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Bistability in Rayleigh-Bénard convection with a melting boundary
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A pure and incompressible material is confined between two plates such that it is
heated from below and cooled from above. When its melting temperature is comprised
between these two imposed temperatures, an interface separating liquid and solid phases
appears. Depending on the initial conditions, freezing or melting occurs until the interface
eventually converges toward a stationary state. This evolution is studied numerically in a
two-dimensional configuration using a phase-field method coupled with the Navier-Stokes
equations. Varying the control parameters of the model, we exhibit two types of equilibria:
diffusive and convective. In the latter case, Rayleigh-Bénard convection in the liquid phase
shapes the solid-liquid front, and a macroscopic topography is observed. A simple way of
predicting these equilibrium positions is discussed and then compared with the numerical
simulations. In some parameter regimes, we show that multiple equilibria can coexist
depending on the initial conditions. We also demonstrate that, in this bistable regime,
transitioning from the diffusive to the convective equilibrium is inherently a nonlinear
mechanism involving finite-amplitude perturbations.

DOI: 10.1103/PhysRevFluids.5.023501

I. INTRODUCTION

Many geological patterns result from the interaction between a fluid flow and a solid front [1].
Erosion is one such example where the shear stress exerted by the flow can sculpt an erodible
body [2,3]. It also plays a role in the smoothing of sharp edges [4] and is essential in geological
dating, for example, the inference of water on Mars due to erosion channels and river islands [5,6].
Solid-liquid phase transition is another way of obtaining a growing interface and these transitions
usually fall in the Stefan problems category with a well-defined dynamical interface separating the
two phases [7,8]. Whether it is due to dissolution or melting, the combination of a phase-change
and fluid motion can lead to nontrivial topographies, for example, scalloped icebergs as a result of
oceanic flow [9,10] or natural shaping of dissolvable bodies or ice spheres in imposed flows [11–14].
The characteristics of the flow involved in such problems and the material properties of the solid
phase can affect the shape of the solid-liquid front. For instance, an imposed flow of a binary alloy
along its solid phase can suppress morphological instabilities or trigger traveling waves [15–17]. In
a similar fashion, Gilpin et al. [18] studied experimentally the interaction between a warm turbulent
flow and an ice-water front. If a local perturbation on the ice-water surface is added initially, then
an interfacial instability grows in the form of a rippled surface.

Another interesting configuration arises when the flow is not imposed externally but is instead
buoyancy driven. This natural mechanism is known to generate complex topographies as a

*Corresponding author: favier@irphe.univ-mrs.fr

2469-990X/2020/5(2)/023501(18) 023501-1 ©2020 American Physical Society

https://orcid.org/0000-0003-4413-5137
https://orcid.org/0000-0002-1184-2989
https://orcid.org/0000-0001-8179-4452
https://orcid.org/0000-0003-1651-9141
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.5.023501&domain=pdf&date_stamp=2020-02-05
https://doi.org/10.1103/PhysRevFluids.5.023501


PURSEED, FAVIER, DUCHEMIN, AND HESTER

consequence of nonuniform convective heat fluxes that cause local melting or freezing. Applications
of this convection-melting coupling are numerous. It has significant impact on the understanding of
the Earth’s inner core solidification in the presence of the convecting outer liquid core [19,20];
it affects the thermal evolution of magma oceans [21] and provides insight on the melting of ice
shelves [22,23]. This coupling also finds its application in astrophysical bodies such as Europa or
Enceladus in an attempt to understand the eruption of water from the icy surface [24], trapped
water bodies [25], or the global shape of the ice-water surface and thickness of the ice crust. In the
industry, solidification of liquid metal in complex moulds [26] often gives rise to natural convection,
which can affect dendrites formation during crystal growth [27,28]. In all of these examples, from
large-scale geophysical applications to small-scale industrial processes, the main challenge lies in
the complex dynamics of the interface between the solid and liquid phases, which depend on the
imbalance between the convective and diffusive heat fluxes on both sides of the interface.

The interaction between a convective flow and a melting solid has recently received some
attention [29–31] where the gradual melting of a pure isothermal solid is investigated considering
a standard Rayleigh-Bénard configuration. The melting process causes a vertical growth of the
liquid layer until the critical height is reached and convective instabilities set in. The numerical
study in Ref. [30] shows that, as the convection cells are stretched, due to the vertical growth of
the solid-liquid boundary, convection cells merge, creating wider ones, thus respecting the aspect
ratio one would observe in classical Rayleigh-Bénard convection [32]. During this slow evolution,
the convective heat flux has been showed to be consistent in first approximation with that of
classical Rayleigh-Bénard [29,30]. The case where a material, confined between two horizontal
boundaries, is heated from below and cooled from above has also been studied experimentally by
Davis et al. [33]. They investigate the effects of the solid thickness on the upper boundary on the
onset of convection and showed that the critical Rayleigh number is significantly reduced. A weakly
nonlinear analysis was also performed and they found that convection was still possible below the
convective instability threshold and that the bifurcation becomes transcritical. Their findings were
then verified experimentally and bistable states were reported close to the instability threshold [34].
A detailed description of the equilibrium states in such a system, close and far for the convective
instability threshold, remains, however, to be studied, which is the main motivation of this paper.

In the present paper, a configuration similar to Ref. [33] is numerically studied where the melting
temperature and the temperature difference between the two plates are free parameters and are varied
in an attempt to find an equilibrium. We are also interested in the dynamics and the stability of these
equilibria. The paper is structured as follows: We give a general formulation of the physical setup in
Sec. II, followed by a description of the equilibrium states theoretically and their comparison to the
numerical simulations in Sec. III. The existence of a bistability regime is discussed in Sec. IV. We
finally conclude in Sec. V. A brief description of the numerical method is given in Appendix A
which is identical to the one proposed by Ref. [30] and thus for a more detailed description,
interested readers are referred to that particular paper.

