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Abstract

The recent discovery of electroactive polymers has shown great promises in the field of soft robotics and was
logically followed by experimental, numerical, and theoretical developments. Most of these studies were
concerned with systems entirely covered by electrodes. However, there is a growing interest for partially active
polymers, in which the electrode covers only one part of the membrane. Indeed, such actuation can trigger
buckling instabilities and so represents a route toward the control of three-dimensional shapes. Here, we study
theoretically the behavior of such partially active electroactive polymer. We address two problems: (1) the
electrostatic elastica including geometric nonlinearities and partially electroactive strip using a variational
approach. We propose a new interpretation of the equations of deformation, by drawing analogies with bio-
logical growth, in which the effect of the electric voltage is seen as a change in the reference stress-free state.
(2) We explain the nature of the distribution of electrostatic forces on this simple system, which is not trivial. In
particular, we find that edge effects are playing a major role in this problem.

Keywords: electromembrane, buckling, electroactive polymers

Introduction

Soft robotics is a new rapidly developing scientific field.
It aims at designing compliant robots able to move in

topographically complex environments or able to manipulate
fragile objects.1–3 Potential applications range from artificial
heart4 to bioinspired locomotion5,6 or haptic interfaces for
virtual reality where the user feels a feedback force from the
interface that he manipulates.7

Electroactive polymers (EAPs) offer a promising candidate
for building such soft robots. Their large reversible deforma-
tions (tens of percent strains) under an applied electric field
triggered a huge interest in academic laboratories over the
world.8 Several types of electroresponsive polymers have been
described in the literature, such as anionic, ferroelectrics,
liquid-crystalline, and electrorheological.9–11 In this article,
we are specifically interested in EAPs, which are the most
simple and inexpensive in terms of manufacturing.12 In their
simplest form, EAPs are indeed composed of a thin membrane
of elastomer covered by two conductive compliant layers.
When an electric field is applied, the electrodes of this soft

capacitor are attracted to each other, resulting into in-plane
isotropic strain. A wide range of applications of EAPs have
been proposed, they include: robots actuation,13–16 rotational
motors,17 flapping wings,18,19 valves,20,21 actuators for bio-
logical cells,22 Braille displays,7,23,24 tunable lenses,25,26 arti-
ficial chromatophores,27,28 tunable diffracting surfaces,29 or
phase shifters for microwave communications.30 As in the
case of piezo-electric ceramics, this electromechanical cou-
pling can potentially be reversed in EAPs: an electric power
may be harvested from mechanical strain,31–34 or conversely,
the device may work as a mechanical sensor.35,36

In this article, we investigate theoretically the behavior of an
EAP in the case where its surfaces are not entirely covered by
conductive electrodes. This situation is interesting as it leads
to buckling instabilities and is a way to obtain out-of-plane
shapes37–39 through the nonlinear response of the structure. The
aim of this article was to clarify three questions that arise in this
problem. Namely, the literature usually considers membranes
completely covered by conductive electrode, and one usually
models electrostatic effects by an electrostatic pressure, which
is twice the actual value of the pressure,8 in the case of
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incompressible elastomers (�¼ 1=2). In this article, we will
refer to this description as ‘‘Pelrine’s approach.’’ The argument
is based on the superposition of an isotropic stress (which has no
effect on an incompressible material) to the actual electrostatic
pressure on the faces.40 The questions we would like to address
are: (1) Does this argument apply to cases where electrostatics is
only active on a portion of the plate? (2) Does the argument
remain valid for nonplanar buckled states? (3) Can we deter-
mine the real distribution of electrostatic forces and relate it to
the electromechanical equilibrium of a strip? Indeed, standard
approaches40,41 provide a calculation of the mechanical stresses
in the material resulting from the electrostatic loading, and even
to adequately predict the onset of wrinkling and its possible
evolution in pull-in instability42 but do not provide the real
distribution of electrostatic forces from which they originate.

In this article, we use a variational approach to clarify the
nature of electrostatic forces acting on an electroactive mem-
brane. Our aim is to make an explicit link between variational
and stress-based approaches of the problem (i.e., a direct de-
scription of electrostatic forces on the elastic system), in a
detailed way. Particular attention is paid to the edge of the
electrode, from the mechanical and the electrostatic point of
view. We show that the usually used Pelrine’s approach of
electromechanical coupling extends to these nonuniform acti-
vations in the planar case, but that it misses a modification of
the bending stiffness due to electrostatic loading. We propose
here an alternative analogy, where the EAP is seen as under-
going a change in its reference stress-free state when submitted
to electric voltage. Plasticity, biological growth, or chemical
swelling are other cases where the reference state of the ma-
terial evolves, and we suggest that electroactive materials may
be seen as analogous to these situations.

