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The “Tête de Moine” Swiss cheese is generally served by scraping the surface of a cylindrical loaf with a
sharp tool. This produces thin sheets of cheese that are strongly wrinkled at the edge, resembling frilly
flowers and enhancing the tasting experience. In this Letter we unveil the physical mechanisms at play in
this scraping-induced morphogenesis. We measure the deformation of the cheese during scraping and show
that plastic deformation occurs everywhere, but find a larger plastic contraction in the inner part of the
flower, causing its buckling into shape. We show that it surprisingly derives from the lower friction
coefficient evidenced on the cheese close to its crust. Our analysis provides the tools for a better control of
flower chip morphogenesis through plasticity in the shaping of other delicacies, but also in metal cutting.
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Introduction—The way to serve cheeses differs greatly
depending on the mechanical property of each type, yet
most employed techniques consist of spreading and slicing.
The high softness of Blue cheese, mature Camembert, Brie
or Époisses allows an effortless spread on bread, while
cheeses with higher hardness such as Cheddar, Romano,
Comté or Parmesan are served in slice or dice. The Monk’s
head (Tête de moine) is a cylindrical cheese block
originating from the Swiss Jura mountains, often scraped
with a slicer called la Girolle. The rotating blade scrapes a
thin layer of the cheese from the top into a pack of wrinkly
layers (Fig. 1), which is considered not only to be
aesthetically unique, but also crucial to the culinary
experience: the high surface-to-volume ratio of the ethereal
cheese packs enhances the release of aromatic flavors and
contributes to a soft and compliant oral texture.
Similar frilly edges with multiple superimposed wave-

length are observed in leaves [Fig. 1(c)], fungi, corals, and
some marine invertebrate, but also in torn plastic sheets [1]
[Fig. 1(b)] and were interpreted as a generic motif appear-
ing in non-Euclidean elastic surfaces with strong negative
Gaussian curvature [2]. Such complex surfaces can be
produced by a rather simple but nonflat metric [1,3], as the
distribution of distances along a surface dictates its
Gaussian curvature [4]. For example, plant petals acquire
a complex shape because differential in-plane growth [5]
produces incompatible length distribution (also called non-
Euclidian metrics [6]). A different mechanism leading to
similar shapes occurs during the tearing of thin plastic
sheets, where irreversible plastic stretching increases the
length of lines parallel to the boundary [1] strongly when

closer to the free edge. Do these “cheese flowers” fall into
the same category of morphogenesis? What physical
mechanism is responsible for producing this shape?
In this Letter, we first provide a thorough characteriza-

tion of the metric changes in the cheese flower chips
obtained under well controlled cutting conditions. We then
consider the mechanism of plastic scraping and show how
the inhomogeneous metric results from the variation of
mechanical properties along the radius of the cheese loaf.
Experimental setup—In the original cutting tool la

Girolle (Fig. 1), the cheese is skewered on a steel
cylindrical rod fixed in the center of a wooden base plate.

FIG. 1. (a) Layer of the cheese Tête de moine with wrinkly
edge, after being scraped using the cheese slicer “la Girolle.”
(b) Edge wrinkling of a torn plastic sheet. (c) Wavy edge of a Blue
Star Fern leaf.
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The blade fixture is mounted on the rod in order to keep the
cutting edge horizontal, while being free to move vertically
during the cutting under the action of an applied weight.
The cutting edge is machined to have an overhanging
(negative) rake angle of α ¼ −14.7° with respect to a flat
cheese surface [cf. Fig. 6(c)]. Our experiment is set to
achieve a steady-state imaging of the chip cutting process
(cf. Fig. 2): the blade fixture is geared at a fixed position,
and the base is motorized to rotate at a constant speed of
Ω ¼ 1.14 rad=s. The Monk’s head cheese wheels used in
the present Letter were selected from a single brand
(Fromagerie de Bellelay) and bought from a single dis-
tributor, with a selected refining age between three and six
months. The initial cylindrical shape has a typical radius of
50 mm and height of 120 mm. Each cheese is initially cut in
two halves in order to work in the core region. The vertical
cutting force is set by adding variable masses on a plate
mounted on top of the blade (cf. Fig. 2).
Depth of cut—Figure 2 (inset) reports the measured

