by neighbouring

http://rsif.royalsocietypublishing.org/
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Figure 2. Superimposed views of a tree crown growth for two different
initial conditions. In (a), the initial shape is a circle and in (b) a circle
with a significant 0(1) perturbation. Parameters are: ag ¼ ap ¼ 0 and
g ¼ 0.01. The light green curves correspond to different instants. The
dark-green curves correspond to the self-similar solution after a long
period. The shape is rescaled at each time step in order to keep its
volume constant equal to one. (Online version in colour.)
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plants, through the phytochrome pigment [24]. This sensing

results in a photomorphogenetic synchronization of the

growth in length of the neighbouring stems, keeping

the top of the canopy flat. The second mechanism involves

the sensing of wind-induced strains [25]. Whenever a shoot

overreaches its neighbours, it is no longer sheltered by the

canopy and its growth speed is reduced until the front is

flat again. It has been shown nicely in herbaceous popu-

lations of shoots that these two mechanisms are responsible

for the flattening tendency of canopy tops, as dramatically

illustrated by the flatness of the top surface of crops such as

wheat or corn [26]. From a practical point of view, when

simulating the growth of a crown, we rescale its shape at

each time step to keep its axisymmetric volume V constant.

As explained in the next section, this is equivalent to a coeffi-

cient g growing in time in equation (2.1). Although this

rescaling may seem unphysiological, we perform it for two

reasons: it ensures that the code is stable over long periods

of time, and it allows attainment of self-similarity (when sur-

face tension is rescaled, equation (2.1) has no length scale and

self-similar solutions emerge).

Finally, it may be noted that in our simplified model, the

curvature k is calculated in a vertical plane, and not as the

three-dimensional mean curvature of the axisymmetric inter-

face. The latter refinement would be possible, but does not

affect the main features of the solutions.
3. Numerical solutions
Equation (2.1) is solved numerically by placing N ¼ 200

marker points on the front. The points are then advected

along the normal to the front. Furthermore, at each time

step, the coordinates of the front are rescaled by the volume

to the power 1=3, such that the crown volume remains con-

stant (V ¼ 1). This rescaling makes the problem scale-

invariant and allows the ‘surface tension’ to remain of the

same order during the growth process. As a consequence,

the scaling of the true curvature in the physical plane

increases like V1/3. As the ‘surface tension’ coefficient in the

numerical space g* is kept constant, it means that:

g ¼ g�V1=3: ð3:1Þ

As V ¼ 1, we can drop the star and use g in place of the

constant g*.

The surface points are advected in time using an explicit

second-order scheme [27], with a time step dt � ds2/g,

where ds is the typical distance between two successive

marker points, chosen to ensure the stability of this explicit

scheme. The markers are redistributed on the front at each

time step, in order to conserve regular spacing. Note that

the ‘surface tension’ becomes significant when gk � 0(1), as

seen in equation (2.1).

Figure 2 shows two examples of such a computation for

two distinct initial conditions. In this example, there is no

phototropism and no gravitropism (ag ¼ ap ¼ 0) and surface

tension is set to g ¼ 0.01, small compared to the global length

scale: g� 1.

We first observe that, although initial conditions signifi-

cantly differ, the successive shapes converge towards a

unique self-similar shape (figure 2a). This self-similarity was

expected because the problem has been made scale-invariant.

To further test this idea, we performed extensive numerical
simulations with different parameter sets (ag, ap), at low sur-

face tension (g ¼ 0.01). The results are presented in figure 3:

green shapes correspond to computations that have

converged towards self-similar shapes, meaning that a typical

distance between two successive rescaled shapes (Fréchet dis-

tance) has reached 1026, whereas grey shapes correspond to

non-convergent computations (in these cases found in the

lower-left part of the diagram, the shape flattens out indefi-

nitely and convergence is never reached). The grey curve

which segregates converged from non-converged shapes

will be discussed in §5. Figure 3 displays a large diversity of

shapes as a function of the parameter sets (ag, ap), showing

that the (genetic) variation in the sensitivities to phototropism

and gravitropism can indeed produce different crown shapes

in our model.