II. MATHEMATICAL MODEL

Our idealized problem is represented in Fig. 1, where we bound a solid and its corresponding
liquid phase by two horizontal walls while the system is two-dimensional (2D) and periodic in
the horizontal direction. The two rigid horizontal plates are separated by a distance H while the
horizontal extent of the periodic domain is λH with λ the aspect ratio. The imposed temperature of
the bottom plate is T1, the temperature of the top plate is T0, and the melting temperature TM is such
that T0 < TM < T1. Both plates are assumed to be impenetrable and no-slip. The physical properties
of both solid and liquid phases are assumed to be constant and equal. The thermal diffusive time
H2/κ is used as a reference for the timescale, with κ being the constant thermal diffusivity. H is used
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FIG. 1. Schematic representation of the problem. The solid phase is shown in light gray while the liquid is
in blue. On the left, heat transfer is entirely due to conduction through the whole layer. On the right, convection
is the predominant source of heat transfer in the liquid. The thick black line represents the solid-liquid interface
which corresponds to a dimensionless temperature of θM .

as the reference length and �T = T1 − T0 is the temperature scale. The governing dimensionless
equations in the Boussinesq approximation for the fluid phase are given by

1

Pr

(
∂u
∂t

+ u · ∇u
)

= −∇P + Ra θ ez + ∇2u, (1)

∂θ

∂t
+ u · ∇θ = ∇2θ, (2)

∇ · u = 0, (3)

where θ = (T − T0)/(T1 − T0) is the dimensionless temperature, u = (u,w) is the two-dimensional
velocity field, Ra is the Rayleigh number based on the total height H , and Pr is the usual Prandtl
number,

Ra = αg�T H3

νκ
and Pr = ν

κ
, (4)

where α is the thermal expansion coefficient, g is the gravitational acceleration, and ν the kinematic
viscosity. Note that by analogy with standard Rayleigh-Bénard configurations, we choose the global
temperature difference as a reference. For simplicity, in the whole study, the Prandtl number is taken
to be one and only the Rayleigh number is varied. The solid phase is considered to be nondeformable
and stationary (u = 0) and, accordingly, we need only to solve the dimensionless heat equation

∂θ

∂t
= ∇2θ. (5)

In comparison to the classical Rayleigh-Bénard convection problem, for which there is only a
liquid phase, a dynamical phase-change boundary separates the liquid and the solid. These internal
boundary conditions are given by the Stefan conditions [7]

θ = θM, (6)

St v · n = [∇θ (S) − ∇θ (L)
] · n, (7)

where θM = (TM − T0)/(T1 − T0) ∈]0, 1[ is the dimensionless melting temperature, n is the normal
to the interface pointing toward the liquid phase, v is the velocity of the interface, and superscripts
(S) and (L) denote solid and liquid phases, respectively. The Stefan number St corresponds to a
dimensionless ratio between the latent heat associated with the solid-liquid transition L and the
characteristic specific heat of the system,

St = L
cp�T

, (8)
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where cp is the heat capacity at constant pressure. Equation (7) expresses the fact that the interface
moves with a normal velocity proportional to the heat-flux jump across the interface. A steady
interface therefore corresponds to a balance between the heat fluxes across it. We assume the same
density for the two phases so that the interface is considered to be impenetrable and no-slip boundary
conditions are applied to it [33]. The Gibbs-Thomson effect due to the surface energy of the solid-
liquid interface is neglected [8]. This thermodynamical effect is nevertheless the starting point when
deriving a diffuse-interface method called the phase-field method [27]. The problem described above
is solved numerically by using a mixed pseudospectral fourth-order finite-difference method [35,36]
and the particular phase-field model which has been discussed and validated in Ref. [30]. For several
cases, we also checked our results by using the open-source pseudospectral solver Dedalus [37,38]
(more information at http://dedalus-project.org). More details about the model equations and
numerical parameters are given in Appendix A.

III. EQUILIBRIUM STATES

The case of a nearly isothermal solid, discussed in Refs. [29,30], leads to a complete melting of
the solid phase until the upper boundary is reached. Following these studies, we turn our interest to
the case for which the temperature of the upper plate is fixed and lower than the melting temperature.
In this configuration, we expect equilibrium states for which the heat flux in the solid is statistically
balanced by the heat flux in the liquid, consistently with Eq. (7). Hence, this section is dedicated to
predicting the average fluid depth at equilibrium by balancing the average heat flux in both phase
and comparing this prediction to numerical simulations.

