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Surface Effects on Elastic Structures

7.1. Introduction

Classical continuum elasticity is scale invariant: as long as proportions
are kept constant, the size of an object does not matter in regard to elastic
deformations. For example, buckling of a structure of a given shape would
occur for the same imposed strains, independently of its size. We would,
therefore, expect the same phenomena observable at the macroscopic scale
to occur at the micro-scale (and maybe even at the nano-scale so long as
continuum approximation holds).

However, the presence of a surface energy γ modifies this picture by
introducing a length scale to the problem. In particular, the coupling between
surface interactions and elasticity is characterized by a length scale that
compares the force per unit length exerted by the surface effect to the rigidity
of the solid: ℓec = γ/E, where E is Young’s modulus of the material. In this
situation, the size L of the system, therefore, matters, and a structure bigger
than ℓec is insensitive to surface effect, while a smaller structure might be
strongly deformed. In fact, we show that for slender structures, even when
L ≫ ℓec, large deflections may still occur because slenderness implies a weak
stiffness in bending.

In this chapter, we are interested in how two different surface effects can
deform elastic structures. We start with the interaction between capillary
surface tension and slender mechanics, and how a droplet can deform a thin
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sheet. We then focus on electrostatic surface effects and their use to actuate
electroactive polymer membranes.

7.2. Liquid surface energy

In this first part, we show how the surface tension of a liquid interface in
contact with an elastic solid may deform it. Recent years have seen a large
body of research effort in this field. Here we only give scaling arguments
and present the consequences of a surface tension force at the micro-scale.
Thorough reviews are available (see, e.g. Andreotti and Snoeijer in press; Bico
et al. 2018).

7.2.1. Can a liquid deform a solid?

Surface tension is the surface energy cost, γ, associated with the creation
of an interface between two materials (be they liquid or solid). γ is positive:
surface tension tends to minimize the area of an interface. These capillary
interactions are responsible for a large number of phenomena in liquids, such
as imbibition, the motion of insects at the surface of water, and the spherical
shape of small drops and bubbles (de Gennes et al. 2002).

Figure 7.1. Deformation of a solid by a liquid. For a color version of
this figure, see www.iste.co.uk/ionescu/mechatronics.zip

In this section, we are interested in how surface tension can deform a solid
that is not slender. Consider, for example, the effect of a droplet deposited on a
solid: it exerts a torque on the latter. Indeed, the air/liquid surface tension pulls
up the solid (γ13 in Figure 7.1), while the Laplace pressure pushes down (note
that Laplace pressure ensures the vertical equilibrium of forces in the drop,
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and the horizontal projection leads to the classical Young–Dupré’s relation)
so that the solid may deform (Lester 1961). However, taking a standard value
of γ ≈ 70 mN/m for liquid water, and Young’s modulus on the order of
70 GPa for the solid (typically glass), one finds that the fluid can deform the
solid on a length scale on the order of γ/E ≈ 1 pm. At such a small scale
(smaller than intermolecular distances), the use of continuum mechanics is
dubious, and such elasto-capillary effects are irrelevant. However, the recent
development of microfabrication methods, ultra soft gels, and observation
techniques have led to the study of the coupling between capillary forces and
elasticity. For example, the deformation near the contact line of a droplet
lying on a very deformable substrate (E ≈ 3 kPa) has been observed with
confocal microscopy. It has been shown that the substrate adopts a shape
that does not depend on its thickness nor on the droplet size, but only on the
liquid composition (Style et al. 2013). Another example is the rounding off
of extremely soft gels (shear modulus between 35 and 350Pa). These gels
are casted with sharp angles, but the surface tension of the solid softens the
corners so that they exhibit a curvature on the order of E/γ (see Mora et al.
2013). This experimental observation of the action of a solid’s surface tension
has led to many numerical and theoretical developments.

In conclusion, we have seen that a liquid can deform a solid in its bulk, but
only at a very small scale, and for very soft solids. However, we will show that
on slender structures, surface or capillary effects may produce macroscopic
deformations, even in materials with a high Young’s modulus.

7.2.2. Slender structures

A slender structure is a structure with at least one dimension that is small
when compared to the others. A plate, for example, has a very small thickness
h compared to its length L and width w. Due to their slenderness, these
structures can be considered with two modes of deformation. On the one hand,
the structures can undergo stretching (or equivalently compression), with an
elastic energy

Estretch ≃ EhLwϵ2

for an in-plane strain ϵ, where E is Young’s modulus of the plate (left scheme
in Figure 7.2).
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Figure 7.2. The two modes of deformation of a slender structure:
stretching (left) and bending (right)

On the other hand, the plate can be given a radius of curvature R. The
bending energy associated with this deformation is

Ebend ≃ B

R2
LW,

where B ≃ Eh3 is the bending stiffness of the plate (right scheme of
Figure 7.2). Stretching energy is, therefore, proportional to the thickness h,
whereas bending energy is proportional to h3. Consequently, the bending
energy of a thin structure (small thickness h) vanishes very quickly when the
thickness vanishes. What are the practical consequences of this very compliant
mode of deformation?

