# Curvy cuts: Programming axisymmetric kirigami shapes 

## Supplementary document

Marie Tani ${ }^{1}$, Joo-Won Hong $^{2}$, Takako Tomizawa ${ }^{3}$, Étienne Lepoivre ${ }^{2}$, José Bico ${ }^{2}$, and Benoît Roman ${ }^{2}$<br>${ }^{1}$ Department of Physics, Kyoto University, Kyoto, Japan<br>${ }^{2}$ Physique et Mécanique des Milieux Hétérogènes (PMMH), ESPCI Paris, PSL University, CNRS, Sorbonne Université, Université Paris Diderot, Paris, France<br>${ }^{3}$ Department of Physics, Ochanomizu University, Tokyo, Japan

## Inflating kirigami structures

In the experiment described in Figure 6, a rubber balloon inserted in the kirigami structure is progressively inflated by the means of a manual pump. Each inflation introduces a volume of $35 \mathrm{~cm}^{3}$ (taken at atmospheric pressure). The evolution of the inner pressure of the balloon (with respect to the atmospheric pressure) and the vertical extension of the structure are monitored as a function of the input volume. Due to the finite compressibility of air, the actual volume of the inflated balloon is slightly lower than the input volume. The case of a free balloon is presented as a reference. The design cut corresponds to the "Dc" configuration used to generate a cone with a PET sheet of thickness $100 \mu \mathrm{~m}$. The kirigami structure breaks above a maximum volume (which is far from the volume a free balloon can sustain).


Figure 1: Evolution of the pressure in the balloon as a function of the input volume. Colored circles correspond to experiments conducted with different specimens of the same design. The reference experiment with a free balloon is represented with open circles.


Figure 2: Evolution of the vertical displacement of the structure as a function of the input volume. Colored circles correspond to experiments conducted with different specimens of the same design. The reference experiment with a free balloon is represented with open circles.


Figure 3: Pressure in the balloon as a function of the vertical displacement of the structure. Colored circles correspond to experiments conducted with different specimens of the same design. The reference experiment with a free balloon is represented with open circles.