Moreover, we performed numerical simulations with

decreasing surface tension g (figure 4). The results showed

that all the final self-similar shapes converge towards a uni-

versal shape in the limit g! 0. In the next section, we

focus on this limit and show that this universal shape can

be derived analytically, providing insight into the control of

the steady-state crown shape, when it exists, by the parameter

sets (ag, ap).
4. Analytical solutions
In the limit of vanishing surface tension (i.e. g! 0), equation

(2.1) becomes scale-invariant. We look for a self-similar

solution of this equation by imposing that the front is

described by the homothetic surface:

R(u,f, t) ¼ r(u)C(t), ð4:1Þ

in spherical coordinates (figure 1).

Between two successive times, t and t þ dt, the front has

been increased by r(u)C0(t)dt in the radial direction. This

condition can be expressed as

r(u)C0(t)dt cosb ¼ U � n dt ¼ cB(w) dt, ð4:2Þ

where c ¼ w þ p/2, b ¼ p/2 2u2w and

B(w) ¼
nþ agvþ ap‘‘‘‘‘

jnþ agvþ ap‘‘‘‘‘j
� n: ð4:3Þ

To solve this problem, we first note that cones are trivial

self-similar solutions of equation (4.2), with w the constant

http://rsif.royalsocietypublishing.org/
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angle between the cone surface and the vertical direction

(figure 1). Moreover, equation (4.2) implies that C0(t) does

not depend on time. The cones having the same velocity C0

(that we choose equal to 1 without loss of generality) intersect

the vertical axis at the elevation

zc(w) ¼ r(0) ¼ (wþ p=2)B(w)

sinw
: ð4:4Þ

Figure 4 shows the cones described by equation (4.4) for

two different sets of parameters. The universal shape we

found numerically in the limit of vanishing surface tension

appears as the inside envelope of all those cones. Interestingly,

this inside envelope can be obtained analytically.

For convenience, we switch to cartesian coordinates. The

cones of equation (4.4) intersect the plane y ¼ 0 along the

straight line described by the equation: z ¼ zc(w) 2 x/tanw.
Consequently, two cones corresponding to angles w and

w þ dw will intersect at the point

x(w) ¼ �z0c(w) sin2 w ð4:5Þ

and

z(w) ¼ zc(w)þ z0c(w) sinw cosw: ð4:6Þ

When 2 p/2 � w � p/2, equations (4.5)–(4.6) describe the

cone envelope as a parametric curve (red curves in figure 4).

Because this parametric curve is everywhere tangent to a

cone with the same time evolution C(t), it is also a self-

similar solution of equation (2.1) for g ¼ 0. This approach is

similar to the Wulff construction used in the physics of crystal

growth [28,29].

Another interesting feature of these self-similar shapes

arises from following the trajectories of surface points back-

ward in time. These trajectories can be thought of as traces

of the underlying structure, i.e. the tree branches. Figure 5

shows these trajectories for two cases: ag ¼ ap ¼ 0 and ag ¼

ap ¼ 2. These trajectories are numerically calculated by

advecting backward in time 31 points along the vector 2U.

At each time step, the points—lying on a smaller self-similar

shape—are associated with an updated angle c using cubic

splines. For ag ¼ ap ¼ 0, there is a region without branches

close to the bottom. This region is a consequence of the flat

bottom, where c ¼ 0 and the front velocity is zero. Note

that the curvature of the ‘branches’ is only due to the variation

of c and ‘‘‘‘‘ along these trajectories, and not to the bending

under self-weight of the branches or any other global reorien-

tating mechanisms such as those related to reaction wood

[30], which are not taken into account in our model.

We will discuss below why numerical simulations

converge towards the parametric solution given by equations

http://rsif.royalsocietypublishing.org/
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Figure 5. (a) Trajectories of points along the front, for the cases ag ¼ ap¼ 0
and (b) ag¼ ap¼ 2. Starting from the self-similar profile corresponding to
t ¼ 1, 31 points are advected backward in time using equation (2.1) until
t ¼ 0.1.
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(4.5)–(4.6). Meanwhile, we describe how the respective inten-

sities of gravitropic and phototropic responses modify the

crown propagation and the final shape.
 76
5. Comparison between numerical and analytical
solutions

We note that these attracting shapes do not exist for any

choice of the parameters ag and ap, as already observed in

figure 3. Figure 6a shows with grey levels how fast the

numerical solution converges towards a self-similar solution.