7.2.3. Wrapping a cylinder

A simple way to understand how surface forces may bend a slender
structure is to consider a solid cylinder of radius R, covered with a liquid of
surface tension γ, and a sheet of thickness h. We assume the liquid to perfectly
wet both solids. What are the conditions for the sheet to spontaneously wrap
the cylinder (Figure 7.3)? Wrapping occurs if surface tension is strong enough
to bend the sheet with a radius of curvature R. This is a pure bending problem,
and the energetic cost associated with this deformation is proportional to
Eh3LwR2 . However, covering the cylinder with the sheet reduces the interface
between the liquid and the air, and thus is energetically favorable. The
associated energetic gain is 2γLw. These two energies are in competition, and
wrapping will be possible when the energetic gain due the reduction of the
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air/liquid interface is higher than the energetic cost of the elastic deformation
of the sheet, i.e. when

E
h3Lw

R2
< 2γLw.

This condition can be expressed in terms of a cylinder critical size:

R > ℓB =

√
Eh3

γ
,

where ℓB is the capillary-bending length, the relevant length scale when
dealing with bending deformations of slender structures by capillary effects. It
compares the bending stiffness of the elastic structure to the surface tension of
the liquid. If a cylinder has a radius smaller than this length, surface tension
will not be able to sufficiently deform the sheet for wrapping to occur.

Figure 7.3. Can a thin sheet wrap around a wet cylinder?

Elasto-capillary deformation is not simply an interesting academic
problem, it also has practical consequences in the field of microfabrication.
Indeed, the main technique used to manufacture microelectromechanical
systems (MEMS), or micro-electronic elements, is photolithography. After an
insulation step, a photo-sensitive resin is put into a solvent solution. During
the drying process, capillary bridges may form inside these objects, which can
cause deformations, stictions, or even fractures. These irreversible events are
strong limiting factors in the elaboration of slender microstructures, such as
nanolines, microcantilevers, or microstamps (Hui et al. 2002; Namatsu et al.
1995; Tas et al. 1997).
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7.2.4. Capillary origamis

Figure 7.4. a) Cubic boxes obtained after the fusion of the welding
deposited on the hinge of the initial pattern (taken from Cho et al. 2010);

b) Capillary origami Py et al. (2007)

Manufacturing 3D structures at a micro-scale with classical microfabrication
techniques is a very complicated task, partly because of the limiting role
played by surface tension. This force can also be harnessed. The top row of
Figure 7.4(a) presents the examples of micrometer cubes obtained, thanks to
capillary interactions. A liquid metal droplet is deposited at the hinge of an
initially flat metallic sheet, and as it tends to minimize its interface with the
air, it folds the cube (see scheme 7.4(a) and Cho et al. 2010). We will focus on
the technologically simpler case where a macroscopic sheet is deformed by a
droplet (Figure 7.4(b)). What happens when a water droplet is deposited on a
thin polymer sheet? Does the drop spread, or does the sheet wrap the droplet?
If, for example, the droplet is deposited on a 50-µm-thin silicone elastomer
square sheet, we first observe that the corners of the sheet wrap the droplet.
As the liquid evaporates, the sheet bends more and more until its complete
closing (see Figure 7.4). Once the droplet has completely evaporated, the
sheet may return to its flat state, or remain curved, depending on the intensity
of Van der Waals interactions. How do the capillary forces act on the sheet?
On the one hand, liquid/air surface tension exerts a traction that pulls the sheet
up; on the other hand, Laplace pressure exerts a pressure that pushes the sheet
down (the drop being curved, the pressure inside the liquid is higher than
outside). The drop is, therefore, exerting a moment on the sheet (scheme in
Figure 7.4(b)). The capillary torque scales as γL2, while the typical torque
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to bend the sheet on its own size scales as B ≃ Eh3. Therefore, we expect
wrapping if the sheet exceeds the size limit:

Lcrit ≃

√
B

γ
≃ ℓB.

Experiments have been carried out with sheets of different thicknesses and
different shapes (triangles or squares). In each case, the critical length has been
determined. Lcrit is indeed found to be proportionnal to ℓB , with a prefactor
that depends on the geometry of the sheet: Lcrit ≈ 12ℓB for triangles and
Lcrit ≈ 7ℓB for squares (see Py et al. 2007).

Interestingly, this law holds up to nanometric scales as shown with
simulations on graphene sheets (see Patra et al. 2009). At a higher scale,
gravity starts to play a role, and the maximal size is fixed by the capillary
length. Finally, the initial shape of the sheet can be tuned to obtain different
3D shapes, as illustrated in Figure 7.5.

Figure 7.5. Different patterns lead to different 3D shapes. For a color version of
this figure, see www.iste.co.uk/ionescu/mechatronics.zip

In this first part, we studied how a liquid can deform a solid through
surface tension interactions. We focused on the interplay between the peculiar
mechanics of slender structure and surface tension. The slenderness of
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the structure is what allows the surface tension to produce remarkable
deformation, even though γ/E remains very small. As we explained earlier,
the addition of surface effects brings new length scales to problems that
would otherwise be scale invariant. More precisely, we have seen that the
relevant length scale when dealing with slender structure interacting with
capillary forces is the capillary bending length ℓB . This length captures the
slender elasticity by comparing the bending rigidity to the surface tension.
In the following, we examine the deformation of thin plates mediated via an
electrostatic surface energy.