The following configuration is chosen for all the simulations: The initial position of the interface
is set to z = h0 = 0.1 (where z = 0 corresponds to the bottom plate), and the horizontal length of
the numerical domain is set to λ = 6 in order to avoid any confinement phenomenon. For simplicity,
both the Prandtl number and the Stefan number are fixed to unity. The simulations are initialized
with a fluid at rest and a piecewise linear temperature profile given by

θ (t = 0) =
{

1 + (θM − 1)z/h0 if z � h0

θM (z − 1)/(h0 − 1) if z > h0
. (9)

This initial condition is not generally at equilibrium since there is a heat flux discontinuity at z = h0.
We then add small-amplitude temperature perturbations in the liquid phase in order to potentially
trigger the Rayleigh-Bénard instability. Starting from this initial condition, the computations always
reach a stationary state, which can be described according to the asymptotic value h∞ of the mean
height of the fluid-solid interface,

h = 1

λ

∫ λ

0
h(x, t )dx, (10)

where λ is the dimensionless length of our domain and h(x, t ) is the local vertical position of the
interface (found by computing the contour φ = 1/2 or equivalently θ = θM). This equilibrium state
is assumed to be reached when the average kinetic energy in the liquid and the averaged height h are
constant over time, which is typically the case after several thermal diffusion times. This protocol is
repeated for multiple melting temperatures ranging from θM = 0.1 to 0.9 and for multiple Rayleigh
numbers from Ra = 104 to 107. The asymptotic value h∞ is represented in Fig. 2(a) for all the
computations as a function of 1 − θM and for different input Rayleigh numbers (Ra). Two types of
equilibria are observed and discussed in the following: diffusive and convective equilibria.

A. Diffusive equilibria

In some of our computations, an equilibrium is reached without observing any motion inside the
liquid phase: This equilibrium is purely diffusive. In this case, the stationary state is fully described
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FIG. 2. (a) Equilibrium height of the interface as a function of the melting temperature for different
Rayleigh numbers. Dashed curves are obtained by equating the fluxes across the solid and liquid layers
and estimating the Nusselt number following Eq. (18). (b) Equilibrium height normalized by the diffusive
equilibrium height (11) as a function of a normalized Rayleigh effective number.

by the steady solution of the heat Eq. (5) in both phases leading to

θ = 1 − z and h∞ = 1 − θM . (11)

The (diffusive) heat fluxes in the solid and liquid phases are then equal and given respectively by

Q(S)
D = θM

1 − h∞
, (12)

Q(L)
D = 1 − θM

h∞
. (13)

When fluid motion is absent, the melting temperature θM is the only parameter which dictates the
equilibrium height and the latter increases with decreasing θM . The points along the oblique straight
line whose equation is (11) in Fig. 2(a) represent computations showing this kind of equilibrium
state.

B. Convection onset

As we vary the Rayleigh number and the melting temperature, some simulations depart from the
diffusive base state described by Eq. (11). These cases are all characterized by fluid motions in the
form of convective rolls and nonplanar phase-change interface [see Fig. 4(b) below for example]. A
simple way of knowing beforehand whether the diffusive base state discussed earlier is stable is to
define the effective Rayleigh number of the fluid layer as

Rae = Ra(1 − θM )h
3
, (14)

where 1 − θM is the effective temperature difference across the fluid layer and h is the averaged fluid
depth as defined in Eq. (10). Note that this definition of an effective Rayleigh number is analogous
to the one described in Ref. [39] for the case of thermal convection interacting with a stably stratified
fluid layer above. For the diffusive state defined by Eq. (11), the fluid depth at equilibrium is simply
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h∞ = 1 − θM and the effective Rayleigh number is then

RaD = Ra(1 − θM )4. (15)

Note that the critical Rayleigh number is not the standard value of Rac ≈ 1707 [32] valid for
fixed temperature and no-slip boundaries. Due to the effect of heat diffusion in the adjacent solid
layer, it has been shown [33,40] that the critical Rayleigh number Rac varies from 1707 for very
thin solid layers (i.e., h → 1) down to approximately 1493 for thick solid layers (i.e., h → 0). This
dependence of the critical Rayleigh number on the solid layer thickness is taken into account in the
following results.

For each values of Ra and θM , the effective Rayleigh number of the diffusive equilibrium RaD

can be compared with the critical Rayleigh number Rac. Hence, for all the values greater than the
critical value, the equilibrium state will be a convective one and, for all values that are smaller,
one can expect a diffusive equilibrium. This is further confirmed by Fig. 2(b), where we show the
ratio h∞/(1 − θM ) as a function of RaD/Rac. We can see clearly the threshold between the diffusive
and convective regimes: Below 1, the equilibrium is diffusive and h∞ = 1 − θM , whereas above 1,
h∞ > 1 − θM due to the increased convective heat flux. Note that some convective equilibria are
very close to the marginal line. We discuss in more detail the behavior close to the threshold later in
Sec. IV.

C. Convective equilibria

The challenge in describing the convective equilibrium states is to model the heat flux in the
liquid, which is somehow analogous to the classical Rayleigh-Bénard convection, as shown in
Refs. [29,30]. The Nusselt number is defined as the ratio between the total and the diffusive heat
fluxes,

Nu = Q(L)
T

/
Q(L)

D = Q(L)
T h̄/(1 − θM ). (16)

Looking for an equilibrium state, we equate the diffusive heat flux in the solid (12) and the total
heat flux in the liquid (16) which leads to the following equation:

θM

1 − h∞
= Nu

1 − θM

h∞
. (17)

Note that the Nusselt number is generally a function of the effective Rayleigh number, which
itself is a function of the average fluid depth given by Eq. (14). Solving for h∞ in Eq. (17) can
therefore be nontrivial. In the purely diffusive regime, we have Nu = 1 by definition and we recover
the solution given previously by Eq. (11). In this section, we focus solely on solutions that are
convective and far from the instability threshold, i.e., Rae � Rac. The solutions of Eq. (17) close to
the threshold will be further discussed in Sec. IV C, where a more refined model for the Nusselt
number will be given. For now, in the supercritical limit far from the instability threshold, the
relation between the Nusselt number and the effective Rayleigh number is considered to be of the
classical form,

