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1 Material characterization and actuation techniques

In the main manuscript, three responsive materials, recently presented in published
work, are used in order to demonstrate the hierarchical zigzag patterning strategy. We
here detail the fabrication, actuation of the materials and their characteristics succinctly
presented in the experimental section.

1.1 Inflated fabrics
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Figure S1: Inflated fabrics fabrication steps. (a) Two superimposed flat fabric sheets
are sealed along a specific zigzag pattern with a soldering iron mounted on a CNC ma-
chine. (b) After cutting along its boundary, the flat structure is closed and glued onto a
cylindrical shape. (c) The network of channels comprised between the two fabric sheets
are connected to an inflating bulb via Luer connectors and a silicon tube. The typical
applied pressure is 0.5 bar. Scale bar: 50 mm.

The inflated fabric structures are made of one-sided TPU-coated Nylon fabric sheets.
Two different fabrics are used in this study: tafetta 70 den of thickness 0.17 mm and
weight per unit surface 170 g/m2 and Ripstop 20 den of thickness 0.1 mm and weight
per unit surface 70 g/m2. The equivalent Young modulus along the fibre direction is
estimated at around 1.5.108 Pa for both fabric sheets. A soldering iron mounted on a
CNC machine and heated at 230◦C is used to seal two superimposed flat fabric sheets along
a specific zigzag pattern at 120 mm/min (Figure S1a). The sample is then cut along its
boundary. Using a RS pro superglue gel, edge A and B are glued onto a cylindrical shape
(Figure S1b). The structure is finally connected with Luer connectors and a silicon tube to
an inflating bulb, in order to manually inflate the network of channels comprised between
the two fabric sheets. The obtained shape does not depend on the applied pressure
provided it is sufficiently high (to bend the fabric) [1]. The typical applied pressure is
0.5 bar (Figure S1c).

1.2 Mesostructured pneumatic elastomer (baromorphs)

In order to make baromorph structures, equal quantities of base and catalyst of
vinylpoly-siloxane (VPS, Elite Double 8 from Zhermack, Young modulus of 250 kPa)
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Figure S2: Baromorph fabrication steps. (a) 3D-printed mould containing a network of
zigzag walls. (b) After casting and unmolding, a membrane made of the same material is
glued to close the structures. Two structures are assembled along their boundaries and
closed and glued onto a cylindrical shape. (c) The network of channels embedded in the
elastomer structure is connected to a syringe via Luer connectors and a silicon tube. The
typical applied pressure is 0.2 bar. Scale bar: 5 cm.

are mixed and cast in a 3D printed mold shown in Figure S2a. After curing (which typ-
ically takes 20min at room temperature) and unmolding, a membrane made of the same
material is glued using uncured VPS to close the channels. Two identical flat structures
are finally assembled along their boundaries (A-A’, B-B’) and glued onto a cylindrical
shape using again uncured VPS mixture (Figure S2b).

In order to inflate the structure and trigger the shape transformation, the embedded
channels are connected to a syringe via a silicon tube, Luer connectors and tips (Fig-
ure S2c). When pulling or pushing the syringe, the channels are respectively deflated and
inflated, leading to contraction and expansion perpendicular to the channel direction. The
typical applied pressure is 0.2 bar. More details may be found in ref. [2], as well as the
theoretical model predicting the deformation as a function of pressure, channel geometry
and density.

1.3 3D printed PLA

Following the work presented in Refs. [3, 4], we first calibrate the thermal contraction
parallel and perpendicular to the printing direction as a function of the printed layer
thickness. Plates (width w0, length l0) with different printed layer thicknesses t are
thus printed (Figure S3a) with a Fused Filament Fabrication 3D-printer (Hyrel 16A,
nozzle diameter 0.5 mm, PLA filament diameter 1.75 mm, bed temperature 42◦C, nozzle
temperature 200◦C and printing speed 4000 mm/min, see Figure S4a). After printing,
the samples are immersed in a bath of hot water (at 80◦C) (Figure S4d) and deform to
relax the flow-induced internal stresses. Contraction ratios λ‖ = l/l0 and λ⊥ = w/w0

are measured and plotted as a function of the extruded filament thickness. No significant
perpendicular contraction λ⊥ is observed whereas a monotonic correlation between λ‖ and