7.3. Dielectric elastomers: a surface effect?

We now focus on the description of dielectric elastomers, with an
emphasis on electrostatic interactions seen as a surface effect, which play
an important role.

7.3.1. Introduction: electrostatic energy of a capacitor as a
surface energy

These last years have seen the rapid development of a novel class of robotics
made of a compliant material called “soft robotics”. Electroactive polymers
are, among the possible technologies to build such robots, a particularly
cost-effective and easy-to-manufacture technology. The large deformation
electroactive materials can achieve up to 500% in area strain (Huang et al.
2012), and their harmless contact make them suitable for a wide range of
potential applications: from bioinspired actuators (Carpi et al. 2005; Carpi
and Rossi 2007) to soft grippers (Araromi et al. 2015; Shintake et al. 2016), or
tunable lenses (Carpi et al. 2011; Maffli et al. 2015; Son et al. 2012), and even
energy harvesting systems (Foo et al. 2012; Kaltseis et al. 2011; McKay et al.
2011). Although their rediscovery is certainly recent, the principle of dielectric
actuation can be traced back to Röntgen (Keplinger et al. 2010) at the end of
the 19th Century. The basic idea is indeed fairly simple: a dielectric elastomer
is a soft capacitor, in which both electrodes and the insulating material can
deform under the action of Coulombian interactions (see Figure 7.6(a)).
Charges from the opposite faces of the membrane attract each other, leading
to a reduction of its thickness and, therefore, to in-plane extension. However,
a surface effect is also at play in this system. Indeed, the electrostatic energy
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Eels of a planar capacitor whose electrodes are separated by H and have a
surface S reads:

Eels = −1

2
ε
V 2

H
S [7.1]

where ε is the permittivity and V is the potential difference. For a fixed gap H ,
this energy is proportional to the area of the electrode and can, therefore, be
seen as a (negative) surface energy, which would tend to increase the surface S.

Figure 7.6. a) An electroactive polymer setup is made of two compliant electrodes
separated by a dielectric polymer. When a voltage is applied, the area of the electrodes
increases. b) The electrostatic interactions can be decomposed in two effects: an
electrostatic pressure, acting through the thickness of the membrane, and a negative
surface tension, acting along the membrane

To gain intuition on this surface term, we can evoke electrowetting.
Lipmann, during his PhD (Lippmann 1875), imposed a potential difference
V between a conductive drop and a metallic surface separated by a dielectric
layer (see Figure 7.7) with thickness H . The drop is observed to spread, and
we can interpret this as a result of the repulsion of charges with the same
sign at its surface. It is as if the electric field was modifying the drop surface
tension γ into: γ′ = γ − 1

2ε
V 2

H . More precisely, the electric field reduces the
apparent surface tension compared with the initial one, and therefore, it seems
that its effect can be represented as forces localized at the liquid interface.
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Figure 7.7. Electrowetting: under the application of a voltage, the drop spreads

In the case of an electroactive polymer (Figure 7.6), the material expanding
is a solid unlike in the electrowetting experiment, but similar line forces are
expected to take place at the boundary of the electrode. We wish to clarify the
consequences of such a negative surface tension (with an electrostatic origin)
in this elastic solid.

In this chapter, we intend to sketch the formal derivation of the equilibrium
equations of an electroactive polymer, with an emphasis on the case where the
electrodes are not entirely covering the membrane. In doing so, we will shed
light on the practical consequences of the tensile stress existing in the system,
and its physical origin, by drawing analogies with capillary surface tension.
The rationale developed in this first part will then be applied to an experimental
study of a buckling instability triggered by inhomogeneous actuation of the
system.

7.3.2. Mechanics of dielectric elastomers

Our approach derives the equations for the deformation of the polymer
under an electric field through a variational approach. We compute both the
elastic and electrostatic energies and minimize the total energy to obtain the
equations coupling electrostatics and elasticity. We will then give several
interpretations of these equations.

For simplicity, we will consider the planar case of a dielectric strip of
thickness H , width W , and length L at rest. In this reference state, the system
is parametrized with the curvilinear abscissa S and the coordinates X , Y , and
Z running, respectively, along the length, width, and thickness of the strip.
Upper case letters refer to the reference, undeformed state, and lower case
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letters refer to the deformed state. We assume small strains e ≪ 1 and a plane
strain configuration: ey = 0 (a plane stress configuration with σyy = 0 would
not qualitatively change the results). A more detailed derivation and discussion
is the subject of a future article by Bense et al.