Nu ∼ γ Raβ
e , (18)

where γ and β are constants, extensively studied in the literature. We recall that Rae is the
effective Rayleigh number based on the fluid depth as defined by Eq. (14). If one considers a
turbulent convection and high Rayleigh numbers, then β is approximately 1/3 [41], whereas for
more intermediate Rayleigh numbers, the exponent is around 1/4 [42]. In the following, we have
chosen β = 1/4 and γ = 0.27 (Regime Il in Ref. [42]), which is in good agreement with the Nusselt
numbers measured from our simulations (see Fig. 10). The Nusselt number is measured at the
bottom boundary following

Nu =
(

−1

λ

∫ λ

0

∂θ

∂z

∣∣∣
z=0

dx

)/
Q(L)

D , (19)
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FIG. 3. (a) Time evolution of the average fluid depth for multiple initial height of the interface. The
parameters are Ra = 106 and θM = 0.9. The horizontal dash-dotted line corresponds to the critical height above
which convection is sustained (i.e., Rae = Rac). (b) Visualizations of the temperature field across the numerical
domain are shown for the case h0 = 0.9. Dark blue represents θ = 0 while bright red represents θ = 1. The
black line in the visualization represents the solid-liquid boundary at θM . Time increases from top to bottom
(t = 0.04, 0.19, 0.44, and 0.99 in diffusive units).

where Q(L)
D = (1 − θ )/h is approximately the diffusive heat flux across the fluid layer (neglecting

the fact that the interface is not planar, see Ref. [30] for more details).
By substituting Eqs. (14) and (18) into Eq. (17), we obtain an equation for the average fluid depth

as a function of θM , Ra, γ , and β. This nonlinear equation can be solved for h∞ by using a bisection
method, and there is a unique solution in the range h∞ ∈ [0, 1]. The results are shown in Fig. 2(a) by
the four dashed curves. Our computations are in good agreement with this theoretical prediction of
the convective equilibrium height, which further confirms that convection below the phase-change
interface is equivalent to standard Rayleigh-Bénard convection, at least in terms of averaged heat
flux.

IV. BISTABILITY

A. Dependence on initial conditions

In this section, we ask whether the long-time equilibria shown in Fig. 2 depend on the initial
conditions, i.e., the value of h0 in Eq. (9). We recall that the previous results were obtained using an
arbitrary value of h0 = 0.1. We now systematically vary h0 from 0.1 to 0.9.

We first choose an equilibrium expected to be diffusive: Ra = 106 and θM = 0.9. For this set
of parameters, the effective Rayleigh number of the diffusive equilibrium (15) is RaD = 100, well
below the critical value. Figure 3(a) represents the averaged fluid depth h̄(t ) as a function of time
for different initial interface positions. All these computations converge toward h∞ = 1 − θM = 0.1,
which is the theoretical diffusive base state. It is interesting to note that some of these computations
present an early convection phase, which eventually disappears, eventually leading to the final
diffusive equilibrium. This is, for example, the case of the simulation with h0 = 0.9, for which the
initial value of the effective Rayleigh number is Rae(t = 0) = 7.29 × 104, well above the critical
value for the onset of convection. The critical height (such that Rae = Rac) above which convection
appear is represented in Fig. 3(a) by the horizontal dotted line and is approximately equal to 0.2464.
Hence, for all values of h that are greater than this critical height, convection rolls are potentially
present in the liquid phase. While this early convection slows down the solidification of the fluid
layer, it is eventually overwhelmed by the dominant diffusive heat flux from the solid layer leading
asymptotically to the expected diffusive equilibrium. Such an evolution is shown in Fig. 3(b) for the
case with h0 = 0.9.
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FIG. 4. Same as in Fig. 3 but with Ra = 106 and θM = 0.5. (a) The scaling h ∼ t4/5 predicted in Ref. [30]
is shown for reference. The horizontal dotted line corresponds to the diffusive equilibrium h∞ = 1 − θM .
(b) Visualizations correspond to t = 0.01, 0.06, 0.14, and 0.99 in diffusive units.

We now choose Ra = 106 and θM = 0.5 which corresponds to a convective equilibrium since
RaD = 6.25 × 104 is well above the onset for convection. The temporal evolution of the interface
position is represented in Fig. 4(a) for h0 varying from 0.1 to 0.9. As in the previous case, all
simulations converge toward the same equilibrium, which is now convective as expected from the
chosen parameters and correctly predicted by Eq. (17). Note that during the early stage of the
melting, when the diffusive heat flux in the solid is negligible compared to the convective heat
flux, the results of Ref. [30] are applicable. In particular, they predicted that the averaged fluid
depth should grow as h(t ) ∼ t1/(2−3β ), where β is the exponent in the Nusselt scaling (18). For our
moderate Rayleigh number simulations, β = 1/4 leads to h ∼ t4/5 as observed in Fig. 4(a) at early
times before the heat flux in the solid phase balances the convective heat flux. Note that there is a
slight variability in the average fluid depth at equilibrium. This spread is due to the fact that we do
not have the exact same number of convection rolls in all cases, leading to small variations in the
Nusselt number. This is a first indication that the final equilibrium state of this system depends on
the initial conditions and more generally on the history of the interface.