3



0.05 0.1 0.15 0.2 0.25 0.3

0

0.2

0.4

0.6

0.8

1

0.3 mm

0.07 mm

H
ea

t

a b

Figure S3: Actuation calibration of 3D printed filaments. (a) Plate (width w0, length l0)
made of straight parallel extruded filaments of varying layer thicknesses t are 3D-printed
along the long direction. After being inserted in a bath of hot water (at 80 ◦C), the plate
shrinks anisotropically. (b) Measured contraction ratio λ‖ and λ⊥ as a function of the
extruded filament thickness t (for a nozzle diameter of 0.5 mm).
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Figure S4: 3D-printed structure fabrication steps. (a) 3D-printing of the zigzag paths.
(b) The sample is printed flat and is made of several layers, which are slightly offset to
cover potential gaps in between the filaments. (c) The flat structure is then closed and
glued onto a cylindrical shape. (d) The sample is then placed onto a hot water bath (80◦)
in order to trigger the metric change. Scale bar: 50 mm.

the layer thickness is observed (Figure S3b). Contraction ratios ranging from 0.68 to 0.97
may be obtained with this technique.

Zigzag structures are printed using the same printing parameters mentioned above.
Even layers are slightly offset to cover potential gaps between the filaments (Figure S4b).
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Once printed, the flat structure with varying zigzag angle is closed onto a cylindrical
shape by heating edges A and B with a soldering iron at 200◦C and assembling them
(Figure S4c). When immersed in the hot water bath, the cylindrical structure morphs
into a hyperbolic shape (see Figure 4g in the main manuscript).

2 Bisectrix construction and kinematic compatibil-

ity.

We show here that the interface between two regions with constant director eα and
eβ leads to a kinematically compatible deformation if and only if the common line is one
of the two bisectrices of the X-shaped cross formed by the lines parallel to eα and eβ
(Figure S5)). In each patch the metric and its square root are given by[

λ2
⊥ 0
0 λ2

‖

]
, g1/2 =

[
λ⊥ 0
0 λ‖

]
(S1)

Figure S5: The active fields are kinematically compatible if the interface line is stretched
by the same amount on both sides.

in the frame of reference aligned with the local direction of the director field. We denote
λΣ = λ‖λ⊥ the area ratio change. Let us define E1 the vector tangent to the interface
line and θα as the angle between E1 and eα. Distances along this direction are stretched
by a factor Λ1, such that Λ2

1 = E1 · g E1 = λ2
‖ cos2 θα + λ2

⊥ sin2 θα
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A combination of patches is kinematically compatible only if the interface line (which
belongs to both patches) is stretched by the same amount by the two adjacent patches.
In other words, λ2

‖ cos2 θα + λ2
⊥ sin2 θα = λ2

‖ cos2 θβ + λ2
⊥ sin2 θβ. which leads to (λ2

‖ −
λ2
⊥) cos2 θα = (λ2

‖ − λ2
⊥) cos2 θβ. If the metric is not isotropic (λ‖ 6= λ⊥), this condition

imposes that the angles follow
θα = −θβ ≡ θ0

We conclude that the interface must be aligned with the bisectrix of the director fields,
and denote by θ0 the angle between the directors and the interface. Moreover,

|g1/2(±θ0)E1| = (E1 · g(±θ0)E1)1/2 = Λ1 (S2)

where
Λ1 =

(
λ2
‖ cos2 θ0 + λ2

⊥ sin2 θ0

)1/2

and we have denoted with g(±θ0) the metric tensor on the two sides of the interface,
where the director before actuation is oriented parallel to either eθ0 or e−θ0 .