It also shows that in the lower part of this diagram, there is

no convergence. Equation (4.4) indicates the cases when

self-similar shapes exist. The convergence occurs when the

cone with a vertical angle (w ¼ 0) exists (i.e. x(0) . 0 in

equation (4.5)). This condition simplifies to:

ap . �
ffiffiffi
2
p

: ð5:1Þ

Moreover, the self-similar shapes cease to exist when their

top (given by z0c(w) ¼ 0, w [ [0, p/2]) reaches their bottom

(z0c(w) ¼ 0, w [ [2p/2, 0]). This condition can be computed

numerically and corresponds to the light green curve in

figure 6a. A good approximation of this curve for

ag [ [�2,
ffiffiffi
2
p
� 1] can be obtained by writing that the

self-similar shapes exist roughly when the two cones with

horizontal angles (w ¼+p/2) are one above the other

(i.e. zc(p/2) . zc(2p/2) in equation (4.4)), a condition that

simplifies to:

ap þ ag . �1: ð5:2Þ

These existence conditions correspond to the light green

curve in the phase diagram (figure 6), below which there is

no analytical self-similar solution. The curve is also repro-

duced in figure 3 and is perfectly consistent with the

convergence region observed for the time-evolving shapes.

When they exist, self-similar solutions exhibit different

characteristics that correspond to different hatchings in

figure 6a. First, we note that the self-similar solutions

always feature a pointed top. It happens for z0c(p/2) . 0,

with zc given by equation (4.4). This condition is equivalent

to ap þ ag . 21; which is guaranteed by equation (5.2).

Second, the self-similar shape can exhibit a pointed bottom

when z0c(2p/2) . 0, or equivalently when x(2p/2) , 0. This

configuration is equivalent to ag . 1 (dark green hatching on

the right of figure 6a). Examples of such shapes are displayed
in figure 6c,i,j. Note that, contrary to flat-bottomed shapes

(figure 6b,e,g, for instance), these shapes have a non-zero

growth velocity at their pointed bottom.

Third, the bottom of the self-similar shape can present a

cusp when x0(2p/2) � 0; which is equivalent to ap(2a2
g 2

2ag þ a2
p)� 0 (red hatching in figure 6a). This cusp can clearly

be seen in the self-similar solutions displayed in figure 6i,j
where the value of x at the bottom (for w ¼ 2p/2) initially

decreases. The same cusp is also perceptible in figure 6d,g,h,

although it is less pronounced.

Finally, the self-similar shape described by the parametric

curve given in equations (4.5)–(4.6) can exhibit a loop, as seen

in figure 6h,i (it is also perceptible in figure 6f , but less vis-

ible). This loop corresponds to the zone with the yellow

hatching in figure 6a, whose boundary has been determined

numerically.

As seen in figures 4 and 6b– i, the numerical self-similar

solutions obtained in the long-term always converge, in the

limit of vanishing surface tension, towards the inward envel-

ope of the cone solutions given by the parametric curve of

equations (4.5)–(4.6). However, when surface tension is

zero, any shape constructed as an assembly of pieces of

cones could be a valid self-similar solution. These solutions

do not occur in the numerical simulations for two reasons:

first, any connection between two pieces of cones tend to

‘recess’ towards the inward envelope when the surface ten-

sion is non-zero. Second, the front propagation is described

as the advection of markers in the direction normal to the

front, whereas a special numerical treatment of the corners

would be necessary to maintain a solution made of several

assembled cones.
6. Comparison with observed crown shapes
Care should be taken when comparing the predictions of the

model with real tree crowns observed in nature. Indeed the

impinging of light rays on the crown should not be inter-

cepted by a neighbouring object (wall, rock, other trees).

Moreover, tree shoots should not be able to sense the

reflected light from neighbouring crowns even in the absence

of direct shading of the incident light. The few studies about

the distance of neighbouring sensing is limited to approxi-

mately 5 m [31]. Finally, no external action such as pruning,

grazing or wind-break should have occurred (at least at a

scale that could affect the growth and shaping of the crown).