The article is organized as follows: In the Variational
Approach section, the nonlinear out-of-plane equilibrium
equations for a partially electroactive plate are derived from a
variational approach, in the asymptotic limit of thin mem-
branes. These equations involve strain discontinuities at the
boundary of the electrodes, and we show how they lead to
electrostatically induced buckling. We discuss an analogous
description in terms of a modification of the rest state. In the
Stress-Based Approach section, we turn to stress-based ap-
proaches to analyze the previous results in term of force
distribution. We discuss the ‘‘double electrostatic pressure’’
description used in a large body of literature on electroactive
materials and comment on the Maxwell stresses and their
interpretation. We finally derive the distribution of electro-
static forces directly applied by charges on the elastic plate
and show the importance of electrostatic edge effects and
finally conclude in the Concluding Remarks section.

Variational Approach

We start by defining the model situation that we will use
throughout the article to discuss electroactive coupling. Al-
though we consider here the specific plane strain geometry of
a strip, and later use specific boundary conditions for the sake
of simplicity, the discussion presented is more general.

Parametrization

We consider the problem of a thin strip of a dielectric
elastic material whose thickness in the reference state is noted
H and whose width is W. A portion of the strip has conductive

faces (represented in gray in Fig. 1), which will be submitted
to a difference in electric potential U (Fig. 1). We neglect any
stiffening due to the presence of the conductive material. We
start by a general derivation of the equations and illustrate later
(in the Variations section) the buckling for a case with specific
boundary conditions (the clamped–clamped case, chosen for
simplicity). We restrict ourselves to the situation where the
strip is not strained along the transverse Y direction (plane
strain configuration). In the reference state, the coordinates
X and Z, respectively, run along and across the membrane
(Fig. 1a). We will assume small strain but follow a geometri-
cally fully nonlinear approach, equivalent to Euler’s elastica
theory.43 This beam geometry, although idealized in compar-
ison with real situations, illustrates the main points of the
problem and reveals a nontrivial force distribution.

For the deformed configuration, we adopt a curvilinear de-
scription for the centerline position r0(s), where s is the cur-
vilinear coordinate running along the centerline (Fig. 1b). The
local orientation is defined by the tangential and normal unit
vectors

t¼ dr0

ds
¼ ( cos h, sin h), n¼ dt

dh
¼ (� sin h, cos h): (1)

The position in the transverse direction is denoted by the
coordinate n, so that any point inside the membrane is de-
scribed by

r¼ r0(s)þ nn(s) 0
dr

ds
¼ (1� nj)t,

dr

dn
¼n, (2)

a

b

FIG. 1. Schematics of the elastic strip partially covered
with compliant electrodes. (a) Coordinates of the reference
state. (b) Coordinates in the current state.
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where we introduce the curvature j¼ dh=ds. From these
transformations, one derives the size of an area element as

d2r¼ dsdn(1� nj): (3)

In the reference state, the curvilinear coordinate is noted S;
it is assumed flat. In the slender limit, it is useful to introduce
the tangential strain averaged over the cross section of the
membrane et, which determines the stretching

ds¼ (1þ et)dS, (4)

where dS¼ dX is the curvilinear coordinate in the reference
state. Similarly, we define the averaged normal strain en(S),
defined by

h¼ (1þ en)H, (5)

where h is the thickness of the strip in the deformed config-
uration.

It will turn out convenient to treat the local angle also as a
function of the reference coordinate, h(S), so that the curva-
ture becomes

j � dh
ds
¼ 1

1þ et

dh
dS

^
dh
dS
: (6)

The approximation in the final step is due to the slender
body assumption, that is, on the small curvature, (Hj)2 � 1,
so that we can neglect terms involving products of both j and
et or en.43

Elasticity

In linear elasticity, the total elastic energy is obtained by
integrating over the reference volume as

Fe¼
E

(1þ �)

Z
d3X

1

2
eijeijþ

�

2(1� 2�)
(ekk)2

� �
, (7)

where eij is the linear strain tensor, defined by:

eij¼
1

2

qui

qXj

þ quj

qXi

� �
, (8)

and E the Young modulus of the polymer and � the Poisson’s
ratio.

Minimization of these equations with respect to the dis-
placement field gives the equations of linear elasticity.

We now follow the standard slender-body reduction of
these equations (Euler–Bernoulli assumption), as described,
for example, in Audoly and Pomeau,43 which gives:

eXX ¼ et� jZ, eZZ ¼ enþ
�

1� � jZ, eXZ ¼ 0, (9)

where et, en and j as defined above. We recall that we have
assumed a plane strain configuration, so that eYY¼ eYZ ¼ eXY¼ 0.
In the usual development of the membrane equations, one
makes use of the fact that the normal stress sZZ ¼ 0, which is
used, for example, to eliminate the normal strain en. In the
present context, however, this is not allowed since the

charged conductors will exert a normal force on the mem-
brane. Hence, we need to retain en as a variable. Now, we
integrate the elastic energy over the thickness of the layer,
inserting Equation (9) in Equation (7), which yields the
elastic energy per unit membrane area,