Figure 7.8. Scheme of a partially activated dielectric elastomer. The grey part
represents the electrode. For a color version of this figure,

see www.iste.co.uk/ionescu/mechatronics.zip

In the deformed state, the curvilinear coordinate is denoted as s and θ is the
local slope (see Figure 7.8). We introduce the tangential strain averaged over
the thickness of the membrane et, which determines the stretching:

ds = (1 + et)dS

Similarly, we define the average normal strain en as:

h = (1 + en)H

And finally, the curvature:

κ =
dθ

ds
=

1

1 + et

dθ

dS
≈ dθ

dS

With the small strains and slender-body approximations, the latter indeed
means that the curvature is small: (Hκ)2 ≪ 1. We can, therefore, neglect any
nonlinear term involving products of both κ and et or en.

7.3.2.1. Elastic energy

In the case of plane strain assumed here (where there is no strain along
direction Y ), Hooke’s law leads to the in-plane stretching energy per unit
surface of the strip, depends on the tangential and normal strains (et, en)
and reads

Estretch =
1

2
Y
(
e2t +

2ν

1− ν
enet + e2n

)
,
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where we have introduced the effective stretching modulus

Y =
(1− ν)EH

(1− 2ν)(1 + ν)
[7.2]

This expression takes an unusual form because the variation of thickness
en appears here as an unknown. It is indeed customary in thin-plate
mechanics to assume that stresses on the faces of the plate vanish, thus
setting the value of en = −ν/(1 − ν)et (for this case of plane strain) and
Estretch = 1

2
EH
1−ν2 (en)

2. Following this, the in-plane force per unit distance
(or tension) T = EH

1−ν2 et would be proportional to stretching strain, as
expected. We find that electrostatic pressure on the faces is not negligible, and
they play an important role, modifying the relation between tension T and
deformation et.

The bending energy per unit surface takes, however, the usual form

Ebend =
1

2
Bθ′2,where the bending stiffness is B =

EH3

12(1− ν2)
. [7.3]

7.3.2.2. Electrostatic energy

The electrostatic energy of the system comprising the electroactive polymer
and the generator imposing a fixed voltage V writes Eels = −1

2CV 2. In order
to take the curvature of the capacitor into account, we consider the capacity of
a capacitor formed by two coaxial cylinders:

C =
2πεw

ln
(
1+κh/2
1−κh/2

) , [7.4]

where ε is the dielectric constant of the polymer. We expand [7.4] for small
curvatures κh ≪ 1 to find the expression for the electrostatic energy (per unit
width) in the slender-body approximation:

Eels = −
∫

ds
ε

2

V 2

h

[
1− 1

12
(hκ)2

]
. [7.5]

This energy is a generalization of equation [7.1] and is still proportional
to the surface (remember Eels above is written per unit width), making it
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analogous to a surface tension with a negative sign. Moreover, we notice a
term proportional to the curvature κ2, analogous to a elastic bending rigidity
in equation [7.3]. The associated electrostatic bending modulus is:

BV =
εV 2h

12
≃ εV 2H

12
, [7.6]

at leading order in strain. Finally, to simplify the following calculations, we
express the electrostatic energy in the reference coordinate and as a function
of en(S), et(S), and θ(S):

Eels = −ε

2

V 2

H

∫
dS

1 + et
1 + en

+

∫
dS

1

2
BV θ

′2. [7.7]

7.3.2.3. Variations

We assume here, for the sake of simplicity, that both end positions of the
strip are fixed. The details of the boundary conditions may not affect the main
results of our discussion. The end point position measured from the origin,
therefore, reads:

rend =

∫
dS (1 + et)t, [7.8]

where t is a unit vector tangent to the sheet (having, therefore, an angle θ
with the x axis). This constraint will be imposed with a Lagrange multiplier f,
which corresponds to an externally applied force. Finally, the total energy to
be minimized is

F =

∫
dS F(et, en, θ), [7.9]

with the surface density of energy given by the sum of all contributions

F(et, en, θ) =
1

2
Y
(
e2t +

2ν

1− ν
enet + e2n

)
+

1

2
(B +BV )θ

′2

− ε

2

V 2

H

1 + et
1 + en

− (1 + et)f · t, [7.10]
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where this expression must be used with BV = 0 and V = 0 in the portion of
the strip that is not covered by the electrode. We now minimize this functional
with respect to different parameters to obtain the set of equilibrium equations:

δF

δθ(S)
= −(B +BV )θ

′′ − (1 + et)f · n = 0, [7.11]

δF

δen(S)
= Y

(
en +

ν

1− ν
et

)
+

ε

2

V 2

H

1 + et
(1 + en)2

= 0, [7.12]

δF

δet(S)
= Y

(
et +

ν

1− ν
en

)
− ε

2

V 2

H
− f · t = 0. [7.13]

These equations are geometrically nonlinear and, as such, are valid for large
displacements. In the remainder of this section, we will consider small strains
and, therefore, replace 1 + en ≈ 1 and 1 + et ≈ 1.

Equations [7.11] and [7.13] can be interpreted as force balance equations
projected, respectively, along the normal and tangential directions. Defining
T = f ·t as the membrane tension (which may be compressive if negative) and
P as the electrostatic pressure, as the usual attractive pressure between two
parallel conducting plates.