Another important aspect is that the external growing

shoots should have a similar physiological and developmen-

tal status. Indeed some reiterations (especially traumatic

ones) can result in obvious disruptions to the regularity of

the crown shape. Therefore, only two developmental stages

were retained: (i) young trees approaching the ‘architectural

unit stage’ and (ii) mature trees having developed

their scaffold limbs through the process of developmental

metamorphosis [1,20].

We used two sources of tree crown pictures. The first

source is an arboretum (E. Badel’s park, sitting in southern

France in a sub-Mediterranean climate at 44.9048 N, 4.8308 E)

where no pruning or grazing has ever been achieved and

trees were planted at large distances from each other. The

second source results from a search on botanical websites

and Wikimedia Commons (https://commons.wikimedia.org),

retaining only photographs for which the species and the

http://rsif.royalsocietypublishing.org/
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location were known and the criteria concerning the absence of

significant neighbours or traumatic reiteration could be

assessed.

For each picture, the best fit is found using the following

method. First, the right half of the tree crown is described as a

series of hand-picked points (typically approx. 20 points).

Then, we assume that the shape is axisymmetric and we

rescale and shift this shape such that its volume is equal to

unity and its centre of mass is at the origin. After that, we

look for the parametric curve described by equations (4.5)–

(4.6) that minimizes the distance with the real tree crown,

where the distance d is defined as

d2 ¼ 1

p

ðp
0

(Rmodel(u)� Rcrown(u))2 du, ð6:1Þ

with Rmodel and Rcrown the polar representations of the model

and tree crown, respectively. This procedure allows the best

parameters ag and ap to be found. The same procedure is

repeated with the additional constraint ap . 0.

This fitting method has been applied to 36 different tree

crown pictures (see the electronic supplementary material),

out of which four representative cases have been extracted

(figure 7). In figure 7a, the fit is fair with parametric values of

ag and ap both positive, as expected from what is known

about shoot tropisms, namely upward gravitropism and posi-

tive phototropism. For some trees, the shape of the crown could

not be well fitted with positive values of ag and ap. However,

allowing a negative value for ag (figure 7b) or ap (figure 7c,d),

leads to a good fit. Negative values forap would mean negative

shoot phototropism, a condition that is usually not observed in

studies about shoot phototropism. We analyse in the discus-

sion section the biological insights that such a situation may

provide. Figure 7c,d provides two sets of parameters: the first

one (red profile) for which we allowed any values for ap, the

second one (black profile) for which ap is constrained to be

positive. These two comparisons clearly show that in some

cases, like (c), the crown shape can be well fitted using several
parameter sets (possibly even a continuum set of parameters),

whereas others show a poor comparison with the real shape

when ap is constrained to be positive. On this matter, the diag-

onal described by equation (5.2) and seen in figure 6 plays a

particular role: close to this line, shapes look similar, allowing

for a family of solutions.
7. Discussion
Many tree species display characteristic and heritable crown

shapes, at least at some stages and when trees have grown

in isolation. Yet crown shape is remarkably variable with

the environment (what biologists call ‘plasticity’): trees grow

differently if they are isolated in full sunlight or in a forest

[2], if they are submitted to wind or protected from it [3] . . .

Reconciling these two features has remained a challenge.

Indeed there is a large number of biological mechanisms

that can affect the intensity and orientation of shoot growth,

e.g. phyllotaxis, apical dominance [1,20], response of buds

breaks in the light [24], changes in growth directions at differ-

ent developmental stages, tropisms, internal correlations

between organs [1], as well as repulsive effects between

branches mediated though phytochromes [24], biomechanical

processes at the branch level, such as the bending of the

branches under self-weight, its fixing through secondary

growth and global reorientating mechanisms related to reac-

tion wood [30]. Moreover, the development of the crown is

modifying the environment of the growing apices, creating

a feedback of the actual crown shape over its development

(shading, wind sheltering, etc.). The challenge is then to ident-

ify the leading physical and physiological mechanisms that

explain the interaction between genetic control and sensitivity

to the environment in the development of crown shape. Two

standpoints can be adopted.