depth of cut as a function of the total applied weight,
normalized by the length of the blade contact on the cheese.
The depth of cut h0 was estimated by counting the number
of full spins required to cut a given depth of 1 mm in the
cheese. We can remark that there is no appreciable cutting
below a threshold force of 0.16 N=mm, and then the depth
of cutting is linearly increasing with the applied load. For
the following measurements, we selected the applied
weight to fix a depth of cut of h0 ¼ 0.32 mm in order
to obtain stable cheese flowers that can be conveniently
manipulated.
Radial metric measurements—Owing to the rotational

symmetry, we expect the metric to depend only on the
radial distance. Radial metrics variations in the scraped
chip samples were measured as follows. We first polish the
surface of the cheese by cutting with a low weight close to
the threshold. We then draw two straight radial dotted lines
forming a small angle of 15° on the target part of the chip to
be measured. We start the cutting remotely upstream in
order to reach the steady state depth before the target chip.
Then we trim the target chip along the dotted lines and
flatten it gently as shown in Fig. 3 (inset). Tracking the

displacement of the dots we can observe that each arc l0 is
deformed into an arc ld which is shortened by a factor of
f ¼ ld=l0, while the radial displacement is very small and
will be neglected. The metric is thus defined by the single
function fðxÞ of the radial distance x from the periphery, as
plotted in Fig. 3. Close to the periphery the metric is hardly
distorted [fð0Þ ∼ 0.9 is close to 1], but the ratio fðxÞ
decreases monotonically over a distance of 10 mm from the
periphery, before reaching a fairly constant plateau region
evidencing a large contraction by a factor of almost 3
(f ∼ 0.35). This distance soundly corresponds to an exter-
nal boundary layer of the cheese which is affected by the
drying process [7,8]. The mismatch of longitudinal length
between the periphery and the core material is somewhat
reminiscent of the metric distortion in torn plastic sheets
[1]. But in that case, the mismatch is caused by an increased
plastic stretch of the periphery [fð0Þ typically of order 2,
with a plateau f ¼ 1], whereas for the cheese flowers, it is
due to an increased plastic contraction in the inner region.
Nevertheless, we conclude that the complex buckled shape
of the cheese flower results here from the same type of
internal geometrical frustration [1,9]: the buckle emergence
is intrinsically associated to a spatial metric variation. If the
metric change f was constant everywhere, the ribbon
would have zero Gaussian curvature and would stay flat.
Chip cutting mechanism—In the following we wish to

elucidate the cause of inhomogeneous shrinking of the
cheese ribbon. A natural idea is to imagine that the cutting
mechanism changes from elastic close to the harder
periphery to plastic in the soft core of the cheese. To
address this issue, we can benefit from extensive literature
about the complex chip shapes and deformation mecha-
nisms in the metal cutting community [10–18], and report

FIG. 2. Schematic illustration of the experimental setup. Inset:
depth of cut h0 as a function of vertical load per unit length of the
blade F̄t.

FIG. 3. Picture of a flattened cheese flower chip (inset) and
associated metrics. The difference between the two color de-
formed dotted lines (red and blue) and their original position
along straight lines (black circles) is used for the measurement of
the metric change fðxÞ ¼ ld=l0 versus the radial distance x from
the edge periphery. The blue dots and line in the main figure
represent the local average, and the shaded area the standard
deviation.
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the essential physical arguments here. Cutting a layer into
an elastic material results in cleavage, i.e., the elastic
bending of the chip with a crack at a distance Δ ahead
of the blade tip as in Fig. 4(a), where a vertical rake is
considered for simplicity, without loss of generality. The
chip curls up with a typical curvature 1=Δ. The cleavage
distance Δ can be found by balancing the energy for
creating the crack ΓΔ (where Γ is the fracture energy) and

bending energy Eh30Δ=Δ2 [19], so that Δ ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

Eh30=Γ
q

,

where E is Young’s modulus. This elastic scenario
breaks down if plastic yielding is reached in bending
[cf. Fig. 4(b)], when the maximum stress in the chip
Eh0=Δ attains the yield stress of the material σy, i.e., when

h0σ2y
EΓ

¼ h0
lD

≲ 1; ð1Þ

where lD ¼ EΓ=σ2y is known as the Dugdale length [20],
which sets the physical length scale for the balance of frac-
ture and plastic processes and represents the distance to the
crack below which plastic yielding dominates [cf. Fig. 4(a)].
A precise calculation [14] shows that the elastic cleavage
takes place when h0=lD > 6, and plastic bending occurs
below this value. But when the depth of cut h0 becomes
comparable to the Dugdale length (h0=lD ≤ 2) a different
yielding mode takes place leading to a homogeneous plastic
shearing through thewhole thickness of the chip, as sketched
in Fig. 4(c), in agreement with experiments on several
materials [21].
To test this scenario for our cheese, we measured the