P =
ϵ

2

V 2

H2
, [7.14]

Combining equations [7.11] and [7.13] to eliminate et, we can obtain the
following equation governing the tangential strain et:

T =
EH

1− ν2
et −

1

1− ν
HP . [7.15]

The total tension may be decomposed into the usual elastic tension of the
membrane (first term, following the usual Hooke’s law) and a compressive
(negative) tension induced by electrostatics (second term). Similarly, we can
compute the normal strain en, which reads:

EH

1− ν2
en +

1

1− ν
HP = − ν

1− ν
T . [7.16]

Note that equations [7.15] and [7.16] are equally valid in the regions without
electrode by taking P = 0.
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These two equations unveil the first effect of the electro-actuation: at
the boundary between the covered and non-covered membranes as the
electrostatic pressure P drops to zero, the strains et and en are discontinuous.
This discontinuity is also naturally observed in the stresses, if computed from
these strains using Hooke’s law, which we will discuss in section 7.3.2.4.

In equation [7.11], we also recognize the standard Elastica equation (Love
2011) for a strip submitted to a force f at its end:

(B +BV )θ
′′ + f · n = 0, [7.17]

with a difference in the added electrostatic bending rigidity BV (valid only in
the electroactive region).

The energy minimization that we performed, therefore, shows us that
the peculiar mode of actuation of this plate does not modify the global
buckling equation (apart from an added bending rigidity). Nonetheless, it
introduces a discontinuity in the stress and strain fields at the boundary
between the electrode and the membrane (although the total force transmitted
through the membrane f is continuous). In the following, we propose several
interpretations of these equations.

7.3.2.4. Electrostatic surface tension and pressure

Qualitatively, the electrostatic interactions can be thought of as giving rise
to two effects. On the one hand, the attraction of opposite sign charges between
the faces of the dielectric generates an electrostatic pressure that compresses
the membrane along its thickness. This effect can be made apparent by
manipulating the force balance along the z axis (equation [7.16]). Indeed, let
us assume, for example, that no external force is applied to the membrane, i.e.
T = 0, and then, using Hooke’s relation, equation [7.16] can be rewritten as:

σzz = −P = −1

2

εV 2

h2
.

This compressive stress of electrostatic origin is the classical Maxwell pressure
that acts on a rigid plate capacitor. Through the Poisson effect, this pressure
contributes to the extension of the membrane.

On the other hand, repulsion of the same sign charges on each electrode
creates a tensile stress. Similarly, equation [7.15], equilibrium of longitudinal
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forces, can be rewritten in the absence of externally applied membrane tension
T = 0,

σxx = P =
1

2

εV 2

h2
.

An electrostatic positive (tensile) stress, of equal magnitude as the electrostatic
pressure, acts along the electrode and helps its expansion. As a result, the
system undergoes a compressive stress across its thickness and a tensile
stress along its electrode (see Figure 7.6), leading to the strain derived
in equations [7.15] and [7.16]. Interestingly, both effects have the same
magnitude.

We may now comment on the discontinuities in the elastic stresses at
the electrode boundary for a strip submitted to a total membrane force T .
The discontinuity in σzz simply results from the fact that an electrostatic
pressure σzz = P is applied under the electrode, whereas σzz = 0 outside,
where the electrostatic pressure vanishes. The situation is more subtle for
the in-plane stresses σxx. Applying [7.15] inside and outside the electrode
and using Hooke’s law, we can deduce the value of the elastic stresses jump
∆σxx = P = ϵ

2
V 2

H2 . This jump results from a localized force at the boundary
of the electrode ϵ

2
V 2

H , consistently with the negative surface tension deduced
from [7.1].

We conclude that elastic stress in the material results from (i) an
electrostatic pressure on its faces and (ii) a surface tension force acting
on the boundaries of the electrode. We propose different interpretations of
these stress distributions in the next two sections.

7.3.2.5. Doubled electrostatic pressure

A very common approach to describe electroactive polymers was
introduced by Ronald Pelrine in his seminal work (Pelrine et al. 1998).
To better understand, let us consider a strip subjected to a simple mechanical
pressure σzz = −P0 on one specific region. In that case, Hooke’s relations
lead to:

T = Hw

(
1

1− ν2
Eet −

ν

1− ν
P
)

[7.18]

If we now compare equation [7.15] (electrostatic actuation) and equation [7.18]
(mechanical actuation), we note that both equations are equivalent (i.e.
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electrostatic and mechanical actuations produce the same strain) if P0 = P/ν.
In the common case where the dielectric polymer is an elastomer, we have
ν = 0.5. For an electroactive elastomer, the state of strain under actuation can,
therefore, be derived by considering that a doubled electrostatic pressure acts
on the system, without any negative surface tension effect. Our variational
approach agrees that this point of view is still valid in the case where the
electrodes do not entirely cover the membrane. This approach is simpler when
one is interested in the strain field in the membrane. However, the state of
stress and the added electrostatic bending rigidity are missed.