One is to concentrate on the development of the branched

architecture through bud breaks, shoot growth, and its remo-

delling through environmental factors interacting with the

http://rsif.royalsocietypublishing.org/


(a) (b)
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Figure 7. Comparison between real tree crowns and self-similar shapes of the model: (a) Betula pubescens, ag ¼ 0.927, ap ¼ 0.267, d ¼ 0.022; (b) Quercus
castaneifolia, ag ¼21.00, ap ¼ 0.353, d ¼ 0.019; (c) Enterolobium cyclocarpum, ag ¼20.490, ap ¼20.488, d ¼ 0.023 (black curve: ag ¼21.00, ap ¼

0.034, d ¼ 0.020), (d ) Thuja occidentalis, ag ¼ 0.379, ap ¼21.23, d ¼ 0.018 (black curve: ag ¼ 5.00, ap ¼ 2.69, d ¼ 0.079). The red curve represents
the best fit and the black curve the best fit with ap . 0. See the electronic supplementary material for comparisons with other tree species. (Online version
in colour.)
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crown size and spread such as the light competition or wind

effects [4,32]. The second standpoint is to concentrate on what

is occurring at the boundary of the crown, and more specifi-

cally on the apical buds that are sitting on its vicinity, and

which are responsible for the increment in crown spread

through the annual flush of shoot growth. This standpoint

can be visualized when considering, for example a coniferous

tree in the springtime, on which the crown of the previous

year has kept its dark-green needles and the new sprouts

undergoing primary growth (elongation) appear with a

much lighter green colour. The descriptive parameters of

this crown increment are the distribution of the buds, the

amount of their elongation, and their direction. And the inter-

action between the genetic specification and the local

environment at the boundary of the crown is specified

through the physiological processes that may influence

these descriptive parameters. This second standpoint is the
one that has been investigated in this work. Three different

processes were thus retained: the photomorphogenetic

photosensitivity of shoot elongation (referred to as photosen-

sitivity) and the two major tropisms known to affect the

direction of the primary growth: photo- and gravitropism

[6,21]. The initial orientation of the bud was considered to

have negligible effect as growing shoots can reach their

photo-gravitpropic set point angle irrespective of the original

orientation in an interval of time that is very short compared

to the morphogenesis of crown shape (typically less than a

day) [6,21].

In this article, we model this process of incremental pri-

mary growth at the boundary of the crown with a front

propagation equation taking into account the effects of photo-

sensitivity, phototropism and gravitropism, and the feedback

of the actual crown shape through its shading effect of the

growing apices, as a function of their position. We also

http://rsif.royalsocietypublishing.org/
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included a synchronization of the growth velocity among

neighbouring shoots [24–26] resulting in a local flattening ten-

dency of the canopy boundary, which is qualitatively similar

to a surface tension. Through numerical simulations, we show

that this front equation generally yields self-similar solutions

over the long-term, independently of the initial shape. In the

limit of vanishing surface tension, we show that these self-

similar solutions can be described analytically by parametric

curves, which, for particular values of the phototropic and

gravitropic responses, can exhibit singularities.

The outputs of the model were then compared to real tree

crowns. As the dynamics of the crown growth is at the core

of the model, a direct comparison between the proposed

front velocity, given by equation (2.1), and empirical obser-

vation of growth directions and amount would have been

the best assessment. However, no such data were available,

and their collection would require long-term experiments.

The assessment of the predictions of the model was thus

achieved by comparing its self-similar solutions with real

tree crowns at the stages at which the crown displays a typi-

cal and stationary shape (namely the ‘architectural unit

stage’ and mature stages [1,20]). This was achieved on 36

crown images of different tree species sampling many taxo-

nomic clades from different climates. Using the distance d
defined by equation (6.1) measuring how the shapes

extracted from the pictures differ from the analytical para-

metric curves, we could find, for each picture, the set of

phototropic and gravitropic intensities that best fit the tree

crown. It appears that in 97% of the cases, we find a distance

d , 0.05, which we consider as good (see the electronic

supplementary material).