Once Equation (S2) is satisfied, we can easily arrange that the deformations on the
two sides of the interface, denoted by F (±θ0), are such that F (−θ0)E1 = F (θ0)E1.
This is the condition that guarantees that the interface (parallel to E1) is mapped to
the same one line. In this case, F (±θ0) are kinematically compatible in the sense that
they define a piece-wise constant deformation that does not open discontinuities (fracture)
across the interface. Indeed, by the polar decomposition theorem for tensors with positive
determinant (see, e.g., [5]), F (±θ0) = R(±)g1/2(±θ0), where R(±) are rotations. Therefore,
for any R(+) (a global rotation that can be fixed arbitrarily), and since by (S2)

|R(+)g1/2(θ0)E1| = |g1/2(−θ0)E1|

we can find a rotation R(−) so that g1/2(−θ0)E1 can be rotated and brought to coincide
with R(+)g1/2(θ0)E1. This is expressed by the formula

F (θ0)E1 = R(+)g1/2(θ0)E1 = R(−)g1/2(−θ0)E1 = F (−θ0)E1 (S3)

whose geometric interpretation is illustrated in Figure S6.
The explicit calculation of deformations F (±θ0) can be done with the help of a simple

geometric construction. We now choose to work in the frame of reference E1,E2, and
assume that direction E1 remains unchanged when the system is actuated. It is always
possible to satisfy this condition by a rigid rotation of the whole system. The material
points aligned with the director field eθ0 are oriented after actuation with an angle θ (see
Figure S7) with respect to E1. Simple geometry on the right-angle triangle in Figure S7
shows that tan θ = (λ⊥b)/(λ‖a) so that

tan θ =
λ⊥
λ‖

tan θ0 (S4)
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a b c
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Figure S6: Geometric illustration of Equation (S3) in the context of inflatable fabrics. (a):
a circular disk deformed by either g1/2(θ0) or g1/2(−θ0). (b): the left half of the disk is deformed by
g1/2(θ0), the right one by g1/2(−θ0); this would require the opening of a discontinuity at the interface.
(c): rigid rotations R(±) leave stretches unaffected on each side, and guarantee kinematic compatibility of
the pair composed by F (θ0) = R(+)g1/2(θ0) and F (−θ0) = R(−)g1/2(−θ0) (continuity at the interface).
(d): deformation g1/2(θ0) realized by inflatable fabrics (e): deformation induced by the kinematically
compatible pair F (±θ0) realized by inflatable fabrics

Actuation transforms E1 into Λ1E1 and eθ0 into λ‖eθ, from which we deduce that E2 =
(eθ0 − cos θ0E1)/ sin θ0 is transformed into (λ‖eθ − Λ1 cos θ0E1)/ sin θ0. We finally obtain
the transformation as

F (θ0) =

[
Λ1 (λ‖ cos θ − Λ1 cos θ0)/ sin θ0

0 λ‖ sin θ/ sin θ0

]
=

[
Λ1

λ2‖−λ
2
⊥

2Λ1
sin 2θ0

0 Λ2

]
(S5)

where we have used the fact that sin θ = sin θ0λ⊥/Λ1, as inferred from geometry in
Figure S7, and defined

Λ2 = λΣ/Λ1

Once F (θ0) is known, F (−θ0) is easily obtained by symmetry. Indeed, by Equation
(S3), F (−θ0)E1 = F (θ0)E1 and hence the line parallel to E1 is left invariant by both
F (±θ0). The construction for the region of the zigzag where the director is initially
oriented like e−θ0 is easily obtained from the one illustrated in Figure S7 by a reflection
across the interface line, which is parallel to E1. It follows that Equation (S5) is valid for
both ±θ0.
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Figure S7: Geometric construction for an active patch with a director field oriented
along eθ0 used for the calculation of the deformation F (θ0) = R(+)g1/2(θ0). The material
lines are drawn in the rest state (top) and in the actuated sate (bottom). The lines
stay perpendicular since they are oriented along the principal directions of stretch (the
eigenvectors of g1/2(θ0)), which are both rotated by R(+) in the deformation F (θ0) =
R(+)g1/2(θ0).
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3 Homogenized stretches (symmetric and asymmet-

ric cases)
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Figure S8: Geometry of the asymmetric (bottom) and symmetric (top, Dα = Dβ = D)
zigzag unit cell, combining uniform director field (along thick marked lines), with interface
along bisectrices. On the left, the reference state, and on the right, the deformed state.