Young modulus E, the yield stress σy, and the fracture
energy Γ as a function of the distance x from the edge
periphery (cf. Fig. 5 for results and the Supplemental
Material for measurement protocols [22]). The Dugdale
length reads as lD ¼ 3.4 mm in the core and increases up
to 6.5 mm in the edge, so that h0=lD is everywhere lower
than 0.1. We thus expect the cutting to systematically be in
the plastic shear kinematics. This is indeed confirmed by
our real time imaging in Fig. 6(a), which clearly shows that
both in the core and the periphery the blade touches the
crack tip and the chip is sheared up as sketched in Fig. 4(c).
We can thus conclude that the observed strong metric

variation between the edge and the core of the cheese is not
caused by a change from elastic to plastic cutting. But it
should rather result from a modulation of the plastic
shearing due to the radial change of the cheese properties.
Model for the metrics—Let us consider the 2D steady-

state shear flow of a perfectly plastic material (character-
ized by σy and with vanishing yield strain, thus neglecting
elastic spring back) as shown in Fig. 6(c) as in several metal

FIG. 4. Sketch of chip deformation scenarios by cutting. The
blade is set vertical to the sample surface for simplification.
(a) Elastic bending. (b) Elastic-plastic bending. (c) Plastic shear-
ing. Plastic zones are highlighted with dark color. FIG. 5. (a) Young modulus E and yield stress σy are measured

by uniaxial compression tests on specimens extracted at different
distance x from the periphery. (b) Fracture energy is measured on
compact tension samples extracted similarly.

FIG. 6. (a) Side view of instantaneous snapshots of the cheese
layer formation on different radial positions x from the periphery,
for F̄t ¼ 0.2 N=mm. For the view at x ¼ 13 mm in the core
region, the outer part of the cheese was removed, and the applied
weight was adjusted to maintain the same depth of cut h0. The
metric ratio f ¼ ld=l0 can be directly inferred through f ¼
h0=hd under the conservation of volume, with hd the chip
thickness. We remark that the metric is almost conserved in
the periphery (f ∼ 1), while a large increase in thickness is
observed in the core (f ≪ 1), which is consistent with the
measured metrics (cf. Fig. 3). (b) Front view of scraping leading
to the flower chip when using the whole cheese wheel (left) and to
a flat chip with a sample reduced to the homogeneous core (right).
(c) Sketch illustrating the shear strain in a 2D plastic flow during
cutting. Three steps in the evolution of a material region labeled
in gray: initially rectangular, flowing across the shear plane, and
finally after being permanently sheared.
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cutting models [11,12,14]. In the reference frame of the
blade, the underformed material is initially advected toward
the blade, and then undergoes an intense shear strain γp as a
result of a change of flow direction along a localized planar
zone, named the shear plane, tilted at an angle ϕ. Geometry
(together with volume conservation) imposes the value of
the plastic shear strain γp and the metric change f as a
function of the shear plane angle ϕ and the rake angle α (cf.
Fig. 9 in the End Matter) [11]:

γp ¼ cotðϕÞ þ tanðϕ − αÞ ð2Þ

fðϕ; αÞ ¼ sinϕ
cosðϕ − αÞ : ð3Þ

While α is set by the loading fixture, ϕ is the only free
parameter of the plastic flow and can be determined by
minimizing the work provided by the operator on the blade
[10,11]. From the energy balance for a step advance dxc of
the steady-state cutting process (cf. Fig. 8 in End Matter),
the work of the operator must equal dissipation (by fracture,
plastic flow, and friction) [12]:

Fcdxc ¼ dUΓ þ dUp þ dUf: ð4Þ

We can obtain the expression of the force Fc applied
by the operator as a function of the yet unknown shear
angle ϕ [13]:

FcðϕÞ ¼ bΓþ σybh0
2

½cotϕþ tanðϕ − αÞ�

þ ðFc − bΓÞ sinϕ sin β
cosðβ − αÞ cosðϕ − αÞ : ð5Þ

The first term bΓ is the energy cost for fracture
propagation, where b is the transverse dimension of the
chip. The second term is the plastic energy associated with
the plastic flow along the shear plane at angle ϕ, where the
shear stress is fixed to σy=2 by Tresca yield criterion [24],
and the term in brackets is the plastic shear γp from Eq. (3).
The third term is the sliding friction energy between the
chip and the blade, where β is the friction angle, which is
related to the Coulomb friction coefficient by μ ¼ tan β,
and Fc − bΓ is the horizontal component of the force
applied by the blade to the plastified chip (cf. End Matter
for full derivations).
We assume that the scraping process occurs for the

minimal operator force (or the minimal dissipation), and
∂Fc=∂ϕ ¼ 0 leads to the selection of the shear plane angle
ϕcut [11]:

ϕcut ¼
π

4
−
β − α

2
; ð6Þ

and finally to the predicted metric:

fðϕcut; αÞ ¼
cos½π=4 − ðα − βÞ=2�
cos½π=4 − ðαþ βÞ=2� ð7Þ

which surprisingly does not show any dependency on σy
nor on Γ, which both play a role in the cutting force, but are
ruled out in the minimization process. The metrics of the
chips only depends on the friction β as well as on the rake
angle α, which is fixed here [13].
Role of friction on the metrics—It is remarkable that in

the absence of friction (β ¼ 0), the shear plane angle
reduces to ϕiso ¼ π=4þ α=2 and lies along the bisector
angle between the blade rake and the sample surface. This
can be associated to the highly symmetric character of
the plastic shear flow, as evidenced by the dependency
of γp on the shear plane angle ϕ by Eq. (2) shown in Fig. 9.
The absence of friction would thus systematically lead to
isometry (f ¼ 1), even if the material experiences
extremely large plastic shear (γp > 2). This is a first proof
that friction plays a paramount role, since metric change is
the prerequisite for the formation of cheese flowers.
Moreover, the positive nature of β (linked to the second
principle of thermodynamics) breaks the symmetry of the
plastic shearing, and implies that in real conditions the
shear plane angle will always be smaller than ϕiso, leading
to metric contraction only (f ≤ 1, and hd ≥ h0), as
observed in our measurements. Physically, we see that
the chip shortens because friction during sliding along the
blade tends to slow the flow. However, a homogeneous
metric contraction is not enough to create cheese flowers:
according to Eq. (7) a variation of metrics requires a
variation of β.

FIG. 7. Local measurements of the friction coefficient β
reported in green, versus the radial distance x from the edge
periphery (the green dots and line represent the local average, and
the shaded area the standard deviation). The red circles refer to
the prediction of the metrics f by Eq. (7) based on the local
measurements of β. The variation of the measured metric of the
cheese flower previously reported in Fig. 3(b) is shown in gray for
comparison.
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We thus conducted independent measurements of the
friction coefficient tan β as a function of the position x on
the cheese surface. The measurements were performed on
the rotating platform with a hex nut slider under the same
conditions for the cheese cutting (see details in the
Supplemental Material [22]). As reported in Fig. 7, the
friction angle β (green) increases from 0.3 rad to approx-
imately 0.7 rad within the first 10 millimeter layer and
reaches a plateau in the core of the cheese. The estimated
metric using Eq. (7) (red) is superimposed on the
measured metric of the cheese flower (gray) previously
shown in Fig. 3. The agreement on this dataset suggests
that our model captures the main physical mechanism of
the morphogenesis of cheese flowers. The high value of
friction angle in the core of the cheese is responsible for
the large permanent orthoradial contraction of the chip
f ∼ 0.35. The strong decrease of friction in the periphery
is responsible for a gradual reduction of the contraction
toward f ∼ 0.9, which is close to isometry, while remain-
ing fully plastic (γp > 2). The change of metrics that gives
origin to the cheese flower should thus be attributed solely
to the gradient of the friction coefficient tan β along the
radius of the cheese. Additional evidence of this con-
clusion is provided by the fact that when performing the
scraping test on the homogeneous soft core, after remov-
ing the outer 13 mm of cheese, we obtained flat thickened
chips instead of flowers, as shown in Fig. 6(b).
Conclusion—In this Letter we have reached three salient

results: (i) The wrinkly shape of cheese flowers obtained by
scraping the Tête de Moine cheese is due to the irreversible
metric change, which is inhomogeneous along the radial
direction of the cheese block. (ii) During the scraping
process the material is very strongly plastically sheared
everywhere even at the edge of the cheese where there is no
metric change. (iii) The inhomogeneous plastic shrinking
that leads to the formation of the cheese flowers is
determined by the radial variation of the friction coefficient
cheese-blade, while being relatively insensitive to the
variation of the other mechanical properties such as elastic
modulus, yield stress, and fracture energy. It is however
important that the fracture energy is large enough to induce
the transition to the plastic shearing regime, which is
required for the metric change itself.
The new shaping mechanism evidenced here (inhomo-

geneous plastic shrinking induced by scraping) is described
in its generality. It can be of interest for other materials such
as in metal cutting [15–17] or for polymer materials, when
presenting inhomogeneous properties either by formu-
lation, aging, or mechanical processing. We note that such
spatial inhomogeneities are not favored in engineered
materials, and for example flower-shaped chips have never
been reported in metal cutting. But even in such uniform
materials, the fact that friction properties control the metric

change is also particularly interesting for material shaping:
starting from a simple homogeneous material, but with a
blade designed with spatially varying frictional properties
[25], these results open the possibility of programming
complex shaping from a simple scraping process.
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End Matter