At this stage, it is legitimate to wonder whether the equilibrium states are unique for a given
set of parameters θM and Ra. The two previous examples were either very stable (RaD 	 Rac) or
very unstable (RaD � Rac) with respect to convection. We now consider the case defined by Ra =
8 × 105 and θM = 0.8 for which the diffusive base state is only marginally stable with respect to
convection (RaD = 1280, just below the critical value which is here equal to 1493 [33]). Figure 5(a)
shows the evolution of h̄(t ) as a function of time for different values of h0 ranging from 0.1 to
0.9, as before. This time, however, the final equilibrium is not unique and clearly depends on h0.
When h0 < 0.4, the system converges toward the expected diffusive state (since RaD < Rac). More
surprisingly, when h0 > 0.4, we observe a stable convective solution even though the diffusive base
state is stable for this choice of parameters. Note that the stability of the convective solutions has
been confirmed by running the simulations for at least five diffusive times. This clearly shows that,
close to the onset of convection, this system exhibits bistability and dependence on initial conditions.
This is in agreement with the theoretical prediction of Ref. [33] and the experimental observation of
bistable states in Ref. [34]. We also recall that in Sec. III C, we assumed that convection occurs only
far from the threshold and in that limit Eq. (18) was used. However, for this particular case where
we observe bistability, the convection is close to the threshold (Rae ≈ 5.5 × Rac). Hence, a more
refined Nu-Rae scaling is required to better understand the origin of this regime, which is given later
in Sec. IV C.

023501-8



BISTABILITY IN RAYLEIGH-BÉNARD CONVECTION …

FIG. 5. (a) Time evolution of the average fluid depth for multiple initial fluid depths h0, Ra = 8 × 105,
θM = 0.8, and λ = 8. The dotted gray lines correspond to the purely diffusive evolution of the interface for
each case (i.e., with Ra = 0). The horizontal dash-dotted black line corresponds to the critical height at which
Rae = Rac. (b) Visualizations of the temperature field at equilibrium. The black line represents the solid-liquid
boundary at θ = θM = 0.8. We show both convective (top) and diffusive (bottom) solutions.

B. Finite-amplitude perturbations

In an attempt to better understand the origin of the bistability, we now consider the case of
finite-amplitude temperature perturbations. Starting from the diffusive base state for Ra = 8 × 105

and θM = 0.8 as before, the temperature perturbation θ ′ in the liquid phase (i.e., for z < h0) is chosen
to be

θ ′ = A e−10(x−λ/2)2
sin

(
πz

h0

)
, (20)

where A is the arbitrary amplitude of the perturbation, λ is the length of the domain, and h0 =
1 − θM = 0.2 is the initial fluid depth. This perturbation represents a localized temperature increase
in the middle of the liquid phase. The length of the domain, λ, is set to 3. The amplitude A of the
perturbation is then varied from infinitesimal values to finite values. Figure 6 shows the difference
between the averaged height and its initial value for different values of A. For small values of A

FIG. 6. Time evolution of the average distance of the interface from its initial position for θM = 0.8 and for
multiple perturbation amplitudes. The Rayleigh number is fixed at 8 × 105.
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FIG. 7. (a) Spatiotemporal evolution of the interface position for A = 6 and h0 = 1 − θM = 0.2. (b) Visu-
alization of the temperature field showed as time is increasing from top to bottom. Dark blue represents θ = 0
while bright red represents θ = 1. The interface, θ = θM , is shown by the use of a black dotted line.

(typically A � 2), the perturbation decays, as expected since the diffusive base state is linearly stable
for this choice of parameters (RaD < Rac). For larger values of A, however, the initial perturbation
is able to locally melt the solid, therefore increasing the local fluid depth so that the local effective
Rayleigh number becomes supercritical and convection can be sustained. This initially local patch
of convective fluid spreads slowly throughout the domain. This is best seen in wide horizontal boxes
to minimize confinement issues, as seen in Fig. 7 where we increased the aspect ratio to λ = 6. The
speed at which this local convection patch propagates in the thermally stable fluid can be estimated
directly by calculating the slope from the dashed lined in Fig. 7(a). It is of the same order as the
vertical diffusion time used to rescale our equations. This indicates that the heat diffusion in the
solid dictates the speed at which the propagation occurs.

C. Discussion

The existence of the bistability has been discussed in the previous sections by either varying the
initial position of the solid-liquid interface or by using a finite-amplitude perturbation of a diffusive
stable state. We now discuss the origin of this bistable regime and whether it exists for all values of
θM and Ra. We recall that in Sec. III C, we assumed that the Nusselt number was only function of the
effective Rayleigh number far from the threshold of the thermal convection instability in the liquid.
However, we need a more refined model valid for any values of the effective Rayleigh number
since bistability occurs near the threshold of the convective instability. In an attempt to do so, we
define the normalized distance from the onset of convection by ζ = (Rae − Rac)/Rac and look for
a general law Nu(ζ ). We consider the diffusive (ζ < 0), the weakly nonlinear (0 < ζ < 1.3), and
the fully nonlinear regimes (ζ > 1.3). Hence, a continuous piecewise model is obtained for the
Nusselt number for any value of ζ , and further details can be found in Appendix B. Note that the
following conclusions do not qualitatively depend on these particular choices. The model is able to
predict the existence of bistability provided the transition from weakly nonlinear to fully nonlinear
regimes is included. The underlying assumption of our model is that the convectively unstable flow
below the interface behaves similarly to classical Rayleigh-Bénard convection at all times, even
when the system is out of equilibrium. This has indeed been observed previously [29,30] (see also
Appendix B) and assumes a timescale separation between the fluid motion and that of the interface
(this is justified except in the low Stefan number limit). Figure 8 shows the diffusive heat flux in the
solid given by Eq. (12) and the total heat flux in the liquid from this model. Results are shown as
a function of the average fluid depth for the three cases discussed in Sec. IV A. The averaged fluid
depth h̄ is systematically varied such that any intersection between the two curves corresponds to
an equilibrium position h∞, the solution of Eq. (17).
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FIG. 8. Heat fluxes across each layer of the system as a function of the averaged fluid layer depth h.
Q(S)

D is the diffusive flux through the solid layer defined by Eq. (12). Q(L)
T is the total heat flux through the

liquid layer from our simple model for the Nusselt number including diffusive (Nu = 1), weakly nonlinear
(Nu ≈ Rae), and turbulent (Nu ≈ Ra1/4

e ) regimes. Full and empty circles correspond to stable and unstable
equilibria, respectively. The dotted vertical line corresponds to the critical height above which convection sets
in. From left to right, the cases correspond to the results discussed in Figs. 3, 4, and 5, respectively.