In the (E1,E2) frame of the interface/bisectrix (see Figure S8), the transformation
induced by each the director field F (θ0) and F (−θ0) follow Equation (S5). When F (±θ0)
are combined in a zigzag pattern, the average transformation follows a simple mixing law
:

F̄ =
1

1 + ρ
F (θ0) +

ρ

1 + ρ
F (−θ0) =

[
Λ1

1−ρ
1+ρ

λ2‖−λ
2
⊥

2Λ1
sin 2θ0

0 Λ2

]
=

[
Λ1 Λ2 tan γ
0 Λ2

]
(S6)

where ρ = Dβ/Dα, and we have identified the shearing angle γ from

tan γ =
1− ρ
1 + ρ

λ2
‖ − λ2

⊥

2λΣ

sin 2θ0
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We recover in this expression the fact that for symmetric zigzag, ρ = 1, the shear angle
is zero.

An interesting property of this transformation is that both diagonal terms are constant,
and do not depend on the asymmetry parameter ρ. This means that the height H and
the length L of a zigzag unit (such as in Figure S8) are always stretched by same factors
(Λ1,Λ2), independently of asymmetry.

The metric Ḡ = F̄ T F̄ is therefore

Ḡ =

[
Λ2

1 λΣ tan γ
λΣ tan γ Λ2

2(1 + tan2 γ)

]
(S7)

4 Achievable stretches are always in the interval be-

tween λ⊥ and λ‖

We see that det Ḡ = Λ2
1Λ2

2 = λ2
Σ, so that the area change is always the same, indepen-

dently of zigzag angle θ0, but also on the asymmetry ρ.
We now show more rigorously that the eigenvalues of Equation (S7) always lie between

λ2
⊥ and λ2

‖ or, equivalently, that the principal stretches always lie between λ⊥ and λ‖. This
can be done by a direct calculation, but we provide a more geometric argument based
on the notion of maximal stretch. In fact, since the principal stretches give the maximal
possible extension or contraction along a material line, λ⊥ and λ‖ give a bound for the
maximal extension and contraction that can be achieved by actuation with any zigzag
construction, no matter what its geometric details are.

We denote by λmax(F ) and λmin(F ) the maximal and minimal principal stretches
of the deformation F , defined as the maximum and minimum singular values of F or,
equivalently, the square roots of the largest and smallest eigenvalues of F TF . In view of
the well known property

λmax(F ) = sup {|Fe| : |e| = 1} (S8)

where the supremum is taken over all two-dimensional vectors of unit length, the function
F 7→ λmax(F ) is convex (as the point-wise supremum of convex functions).

Therefore, recalling that F̄ = 1
1+ρ

F (θ0) + ρ
1+ρ

F (−θ0), convexity of λmax(F ) implies

λmax(F̄ ) ≤ 1

1 + ρ
λmax(F (θ0)) +

ρ

1 + ρ
λmax(F (−θ0)) = λmax(g

1/2(±θ0)) (S9)

where we have used that λmax(F (θ0)) = λmax(F (−θ0)) = λmax(g
1/2(±θ0)).

Since λmax(g
1/2(±θ0)) is contained in the interval between λ⊥ and λ‖, we have that