7.3.2.6. Equivalent growth

Equations [7.15] and [7.16] can be rewritten as:

T =
EH

1− ν2
(et − e0t ) [7.19]

EH

1− ν2
(en − e0n) = − ν

1− ν
T, [7.20]

if we define

e0t = (1 + ν)
P
E
; e0n = −(1 + ν)

P
E
. [7.21]

Written in this way, these equations are exactly the ones describing an elastic
strip whose reference state differs by a strain (e0t , e

0
n) from the initial stress-free

reference sate. By reference state, we mean that the state was obtained without
external mechanical loading T = 0. This rewriting, therefore, provides another
interpretation of the electrostatic loading: applying a voltage is equivalent to
defining a new stress-free reference state for the membrane. This situation is
similar to the cases of inelastic strain, such as those produced by growth or
plastic deformation, which effectively redefines the reference state. Hence,
the electrostatic loading can be seen as a modification of the rest length
of the strip, together with providing a new bending rigidity B + BV . This
interpretation differs from other common approaches such as those described
earlier. It presents the advantage of completely capturing the electrostatic
effects and provides a useful framework when dealing with non-homogeneous
actuation.
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7.3.2.7. Conclusion and order of magnitude

In this section, we demonstrated how the electrostatic loading can be
decomposed in two effects, first, a compressive pressure

P =
1

2

εV 2

H2

on the faces of the electrode, and second, a (negative) surface tension

γ = −1

2

εV 2

H
. [7.22]

on the electrode. Both effects tend to expand the membrane, with the same
order of magnitude (in fact, for ν = 1/2, both effects produce the exact same
strain).

Referring to the introduction of this chapter, we may estimate the effect
of, say, the surface tension term by computing the electrostatic equivalent to
the bulk elasto-capillary length γ/E, in which γ designates the electrostatic
surface tension defined in [7.22], γ = ε

E
V 2

H . In typical experiments, we find
γ/E = HP/E ≈ 10−6 m. As for the capillary case, this length scale is too
small to play an important role in the problem. In fact, P/E can be interpreted
as the typical strains in the material, which remain modest and do not induce
large shape change.

However, we get into the detailed study of a specific example that
mechanical instabilities can be harnessed in an electro-actuated thin membrane
to obtain interesting shape changes.

7.3.3. Buckling experiments

We experimentally investigate how a non-uniform spatial distribution
of voltage can trigger out-of-plane buckling patterns in electro-activated
polymers. This work is inspired by non-uniform growth of plant leaves or
material swelling that leads to complex 3D shapes (Dervaux and Ben Amar
2008; Klein et al. 2007; Kim et al. 2012; Wu et al. 2013).

We focus on a model axisymmetric configuration where a circular
membrane floats freely on a bath of water. A compliant circular electrode
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is deposited in its center, surrounded by a passive material (see Figure 7.9).
When submitted to a voltage, the area of this region tends to increase up to a
point where a buckling instability occurs (see Figure 7.9 (bottom)). Actuation
here is non-homogeneous since one region is subjected to the voltage, while
the rest of the membrane is not. We use linear elasticity and weak nonlinear
equations of thin plates within the framework developed earlier to investigate
the buckled morphologies.

Figure 7.9. Sketch and picture of the setup. A membrane of PVS floats freely on a
bath of soapy water. A circular electrode (black circle) of radius a is connected to
a high-voltage amplifier, and water is connected to the ground. When a threshold
voltage has been reached, a buckling instability occurs, as can be seen from the
deflected laser line on the picture. For a color version of this figure, see www.iste.co.uk/
ionescu/mechatronics.zip

7.3.3.1. Description of the experiment

Dielectric membranes

We use dielectric membranes made of polyvinil siloxane elastomers
of Young’s modulus E = 250 ± 15 kPa and dielectric permittivity
εr = 2.5 ± 0.6. The polymer is spin-coated before its curing is over to
obtain a circular membrane, with radius b and thickness H ranging from
100 to 300 µm. The compliant electrode consists of carbon black powder
manually brushed through a circular stencil of radius a on the surface of the
cured polymer. We refer to the part covered with the electrode as the active
part, whereas the uncovered membrane is designated as the passive part.
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This powder strongly adheres to the polymer and thus provides an electrical
conductivity even when the membrane is strained at 40% (the strains we
achieve experimentally are on the order of 10%).

Experimental setup

Once prepared, the membrane is gently deposited at the surface of soapy
water, where it floats freely. Surfactants allow us to impose a controlled value
of the surface tension γ ≈ 30mN.m−1 and enhance the electric conductivity
of water. The voltage is imposed through a thin metallic wire (of radius
10 µm) in light contact with the circular electrode. The wire is connected to a
high-voltage amplifier, driven by a signal generator. Water is connected to the
ground and plays the role of a second compliant electrode. Voltages applied to
the system typically range from 200 V to 5 kV. Out-of-plane deformations are
measured with a laser sheet with a grazing incidence projected on the active
part of the membrane. The deflection of the laser is recorded using a camera
above the set-up and is directly proportional to the vertical displacement
of the membrane. The voltage is increased by 100V every 30 s so that the
experiment can be considered as quasistatic, and any viscoelastic effect of the
polymer can be neglected.