These results, however, raise two major questions: one

about the values of the photo- and gravisensitivity par-

ameters; and the second one about the significance of the

two important assumptions of the model (aside from the

choice of the three mechanisms): the linear photosensitivity

curve and the uniform lighting. Regarding the photo- and

gravisensitivity parameters, positive values of ap and ag

allow for a satisfactory comparison with real crown shapes

in only 33% of the cases. For 75% of the cases, a reasonable

fit can be obtained with the constraint ap � 0. However,

negative values of ap are required to fit the remaining 25%

(figure 7; electronic supplementary material). Negative

shoot phototropism has never been documented in wild-

type plants living in natural conditions and can be considered

non-physiological. By the same token, negative shoot gravi-

tropism is restrained to rare mutants, and is unlikely to be

involved in the studied trees. However, these negative

values may reflect the influence of another tropism, namely

auto-tropism [30]. Auto-tropism is the tendency for growing

plant shoots to reduce their curvature, through a propriocep-

tive sensing [6,33]. It was found that the proprioceptive auto-

tropism is a major player of the orientation of shoot growth

[6,21]. Auto-tropism was not included in our model and nega-

tive phototropism could compensate for that. But it could also

compensate for other processes acting at the whole branch

level (e.g. branch biomechanical reorientation or shedding)

that were not taken into account in the model. Some explicit

representation of the growing shoot or of the whole branch

would be required to asses if these additional mechanisms

may account for the crown shapes that cannot be fitted with

our model. Therefore, a new research avenue emerging from

this work is to extend the model to account for the average
orientation of branches along the crown boundary, the effect

of, for example, auto-tropism, or self-weight [30] as well as

some mechanisms of spatial competition [34] or of branch

repulsion [24]. In this work, we have assessed whether follow-

ing the trajectories of surface points backward in time gives an

idea of the underlying branches structure. But effects such as

auto-tropism or bending under self-weight were not taken

into account in our model and the ‘inferred branch patterns’

were clearly not very realistic.

The two other hypotheses of the model: (i) linear photosen-

sitivity of growth (the front velocity is assumed to be

proportional to the average light intercepted) and (ii) uniform

lighting (light, on average, is assumed to be uniformly distrib-

uted in the upper hemisphere) remain also to be discussed.

Indeed, whereas the basis for the phototropic and gravitropic

response lays on a wealth of published reports, as shown in

the introduction section, the situation is less favourable here.

Both hypotheses can be advocated to be a good starting

point to keep the model tractable and understandable (parsi-

mony argument); yet they should not be ad hoc. The first

hypothesis is grounded in the fact that plants have light sensors

called phytochromes that allow them to be sensitive to the ratio

between the red light and the far red light (R:FR) [24]. FR light

is almost fully reflected by foliage elements, whereas R light is

largely absorbed. Then, for a finite front area A, the R:FR ratio

can be well approximated by the ratio of visible sky and of

visible surrounding foliage. When A! 0, assuming that the

density of surrounding foliage is uniform, this ratio remains

proportional to the angle of visible sky, and this corresponds

to our model. In general, it has been found that there is a

linear relationship between the elongation rate of shoots and

the R:FR ratio [24], which is usually negative for many open-

habitat species (leading to a shade avoiding) and positive for

some tree species (a behaviour known as shade tolerance)

[35]. The second hypothesis seems much less straightforward.

It is only realistic for fully overcast skies on cloudy days. On

sunny days, the diffuse light from the sky displays a fairly

uniform radiance, but obviously the direct sunlight is highly

non-uniform, with a bias towards the South (respectively,

North) in the Northern (respectively, Southern) hemisphere

[36]. And including a direct sunlight component in our

model would clearly break the axisymmetry of the crown

shape due to a faster growth in the sun-facing side. On the con-

trary, tree crowns in nature do not seem to be biased towards

the sun [37] (with the exception of Araucaria columnaris [38]).

Is this a serious drawback for our model? Not necessarily.