The prediction of the model for the case discussed in Fig. 3 is represented in the left panel of
Fig. 8. We recall that for this case, we considered θM = 0.9 and Ra = 106. Only one intersection
exists for this particular case so, for any initial value of h̄, the system will converge to the
corresponding stable equilibrium. Since this intersection occurs in the diffusive branch of the total
heat flux across the liquid, the nature of this equilibrium is diffusive and h∞ = 1 − θM , as expected.
This is consistent with the results of Fig. 3(a). The middle panel of Fig. 8 depicts the case discussed
in Fig. 4, where θM = 0.5 and Ra = 106. In this particular case, for all values of h̄, only one
equilibrium exists at the intersection between the convective branch of the heat flux across the liquid
and the diffusive heat flux across the solid. This is again consistent with the results of Fig. 4(a).
Finally, the bistable case is illustrated in the right panel of Fig. 8, which corresponds to θM = 0.8
and Ra = 8 × 105 (see Fig. 5). In that case, there are three intersections and thus three possible
equilibria. The first equilibrium is a typical diffusive equilibrium at h∞ = 1 − θM while the last is
a far from threshold convective equilibrium. Those are the two stable solutions observed in Fig. 5.
The intermediate unstable equilibrium has not been observed in our simulations and thus separates
the two basins of attraction of the other two stable solutions.

We now ask whether this bistability regime exists for all pairs of control parameters (θM, Ra)?
We address this question by solving for the equilibrium height h∞ using the flux balance given by
Eq. (17). The Nusselt number is estimated using the model discussed in Appendix B. Figure 9(a)
shows the normalized equilibrium heights as a function of a normalized Rayleigh number for
three distinct melting temperatures. The continuous lines correspond to the numerical solutions
of Eq. (17) for θM = 0.2, 0.387, and 0.8 evaluated over a wide range of Ra. The blue and red
dots correspond to numerical data obtained for θM = 0.2 and θM = 0.8, respectively. In addition
to the good agreement between the model prediction and the simulations (shown as full symbols),
we also see a multiple solution domain appearing for θM = 0.8 [gray region in Fig. 9(a)]. In this
particular case, for a small range of Ra, three equilibria are possible. We then solve this equation
for a wide range of control parameters, and the grayed area in Fig. 9(b) represents the values of θM

and Ra for which three solutions are possible. The continuous black line in Fig. 9(b) represents the
convection instability threshold above which only convective equilibria are possible. The gray area
again corresponds to the control parameters for which the model predicts multiple solutions. This
bistable regime exists in a wide band below the threshold but eventually disappears for values of
θM < 0.387. The limit θM → 0 indeed corresponds to standard Rayleigh-Bénard convection since
the liquid layer has a negligible thickness and does not affect the dynamics [we recover that when
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FIG. 9. (a) Normalized equilibrium height as a function of a normalized base state Rayleigh number
for three different melting temperatures corresponding to the three vertical lines in Fig. 9(b). We recall
RaD = Ra × (1 − θM )4. (b) A (θM , Ra) phase diagram. The blue circular points represent the numerical points
for which bistability has been observed. The red oblique segment line represents the experimental domain
investigated by Müller and Dietsche (1985) where the thick part of the segment denotes the range for which
they found bistable solutions.

θM → 0, h∞ → 1, Rae ≈ Ra and the threshold occurs at Ra = 1707 as expected, see the horizontal
line in Fig. 9(b)]. We also report in Fig. 9(b) our numerical simulations where bistability was
observed by systematically varying the initial liquid depth and checking that two stable solutions are
reached after several diffusive timescales [as in Fig. 5(a)]. Note that exploring the bistable regime
systematically via numerical simulations is a demanding task, since many simulations have to be run
for several diffusive timescales for each set of control parameters. Finally, the experimental results
of Ref. [34] are reproduced using our dimensionless units. Using well-controlled experiments, they
observed bistability over a wide range of parameters indicated by the thick red line. Note that our
simple model overestimates the range of parameters for which bistability is observed compared
to the experimental results. This can be attributed to several differences between our idealized
model and the experiment ([34] used a high-Prandtl-number fluid Pr = 17 compared to Pr = 1
used in the present study) but we suspect the main source of uncertainties is related to the presence
of the nonplanar topography typical of the convective solutions. In particular, the diffusive heat
fluxes have been derived neglecting the topography and a more refined analysis (following, for
example, the perturbative approach of Ref. [30]) is probably required to more accurately predict the
disappearance of the bistable convective branch. This is particularly true in the limit θM → 1 for
which the liquid depth is small and the topography cannot be neglected. This remains to be further
analyzed in future studies.

V. CONCLUSION

We performed 2D direct numerical simulations of a liquid layer bounded by two fixed-
temperature horizontal plates. When the melting temperature of the pure substance is comprised
between the upper and lower temperatures, a phase-change interface lies inside the domain. We
have shown that, depending on the control parameters, this system exhibits equilibrium states
that can be of a conductive or a convective nature. The conductive equilibrium can be described
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as a planar interface separating the idle liquid phase from the solid one. On the other hand, the
convective equilibrium happens when the Rayleigh number based on the fluid layer height is
large enough, causing the liquid to convect. The melting front stops when the heat fluxes in both
phases are balanced, leading to a convective equilibrium with convection rolls and a nonplanar
interface.