λmax(F̄ ) cannot exceed the largest between λ⊥ and λ‖. Then, in view of the fact that
λmin(F̄ )λmax(F̄ ) = det1/2(Ḡ) = λΣ = λ⊥λ‖, λmin(F̄ ) must be larger than the smallest
between λ⊥ and λ‖. It then follows that both λmax(F̄ ) and λmin(F̄ ) are contained in the
interval between λ⊥ and λ‖.
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5 Deformations achieved with asymmetric zigzags can

be obtained by rotating the ones achieved with

symmetric zigzags

We have found that every non-symmetric zigzag generates a metric Ḡ that can also
be obtained using a symmetric zigzag, with a different internal angle, and with rotated
bisectrix direction. We illustrate this by considering inflatable fabric zigzag cells with a
fixed internal angle θ0 = 45◦, but a varying asymmetry parameter ρ. The eigenvalues
of the metric Ḡ from Equation (S7) provide the principal stretches(Figure S9 center),
and we do observe that they lie in the range [λ⊥ = 0.73 1 = λ‖]. The equivalent
symmetric zigzag pattern is the one that has the same principal stretches. The internal
angle θ′0 of this symmetric zigzag is obtained by inverting Equation (2) from the main
text (see Figure S9 bottom). This symmetric zigzag has its bisectrices aligned with the
principal directions of Ḡ, which are therefore rotated by an angle ω, presented in the
top of Figure S9. Experimental measurements agree well with the theory (shown with
continuous lines).

6 Programming axisymmetric shapes

We present here more information about shape programming experiments for inflated
fabrics for which λ‖ = 1 and λ⊥ = 0.77.

We restrict ourselves to symmetric cases where the metric is of the form

Ḡ =

[
Λ2

1(x1, x2) 0
0 Λ2

2(x1, x2)

]
(S10)

In this particular case where the metric is diagonal, and the area ratio Λ1Λ2 = λΣ is fixed,
the Gaussian curvature reads simply [6, 7]

K =
−1

2λ2
Σ

(
∂2Λ2

1

(∂x2)2
+

∂2Λ2
2

(∂x1)2

)
and more simply when the zigzag angle only depend on x2,

K =
−1

2λ2
Σ

d2Λ2
1

(dx2)2

We choose to work on strips with height H0 and length L0 that are sealed back into
a cylinder as in Figure S10, and will use(

Λ2
1

)′′
= −2Kλ2

⊥ (S11)

to program the Gaussian curvature K.
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Figure S9: Asymmetric zigzag pattern are equivalent to symmetric zigzag with an ori-
entation rotated by ω (top), and internal angle θ′0 (bottom). (center) principal stretches
(Λ′1,Λ

′
2) as a function of asymmetry parameterρ. Symbols represent experimental mea-

surements with fabrics (λ⊥ = 0.73 and θ0 = 45◦); theory in continuous line.

Rectangular Patch Reference Configuration

Figure S10: Example of zigzag patterning and ribbon with edges sealed into a tube,
before inflation.

6.1 Cones K = 0

In the case of a cone with K = 0, equation (S11) leads to [Λ2
1(x2)]′′ = 0. We wish to

program the largest shape change by enforcing Λ1(0) = 1 and Λ1(H0) = λ⊥, so that

12



Λ1(x2) =

√
λ2
⊥ − 1

H0

x2 + 1

In the main text, it is shown that

sinα =
L0

2π

Λ1Λ′1
λΣ

=
L0

LC
where in our case LC = 4πH0λ⊥/(1− λ2

⊥)

6.2 Constant non-zero Gaussian curvature K

Figure S11: inflated state woth constant negative Gaussian curvature before gluing into
a cylinder take a helical shape (scale bar: 50mm)

We now solve Equation (S11) for constant Gaussian curvature. For positive Gaussian
curvature K > 0, we aim at the largest curvature by imposing Λ1(0) = 1 at the center
line of the strip (here noted x2 = 0), and Λ1(±H0/2) = λ⊥ on both edges. We find

Λ2
1 = 1−Kmλ

2
⊥x

2
2,
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where the maximum Gaussian curvature is

Km =
4

H2
0

1− λ2
⊥

λ2
⊥

= 4
1− λ−2

⊥
H2

0

For a negative constant Gaussian curvature, we rather impose Λ1(0) = λ⊥ and Λ1(±H0/2) =
1, leading to

Λ2
1 = λ2

⊥ +Kmλ
2
⊥x

2
2

providing the programming for the most negatively curved shells (Gaussian curvature
−Km) for such ribbons with height H0. In Figure S11 we show the ribbons before
sealing them into a cylindrical tube, but inflated. We see that they adopt a helical shapes
compatible with uniform negative Gaussian curvature.