7.3.3.2. Membrane stresses below the buckling threshold

What is the state of stress in the actuated membrane prior to buckling?
We start with accounting for the effect of water surface tension. It induces a
tensile strain on the order of γ/EH ≈ 10−2 for a 200-µm-thick membrane
with free edges. We have previously shown how the electrostatic actuation
could be modeled by an equivalent growth. Adapting equation [7.21] to this
axisymmetric situation, the electrostatic actuation imposes a new rest length to
the electrode, with an extensional strain

e0 =
1

2

ε

E

(
V

H

)2

. [7.23]

If we now express the strain imposed by the water surface tension, we find
an equivalent voltage of 2γH/ε = 700V . This contribution is not negligible.
However, as we are here interested in the regime below buckling, mechanics
remain linear. Surface tension effects and electro-actuation are simply additive,
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and therefore, we consider the pre-strained state as the reference state. Water
surface tension will be taken into account when we focus on buckling and
post-buckling.

If the problem is axisymmetric, the mechanical equilibrium reads:

∂rσr
∂r

− σθ = 0, [7.24]

where (r, θ) are the cylindrical coordinates, with origin the center of the
membrane. σr and σθ are the radial and azimuthal stresses. In our equivalent
growth approach, Hooke’s relations can be written as:

σr = E∗ ((er − e0) + ν(eθ − e0)) [7.25]

σθ = E∗ ((eθ − e0) + ν(er − e0)) , [7.26]

with E∗ = E/(1 − ν2), and e0 = 0 in the passive region. Finally, noting that
radial and azimuthal strains are related to the radial displacement u(r) through
er = du/dr and eθ = r/r, equation [7.24] can be rewritten as:

r2u′′ + ru′ − u = 0, [7.27]

where .′ means the derivation with respect to r. The symmetry of the problem
imposes u(0) = 0 and σr(b) = 0, while the equilibrium conditions imply the
continuity of σr and u at the interface between the active and passive regions.
With these conditions, equation [7.27] can be solved analytically to obtain the
following expressions for the stress:

σA
r = σA

θ =
−P
2

(
1− a2

b2

)
< 0 [7.28]

σP
θ =

P
2

a2

b2

(
1 +

b2

r2

)
> 0, [7.29]

with P = 1
2ε
(
V
H

)2. In the active region, both radial and azimuthal stresses
are compressive, whereas in the passive region, only radial stresses are
compressive and the azimuthal stresses are tensile. Both stresses decaying
away from the active region (note also the strong discontinuity in orthoradial
stress at r = a).
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7.3.3.3. Out-of-plane buckling

As the voltage is increased, the active region expands in conflict with the
passive region, and we have shown that radial compressive stresses build up
along the whole membrane. When this stress reaches a high enough value, the
membrane undergoes axisymmetric buckling. In contrast to Euler buckling,
the out-of-plane deformation is strongly localized in the active region. We also
note that the global mode of the instability depends on the size of the active
zone (see Figures 7.10(a) and 7.10(b)). This mode, however, does not depend
on the magnitude of the actuation. The superposition of the deflected laser line
at different voltages in Figure 7.10 clearly shows that increasing the voltage
beyond the buckling threshold only increases the amplitude of the deflection.

Figure 7.10. a) Different buckling modes at V = 5 kV and H = 210µm for different
radii of the active zone (from left to right: a = 0.5 cm, a = 1 cm, and a = 3 cm.
The upper row is a picture of the membrane taken from above, and the lower picture
highlights the profile of the membrane. The scale bar is the elastogravity length scale
(ℓeg ≈ 1.4 cm). b) Superposition of laser profiles obtained for increasing applied voltage
(from 0 to 5 kV , H = 210µm, a = 1.5 cm). The buckling mode does not change,
only its amplitude increases. For a color version of this figure, see www.iste.co.uk/
ionescu/mechatronics.zip

The water foundation underneath the membrane introduces a new length
scale that comes from the competition between gravity and bending stiffness
of the plate. Balancing both effects leads to an elastrogravity length scale

(Piñeirua et al. 2013; Pocivavsek et al. 2008): ℓeg = 2π
(

EH3

12(1−ν2)ρg

)1/4
,

where ρ is the volumetric mass of the water, and g is the acceleration of
gravity. For a typical membrane of H = 200µm, we obtain ℓeg ≈ 1.4 cm.
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In Figure 7.10(a), we use ℓeg as a scale bar. When a ≫ ℓeg, we observe
that the buckling is localized near the edges of the electrode, and the width
of the corresponding annulus is comparable with this length scale (see
Figure 7.10(b) (middle and right)). Conversely, when a ≤ ℓeg, the whole
active region is deformed (see Figure 7.10(a), left). We assess the onset
of the buckling threshold and its evolution by monitoring the profile as a
function of the applied voltage (Figure 7.10). We have seen that electrostatic
loading produces an actuation strain e0 in [7.21], which we compare with
the critical compressive strain for the buckling of a 1D strip lying on water
ec1D = 2π2

3 (h/ℓeg)2. Results are presented in Figure 7.11. We observe a clear
increase in the amplitude once a certain threshold voltage has been reached.
This evolution is, however, not as sharp as in the case of a classical pitchfork
bifurcation. The smoothness of the experimental transition is probably a
consequence of imperfections. Among them, we can mention the slight
deformation caused by the contact with the wire and the possible migration of
charges outside the active region.