Assuming that the convection below the interface behaves as standard Rayleigh-Bénard con-
vection allowed us to predict the mean equilibrium position of the interface. This approach is in
good agreement with our numerical simulations over a wide range of melting temperatures and
Rayleigh numbers. In marginal cases, when the static equilibrium is close to being unstable to
Rayleigh-Bénard convection, we observed bistable states, for which both convection and diffusion
equilibria are observed for the same control parameters. This new subcritical convective branch can
be obtained by perturbing the diffusive equilibrium with a finite-amplitude perturbation, leading to
local convection, which eventually invades the whole domain. The final convective equilibrium is
reached when the diffusive heat flux across the receding solid layer balances the convective heat
flux in the fluid.

We recall that the Prandtl number was fixed to unity throughout our study. It is, however, well
known that the heat flux carried by Rayleigh-Bénard convection depends on this dimensionless
number [42]. Hence, one would need to factor in this parameter in the heat flux scaling, i.e.,
using a more general scaling of the form Nu = f (Ra, Pr) instead of Eq. (18), to get an accurate
equilibrium prediction. Similarly, the Stefan number is also fixed at unity throughout the paper.
Since the Stefan number only affects the transient melting or solidifying phases [it only appears in
the Stefan condition (7) in factor of the interface velocity], we do not expect that this parameter
will affect the equilibrium height. Our theoretical model leading to Eq. (17) does not depend on
the Stefan number, for example. We have checked numerically that, for intermediate values of the
Stefan number 10−1 � St � 10, the equilibrium height is unchanged. The transient solidification
or melting phases are of course affected and become longer as the Stefan number increases, but
the asymptotic equilibrium height is independent of the Stefan number. The impact of the Stefan
number on the bistable regime is less obvious, however. For very low Stefan numbers, phase-change
processes could be so fast as to prevent the growth of thermal convection irrespective of initial
conditions, thus only leading to a diffusive equilibrium. It is, however, likely that the bistable
regime observed here for St = 1 subsists in the large-Stefan-number limit, although this remains
to be explored in detail. Note also that our model is not applicable to water since the latter has a
maximum density at 4 ◦ C. This can lead to a thermally stratified layer near the interface where the
convecting part of the liquid would interact with the stratified layer rather than directly with the
solid-liquid interface [39]. This in turn can possibly affect the melting and solidification processes
along with the equilibrium states discussed in the present study.

A generalization of our 2D results to three dimensions would be interesting and a better
comparison to the experimental works of Ref. [33]. Such simulations have recently been realized
in the case of an isothermal solid [29]. Extending their results to the case of a solid layer cooled at
a temperature below the melting temperature would be valuable. While it is known that Rayleigh-
Bénard convection can significantly differ between 2D and 3D [43], we nevertheless expect our
approach to remain valid provided that one takes into account the possible change in heat flux
through the Nusselt-Rayleigh scaling.

Finally, the bistable regime observed in this paper deserves a more detailed analysis. The
propagation of the convective motions into the stable diffusive region could be characterized as
a percolation mechanism [44]. In addition, the simultaneous existence of both quiescent fluid and
convective motions is similar to other convective systems where bistability and spatially localized
states are observed [45]. This is the case, for example, for magnetoconvection [46], binary-fluid
convection [47], double-diffusive convection [48], or rotating convection [49]. Whether such stable
localized states can exist in the current system involving liquid-solid phase change remains to be
confirmed.
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APPENDIX A: PHASE-FIELD EQUATIONS AND NUMERICAL PARAMETERS

The numerical method used in this paper is similar to the method used in Ref. [30] where they
solve the physical problem described in Sec. II using a phase-field approach. A continuous order
parameter φ(x, z, t ) takes the values zero and unity in the solid and liquid phases, respectively. This
results in a continuous interface where φ ∈]0, 1[ over a width ε. The phase-field equation associated
to this particular problem is given by [51]

ε2

m

∂φ

∂t
= ε2∇2φ + αε

St
(θ − θM )

d p

dφ
− 1

4

dg

dφ
, (A1)

where g(φ) = φ2(1 − φ)2 and p(φ) = φ3(10 − 15φ + 6φ2) are functions which ensure that the
phase field is either zero or unity everywhere except close to the solid-liquid interface. The particular
choice of these functions results from thermodynamical considerations [30,51]. ε, m, and α denote
the interface width, the mobility, and the coupling parameter between the phase field and the
temperature field, respectively. The Stefan problem described in the main text is asymptotically
recovered in the double limit ε 	 1 and α > St/ε [50,51] while the mobility is fixed to unity.
Following the convergence study presented in Ref. [30], the width of the interface is chosen
to be close to the maximum grid spacing, while the coupling parameter is given by α � ε−1.
We additionally solve the heat equation and the Navier-Stokes equations under the Boussinesq
approximation,

∂θ

∂t
+ u · ∇θ = ∇2θ − St

d p

dφ

∂φ

∂t
, (A2)

1

Pr

(
∂u
∂t

+ u · ∇u
)

= −∇P + Ra θ ez + ∇2u − f (φ)u
η

. (A3)