6.3 Programming non-constant Gaussian curvature K

a b
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Figure S12: Bulges shapes combining positive and negative Gaussian cur-
vature, obtained from programming in Equation (S12). (a) The programmed
Gaussian curvature for different values of d involve positive and negative values. (b)
zigzag patterns, experimental pictures and predicted profiles (red doted lines) for dif-
ferent values of parameter d. (H0 = 348; 370; 378; 380; 382mm we have chosen L0 =
187; 349; 507; 663; 818.5mm such that the two principal curvature are always equal at the
central point x2 = 0.) (scale bar: 100mm)

To further test the capability of our approach, we program bulging shapes correspond-
ing to varying Gaussian curvature, combining positive and negative curvature. One possi-
bility is assigning a stretch function Λ2

1(x2) that includes positive and negative convexity,
see Equation (S11):

Λ2
1(x2) = λ2

⊥ + (1− λ2
⊥) exp

(
−1

2

[
x2

dH0

]2
)

(S12)

where d is a non-dimensional parameter adjusting the profile.
A series of zigzag channels were encoded for serveral values of d (Figure S12). As

expected, when d is increased, the bulges is less localized. The predicted outlines agree
well with experiments.
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6.4 Predicting the axisymmetric shape

For all these cases, the axisymmetric shape obeying the metric given by a function
Λ1(x2) is computed numerically with the following procedure.

Axisymmetric shapes are described in cylindrical coordinates as (r(x2), z(x2), φ). The
perimeter of a cut at altitude z is 2πr(x2) = 2πΛ1(x2)R0, where R0 = 2πL0 is the radius
of the initial cylinder, so that

r(x2) = Λ1(x2)
L0

2π
(S13)

Examining an element of a meridian cut with length ds leads to

dz2 + dr2 = ds2 = Λ2
2dx

2
2.

From these two equations we deduce that

dr

ds
= sinα = ±R0Λ′1

Λ2

= ±L0

2π

Λ1Λ′1
λΣ

(where α is the orientation of the local tangent to the meridian), so that Equation (6)
from the main text holds for any axisymmetric shape. We also obtain(

dz

ds

)2

= 1−
(
L0

2π

Λ1Λ′1
λΣ

)2

(S14)

which provides z(x2) by a simple integration, under the condition that L0 < 2πλΣ/(Λ1Λ′1).
Finally, Equation (S13) and (S14) define the smooth axisymmetric shape (r(x2), z(x2))

geometrically compatible with the imposed metric distortion, and are used in all the
comparison with experimental shapes.

6.5 Design of zigzag patterns with varying angle

Starting from a given distribution Λ1(x2), the zigzag channels are designed in practice
in the following way: From Equation (2) (in main text) we deduce that

sin(θ0) =

√√√√λ2
‖ − Λ2

1

λ2
‖ − λ2

⊥
=

√
1− Λ2

1

1− λ2
⊥

(S15)

and zigzag angle θ0(x2) as a function of x2.
The actual zigzag seam-line is obtained as

Z(x2) = U(x2)T (x2)

15



where T (x) is a symmetric triangle wave with period P = H0/N = (with N = 2 for a
cone, and N = 4 for other cases was chosen for practical reason, given the size of the
samples) with extremal values ±1. The amplitude U(x2) follows

U =
P

4 tan(θ0)

and is drawn in pink color in Figure S13. The zigzag line Z(x2) is then offset by steps
of d to create the zigzag channels. The distance d is chosen such that everywhere on the
pattern the channels are sufficiently elongated (here we have chosen d = 20mm). If the
seam lines are too far apart, an intermediate seam-line is inserted.

-101 090
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36

0
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-25 25
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Figure S13: Generation of zigzag pattern on the example of a conical shape.
The zigzag in (c) is obtained as the multiplication of a triangle signal (a) with a varying
amplitude (c). scale bar: 100mm
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