Indeed the phytochrome sensing of the R:FR ratio of the light

is compensated for light intensity [24]. In addition, elongation

growth is known to be impaired by water stress, which is

related to the direct sunlight, so that higher growth may actu-

ally happen on overcast cloudy or rainy days, and hence

under uniform lighting [39,40]. Yet, to our knowledge, no

explanation has ever been published regarding this puzzling

question of crown axisymmetry in isolated trees despite the

asymmetry of many environmental factors (sunlight of

course, but also evaporation, temperature, etc.). But now that

we have shown that the two previous assumptions coupled

with phototropism and gravitropism lead to realistically look-

ing tree crown shapes, it is clear that investigating more

thoroughly light-compensated sensing mechanisms and their

relation to shoot growth and to crown shaping in trees is

likely to be very rewarding. And including more mechanistic

light responses in our model can be a tool to do so.

http://rsif.royalsocietypublishing.org/
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Despite this set of open points, our work clearly shows that

the hypothesis that the observed crown shapes could be the

result of a front propagation process driven by the light and

gravity sensing at the crown boundary is a valid starting

point. Moreover, it provides an insight into how to reconcile

the genetic specificity and the environmentally driven variabil-

ity (plasticity) of crown shapes. Indeed if a tree has enough

time to reach a stationary shape, then there should be no

more influence of the initial state and/or the pathway to this

form. This stationary shape emerges from the recurrent effects

of elongation photosensitivity and photo- and gravi-tropic sen-

sitivities, and the feedback on these three processes of the

interaction between the lighting environment and the actual

crown shape. But the values of the three sensitivities are geneti-

cally fixed. This may explain how a process driven by three

responses to the environment (and hence allowing plasticity)

yields a steady-state form that is heritable and probably geneti-

cally controlled. The situation is similar with what has been

found for the shape of single shoots by [6,21]. But for this to

be achieved there should be no other player in the environ-

ment*crown shape interaction, a case only met when trees

are grown in isolation and other factors—e.g. shading by

neighbours, wind, frost—are negligible. This is not likely to

be the whole story though. Indeed there are indications that

the steady shapes of the same tree at the (young) ‘architectural

unit stage’ and at the mature stage are different [1,20] (although

this does not rely on observations of the same tree at the two

stages, grown in isolation). One may think that shape control

through photomorphogenetic and tropic mechanisms cap-

tured in our model only stabilizes each of the two forms,

whereas the shift between the two stages could be driven by

changes in the branching development when trees developed

their scaffold limbs through the process of developmental

metamorphosis. To provide different attractors, though, non-

linear behaviour is required in our model; but there are many

candidates for that (e.g. interaction between different light

sensors, phytochromes, cryptochromes [24], etc.).

However, before that, our work also points at the need for

data following the development of isolated trees from differ-

ent species during decades. Only this type of data may allow

assessment of whether self-similarity is reached. Addition-

ally, the effect of minor interventions, such as partial
pruning, could be studied experimentally by looking at the

shape dynamics and relaxation towards a self-similar

shape. Such detailed data are required to assess our model

more accurately, as well as to assess the alternative models.

It would be also very informative to have a full three-

dimensional shape (or at least view at right angles) to

assess the axisymmetry of the crown and its robustness to

environmental gradients across the crown. This should be a

priority now. But hopefully, new tools such as terrestrial

LIDARs or high-speed photogrametric devices are now avail-

able for that [41]. More detailed experimental studies of the

diversity of photomorphogenetic and tropic responses for

different species or under different environmental conditions

would also be extremely useful (so that the sensitivities in our

model could be measured independently rather then fitted).

From a broader perspective, our approach also opens the

way to interdisciplinary research to whole-plant morphogen-

esis. A first avenue is to change scale in our understanding of

plant morphogenesis, form the scale of the meristem or single

shoot [6,33] to that of the whole tree. Advances on these

aspects would help to further elucidate the mechanisms driv-

ing the natural variability of crown shapes [6,9] and how

plants read their own shape [33]. Finally, in a different con-

text, the approach proposed in this article could be useful

to study the growth of other biological systems that display

crown growth, such as stony corals [42], for which local

growth velocities and direction depend both on internal regu-

lation processes (nutrient exchange, for instance) and external

cues (flow velocity, nutrient capture, etc.).
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