The last term in Eq. (A2) corresponds to latent heat effects. An immersed boundary method called
volume penalization [52] is used to ensure a no-slip boundary condition at the interface. The last
term in Eq. (A3) is the penalization term and ensures an exponential decay of the velocity in the
solid provided η is small enough. The results discussed in the main paper were obtained with a mask
function f (φ) = 1 − φ. Although this choice is rather arbitrary (any function continuously varying
from 0 in the liquid phase to 1 in the solid is appropriate), we have checked that the results discussed
in this paper do not depend on this arbitrary choice. The function f (φ) = (1 − φ)2 was for example
used in Ref. [30] and we have checked that the nature of the solution we obtained (convective or
diffusive) is the same for this other mask function. The relative error on the equilibrium height
h∞ depending on the mask function used does not exceed 1%. η is the penalization parameter and
must be small enough to model no-slip boundary conditions on the solid-liquid interface. Here, and
following the recent work of Ref. [53], we choose the approximate scaling η � ε2, while ensuring
that η is larger than the time step for stability. We note that an extended asymptotic analysis must be
performed to ensure that second-order convergence (as discussed in Ref. [53]) with respect to the
penalization parameter is indeed achieved in our configuration involving buoyancy forces.

Most of the simulations described in the main text have been performed using the same numerical
approach as in Ref. [30]. For comparison, some of the cases have been solved by using the
open-source pseudospectral code Dedalus [37]. We use Chebyshev polynomial functions in the ez

direction and a Fourier decomposition in the periodic ex direction. A fourth-order Runge-Kutta
scheme is chosen for time integration. For the exact same model and physical parameters, an
excellent agreement between the two numerical solvers is obtained, with a relative error on the
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TABLE I. List of numerical parameters for all simulations described in this paper.

Case Nx Nz ε α λ η

A 512 256 2 × 10−3 500 6 1.2 × 10−6

B 512 512 4 × 10−3 1250 9 3 × 10−7

C 1024 512 3 × 10−3 667 8 9 × 10−7

D 512 512 2 × 10−3 1500 3 4 × 10−7

E 1024 512 2 × 10−3 1500 6 4 × 10−7

equilibrium height around 10−6 for typical cases representative of the different regimes discussed
in the paper.

The numerical parameters for all cases studied in this paper are given in Table I. Case A
corresponds to the results discussed in Fig. 2, case B to Figs. 3 and 4, case C to Fig. 5, case D
to 6, and, finally, case E to Figs. 7(a) and 7(b).

APPENDIX B: MODEL FOR THE NUSSELT NUMBER

In this Appendix, the simplified model for the convective heat flux is detailed. We assume that
the convection is responding instantaneously to any change in topography and that it behaves as
standard Rayleigh-Bénard. Physically, this is justified when the variation of topography is slow
compared to the fluid turnover time, i.e., when the Stefan number is large. We define ζ as a
normalized distance from the threshold:

ζ = Rae − Rac

Rac
, (B1)

where we recall that the critical Rayleigh number is a function of θM [33]. Based on this parameter,
we can define three distinct regimes: diffusive, near threshold convection, and far from threshold
convection. The relationship between this parameter and the Nusselt number is chosen as follows:

Nu =
⎧⎨
⎩

=1 if ζ � 0
=1 + υζ if 0 < ζ � 1.3
=δζ β if ζ > 1.3

,

where we choose the following arbitrary values υ = 0.88, δ = 0.27 × Raβ
c , and β = 0.25. These

values are consistent with classical measurements of the Nusselt number close to threshold [32].
The transition between the near threshold convection and the far from threshold convection is then
smoothed by using a third-order polynomial interpolation from ζ = 0.1 to ζ = 2.5. Figure 10 shows
the Nusselt number as a function of the effective Rayleigh number. The model corresponds to the
dotted black line (which is only shown for θM = 0.9 for clarity, the other values of θM being nearly
indistinguishable on this log-log representation). From the simulations of the equilibrium states
discussed in Sec. III, their respective Nusselt number at equilibrium and effective Rayleigh number
at equilibrium are plotted by the use of red dots. We see a good agreement between the numerical
data and our model.

We can now test the validity of our quasistatic assumption by considering a transient case where
the average fluid depth evolves with time (for example, the case discussed in Fig. 3 where h0 = 0.9
and θM = 0.9). The gray line in Fig. 10 represents the evolution of the instantaneous Nusselt number
as a function of the instantaneous effective Rayleigh number during the solidification process.
Note that this curve should be read from right to left. Initially, the Nusselt number is unity since
we initialize our simulation with a linear temperature profile with small perturbations but quickly
increases since Rae � Rac. As the solid phase grows, the effective Rayleigh number decreases,
which in turn decreases the Nusselt number, until the diffusive state is reached. This case study is in
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FIG. 10. Nusselt number as a function of the effective Rayleigh number. The black line corresponds to the
model, and the red dots represent the Nusselt number and effective Rayleigh number at equilibrium for all the
simulations in Sec. III. Finally, the gray line shows the transient evolution of the Nusselt number as a function
of the effective Rayleigh number for the case discussed in Fig. 3(b) (h0 = 0.9).

good agreement with our model for all values of the effective Rayleigh number. A small mismatch is
observed near the threshold which can be attributed to the presence of the topography. The classical
supercritical bifurcation indeed becomes imperfect when the boundary is not exactly horizontal [54].
This is a first indication that the presence of a topography plays an important role on the Nusselt
number (particularly near the threshold) and, consequently, the heat fluxes. This can be one of the
reasons why our model overestimates the range of parameters for which bistability is observed.
Note, finally, that our model underestimates the Nusselt number at large Rayleigh numbers, which
is again a consequence of the back-reaction of the topography on the flow, as discussed in Ref. [30].
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