Plastic cutting model—We present here a more
complete determination of the plastic cutting model for
the orthogonal cutting of a surface layer from a sample
made of an homogeneous perfect plastic material
(characterized by a yield stress σy and infinite elastic
modulus) and fracture toughness Γ, inspired by [10–13].
The sample moves with a horizontal velocity Vc

�!
against a stiff blade, which has an almost vertical rake
angle α as sketched in Fig. 8. The vertical position of
the cutting edge is fixed at a depth of cut h0 with
respect to the sample surface. As sketched in Fig. 6(c),
the kinematics of the plastic flow is modeled as a
homogeneous plastic shear of the chip that is considered
to instantly happen when the material crosses a thin
localized shear plane, which is tilted at an angle ϕ [11].
After crossing the shear plane, the plasticized chip is
moving parallel to the rake face with a spatially
homogeneous velocity V⃗chip at an angle α. When
crossing the shear plane, the chip undergoes a

discontinuity in the velocity Vs
�! ¼ V⃗chip − Vc

�!
, which is

directed along the angle ϕ [cf. Fig. 8(a)].
At this stage of the modeling, the value of the shear plane

angle ϕ is undetermined and will be derived later. By
enforcing volume conservation of the chip, and applying
some geometric relations, we can deduce that the thickness
hd of the chip will be modified into

hd ¼ h0
cosðϕ − αÞ

sinϕ
; ðA1Þ

and the length of the chip will change by the ratio

fðϕ; αÞ ¼ ld

l0

¼ h0
hd

¼ sinϕ
cosðϕ − αÞ ; ðA2Þ

which defines the metric of the plastified chip.
As a consequence the sliding velocity of the chip along

the blade is also altered by the same factor:

Vchip ¼ fðϕ; αÞVc: ðA3Þ

The homogeneous plastic shear strain γp of the chip can
be obtained by evaluating the ratio between the relative
displacement dxs of the plastified chip parallel to the slip
plane ϕ and the distance dxn from the slip plane, for a
displacement dxc of the cheese. The displacement vectors

dx
�!

c, dx
�!

chip, and dx
�!

s ¼ dx
�!

chip − dx
�!

c can be estimated
geometrically from the green triangle in Fig. 8(a). Their
amplitudes read as

dxs ¼ dxc cosϕþ dxchip sinðϕ − αÞ; ðA4Þ

dxn ¼ dxchip cosðϕ − αÞ ¼ dxc sinϕ; ðA5Þ

γp ¼ dxs
dxn

¼ cotϕþ tanðϕ − αÞ: ðA6Þ

We remark that according to the plastic shear kinematics,
all morphogenetic parameters hd, f, and γp are determined
from the knowledge of α and ϕ as plotted in Fig. 9. While
the rake angle α is a fixed loading parameter, the shear
plane angle ϕ is the only free variable, and its determination
requires mechanical arguments.
When the tool moves a distance dxc ¼ Vcdt so does the

cut, and we may define the energy balance:

dW ¼ dUΓ þ dUp þ dUf; ðA7Þ

where dW is the work of the external applied force, dUΓ is
the energy for creating new fracture surfaces, dUp is the
energy dissipated in plastic deformation of the chip, and
dUf is the energy dissipated in frictional sliding between
the chip and the blade:

FIG. 8. Free body diagrams for the force balance on the chip (a)
and the blade (b). The energy for fracture propagation is
associated with a horizontal force bΓ acting on the blade tip.
The green triangle in (a) represents the incremental displacements

dx
�!

i ¼ Vi
�!

dt of the cheese, chip, and shear plane.
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dW ¼ F⃗ext dx
�!

c ¼ Fc dxc

dUΓ ¼ bΓdxc

dUp ¼ R⃗ dx
�!

s ¼ Fs dxs

dUf ¼ −R⃗ dx
�!