To describe the buckling and the post-buckling behavior, we use
axisymmetric weakly nonlinear plate equations. We assume that the plate
keeps a uniform thickness (strains remain low in our experiments). We use the
Föppl–Von Kármán framework. We are, therefore, left with the resolution of a
system of two differential equations: the in-plane equilibrium and the torque
equilibrium. We do not take into account the added electrostatic bending
rigidity BV that we evidenced previously. Indeed, in this particular case,
the total bending rigidity is only modified by 10% for the highest voltage
accessible in our experiments. In the axisymmetric regime, the equations can
be written as:

r2u′′ + ru′ − u+
1− ν

2
rw′2 + r2w′w′′ = 0. [7.30]

B∆2w = Nrw
′′ +Nθ

w′

r
+ q [7.31]

with Nr = Hσr and Nθ = Hσθ and boundary conditions w′(0) = w′′(0)
= 0, Nr(b) = γ, w′′(0) = 0’. Experiments and numerics are in fairly good
agreement, showing the relevance of our modeling to capture this buckling
instability.
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Figure 7.11. Maximal amplitude A of the deflection normalized by ℓeg as a function
of eo/e1D, where eo is the expansion strain triggered in the active zone by
electrostatic loading, and e1D is the typical compressive strain leading to buckling of a
1D strip floating on water. Experimental data (circles) are compared to the numerical
integration of equations [7.30] and [7.31] (continuous line). No fitting parameter. Inset:
superposition of experimental (red) and numerical (profiles) at the point indicated by
the arrow. a) a = 6mm. b) a = 30mm. For a color version of this figure, see
www.iste.co.uk/ionescu/mechatronics.zip
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7.3.3.4. Conclusion on dielectric elastomers

We introduced a framework for dealing with electrostatic surface effect.
In particular, we drew an analogy with biological growth. Building on this
analogy, we have shown how a non-uniform voltage distribution can trigger
buckling instability in a free-floating electroactive elastomer sheet. We have
seen that the buckling mode depends on the size of the electrode and is set by
an interplay between hydrostatics and the bending stiffness of the membrane.
We also demonstrated how the framework developed in the first part, coupled
with classical weakly nonlinear plate equations, allows us to capture well the
behavior of the system. This tool can then be used to study the influence
of the size of the electrode on the buckling threshold of the system (see Bense
et al. 2017).

This study represents a simple demonstration of how inhomogeneous
growth can trigger 3D shapes in electroactive polymers. Building on this idea,
more complicated electrode geometries have been considered, which lead to
different buckling modes (Hajiesmaili and Clarke 2019; Li et al. 2017). In
parallel, numerical tools are developed to study these types of problems (see
Langham et al. (2018)).

7.4. Conclusion

In this chapter, we discussed the effects of two different interfacial
energies: one of capillary nature, and the other of electrostatic nature. On the
one hand, capillary surface tension stems from the energetic cost of creating
an interface (due to molecular interaction at the interface). On the other hand,
an “electrostatic surface tension” can be associated with electrostatic repulsion
along the surface: charges on the edge of the electrode are pushed further
away by their neighbors. This analogy also helps us understand that the effects
of these surface forces are contradictory: capillary surface tension tends to
limit the size of the interface, while electrostatic effects favor the expansion of
the electrode.

The existence of a surface energy γ brings a new length scale in elasticity
ℓec = γ/E. In particular, we introduced both the elasto-capillary (with γ
the liquid–vapor surface energy) and elasto-electro (with γ = 1

2εV
2/H)

lengths that demonstrate how small the deformation produced by these surface
effects are in general, even for relatively soft elastomers (a few hundreds
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of kPa. Indeed, γ/E typically ranges from 10−7 m to 10−5 m. It is clear that
elastomer structures smaller or comparable to this length are prone to large
deformations, either by capillary or by electrostatic forces. For structures
made of stiff materials, we do not expect capillary nor electrostatic surface
energies to generate large strains, even at the micro-scale, because γ/E is on
the order of a picometer, smaller than the inter-atomic distance.

Nevertheless, we have shown that, in slender structures, the effect of small
deformations may be amplified greatly. In such problems, a bending elasto-
capillary length ℓB =

√
B/γ, where B is the bending stiffness, is more

relevant. When ℓb becomes on the order of the size of the system, surface
forces are expected to generate strong bending: we have shown how a droplet
may fold a thin plate and form 3D origamis through capillary forces tending to
reduce the droplet surface. By contrast, electrostatic surface tension generates
an expansion of the electrode. We presented a case of inhomogeneous actuation
that triggers a buckling instability in a macroscopic thin plate. In both the
capillary (ℓB ∼ h3/2) and the electrostatic cases (ℓB ∼ h2), the typical radius
of curvature induced by surface forces lB vanishes faster than the thickness h
when a structure is scaled down: eventually, this radius of curvature becomes
of the order of the structure size, leading to significant bending. We conclude
that both types of surface effects become all the more important when micro-
or nanostructures are considered. Such effects could be used to manipulate or
efficiently actuate microstructures.
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