chip ¼ Fdxchip ðA8Þ

As illustrated by the free body diagrams in Fig. 8, the
external cutting force F⃗ext has horizontal componentFc and
transverse component Ft; the latter does not contribute to
the work. In the plastic shear regime, the tip of the blade is
in contact with the fracture point (which is referred to as the
crack tip touching condition). The fracture energy can thus
be associated with the work of a horizontal force bΓ acting
on the blade tip [13], where b is the transverse dimension of
the chip. The net horizontal component of the force R⃗
transmitted from the blade to the plastified chip is thus
Fc − bΓ. This can be decomposed into a normal force N
and a tangent friction force F ¼ N tan β, where μ ¼ tan β.
By equilibrium, the reaction force exerted by the substrate
on the plastified chip through the shear plane is −R⃗, and it
can be decomposed into a tangent shear stress Fs and a
normal force Fn.
The shear stress on the plastic shear plane is fixed to

σy=2 according to the Tresca yield criterion. Since the area
of the shear plane is As ¼ bh0= sinϕ, the force along the
shear plane is

Fs ¼
σy
2

bh0
sinϕ

; ðA9Þ

and the plastic shear energy is [using Eqs. (A4), (A8),
and (A9)]

dUp ¼ σybh0
2

½cotϕþ tanðϕ − αÞ�dxc: ðA10Þ

When using Coulomb friction law with μ ¼ tan β, the
friction force F can be written as

F ¼ R sin β ¼ Fc − bΓ
cosðβ − αÞ sin β: ðA11Þ

The energy dissipated in frictional sliding between the
chip and the blade is thus [using Eqs. (A3), (A8),
and (A11)]

dUf ¼ ðFc − bΓÞ sin β sinϕ
cosðβ − αÞ cosðϕ − αÞ dxc: ðA12Þ

Combining these into the energy balance given in
Eq. (A7),

Fc ¼ bΓþ σybh0
2

½cotϕþ tanðϕ − αÞ�

× ðFc − bΓÞ sinϕ sin β
cosðβ − αÞ cosðϕ − αÞ ; ðA13Þ

Fc ¼ bΓþ σybh

2

γpðϕ; αÞ
Qðϕ; α; βÞ ; ðA14Þ

where

Qðϕ; α; βÞ≡ 1 −
sinϕ sin β

cosðβ − αÞ cosðϕ − αÞ : ðA15Þ

In classical cutting models [10–13] both the rake angle α
and the depth of cut h0 are fixed as in a real orthogonal
cutting machine. The friction angle β is fixed and depends
on the specific material to be cut and on the blade surface
finish. The slip angle ϕ is the only free variable, and it is
determined by minimizing the power of the cutting process
P ¼ FcVc [10], which is equivalent to minimizing the
horizontal cutting force Fc, since the cutting velocity Vc is
a constant loading parameter. Considering Eq. (A14), all
the dimensional quantities disappear in the minimization
process:

d
dϕ

γpðϕ; αÞ
Qðϕ; α; βÞ ¼ 0; ðA16Þ

and the value of the shear plane angle ϕcut is only
dependent on the dimensionless values of α and β:

ϕcut ¼
π

4
−
β − α

2
: ðA17Þ

By substituting into Eq. (A14) we obtain the prediction
for the cutting force:

FIG. 9. The variations of the plastic shear strain γp (blue) and
the metric f (red) as a function of the shear plane angle ϕ from
Eqs. (2) and (3). As ϕ reaches the plane of symmetry between the
cheese’s upper surface and the blade ϕ ¼ π=4þ α=2, γp reaches
its minimum value of approximately 2.6, whereas the metric
reaches 1.
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Fc ¼ bΓþ σybh0
cosðβ − αÞ

1þ sinðα − βÞ ; ðA18Þ

as well as the metric change:

fðϕcut;αÞ ¼
cos½π=4 − ðα − βÞ=2�
cos½π=4 − ðαþ βÞ=2� ; ðA19Þ

which turns out to be independent of the depth of cut h0, as
well as on most cheese properties except the cheese or
blade friction coefficient tan β.

While in orthogonal cutting machines the depth of cut h0
is fixed, and the transverse force is proportional to h0:

Ft ¼ ðFc−bΓÞ tanðβ−αÞ ¼ σybh0
sinðβ−αÞ

1þ sinðα− βÞ : ðA20Þ

In our cheese cutting setup, the transverse force is set by
the applied weight, and the depth of cut increases until
reaching the equilibrium with the upward drag of the
friction force on the blade, in order to respect the
same Eq. (A20).
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