E

(1þ �)

Z H=2

�H=2

dZ
1

2
e2

XX þ e2
ZZ

� �
þ �

2(1� 2�)
eXX þ eZZð Þ2

� �

¼ 1

2
Y e2

t þ
2�

1� � enet þ e2
n

� �
þ 1

2
Bh¢2,

where the prime is used for the derivative with respect to
S. We have introduced the effective stretching modulusY and
the bending modulus B, defined as:

Y ¼ (1� �)EH

(1� 2�)(1þ �)
and B¼ EH3

12(1� �2)
: (10)

Finally, the elastic energy per unit width, which is a
functional of the fields et(S), en(S) and h(S), reads:

Fe¼
Z

dS
1

2
Y e2

t þ
2�

1� � enetþ e2
n

� �
þ 1

2
Bh¢2

� �
: (11)

The first term represents the in-plane energy due to tan-
gential and normal strain, whereas the second term represents
the plate bending energy.

Electrostatics

The two conductive electrodes form a capacitor main-
tained at constant potential difference U. Denoting by C the
capacitance, the electrostatic energy reads 1

2
CU2. Elastic

deformations of the membrane lead to a change in the ca-
pacitance by dC. The source that maintains the electrical
potential difference U constant brings a charge UdC to the
capacitor, and as such, the capacitor receives a work U2dC
performed by the source. By consequence, at constant po-
tential, the total electrostatic free energy to be minimized44 is
FU ¼ � 1

2
CU2. To explicitly perform the minimization with

respect to the elastic degrees of freedom, it is convenient to
express the energy in terms of the electrostatic potential /.
Namely, we can then write as a volume integral over the
current state

FU ¼ �
1

2

Z
d3xej=/j2, (12)

where e is the permittivity of the membrane. We anticipate
that =/¼ 0 everywhere outside the membrane, which implies
that we neglect the energetic contribution due to fringe effects
near the edge of the plate. Hence, the integral in Equation (12)
runs over the volume of the membrane, in the current state.
Minimization of the electrostatic energy with respect to the
potential / yields the expected field equation =2/¼ 0, to be
solved inside the deformed membrane.

Within the same slender body asymptotics [(hj)2 � 1] as
used for the strain field, the gradient of the potential is
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approximately constant inside the thin gap and points normal
to the surface. We therefore seek a solution of the form

/¼ U

h
nþ h

2

� �
þ (hj)/1(n, s), (13)

where n is the local coordinate normal to the surface and we
recall that h¼ (1þ en)H, and /1(n, s) a function that remains
to be determined. Note the similarity with the expansion (9)
for the strain field, which also consists of a solution corre-
sponding to a flat membrane complemented with a curvature
correction.

To obtain explicit expressions, we now need to express the
gradient =/ and the Laplacian =2/ in terms of the curvilinear
coordinates s and n. This can be achieved formally through
the transformation defined by Equation (2), which gives

=/¼ q/
qn

nþ 1

1� nj
q/
qs

t, (14)

=2/^
q2/
qn2
� j

q/
qn

, (15)

where for the Laplacian we retained only the leading order
term in j; this term originates from t � qn=qs¼ � j. We now
insert the expansion (13) in =2/¼ 0, which gives to leading
order:

=2/^� j
U

h
þ (hj)

q2/1

qn2
¼ 0: (16)

This equation governing the curvature correction /1 can be
integrated twice to yield

/¼U
nþ h

2

h
þ 1

2

(nþ h
2

)(n� h
2

)

h2
hjð Þ

� �
, (17)

where we imposed boundary conditions /¼U and 0 at
n¼ h=2 and n¼ � h=2, respectively. Now that we have
solved for the field inside the membrane, including the
correction due to curvature, we can evaluate the volumetric
energy density

� e
2
j=/j2¼ � e

2

U2

h2
1þ nj½ �2: (18)

Once again, we integrate this across the membrane, but we
need to bear in mind that the area element also contains a
curvature correction, d2r¼ dsdn(1� nj), as derived in Equa-
tion (3). With this, we derive the electrostatic energy density
per unit surface of the membrane:

�
Z h=2

� h=2

dn(1� nj)
e
2
j=/j2¼ � e

2

U2

h
1� 1

12
hjð Þ2

� �
:

(19)

It is worth noting that the same expression can be recov-
ered from the capacity of the capacitor formed by two coaxial
cylinders, which reads:

C¼ 2pew

ln
1þ jh=2
1� jh=2

� 	 : (20)

Indeed, the electrostatic energy per unit perimeter
� 1

2
CU2=(2p=j) when expanded for small curvature jh� 1

leads to Equation (19).
We thus find the ‘‘slender’’ expression for the electrostatic

energy (per unit width of the plate):

FU ¼ �
Z

ds
e
2

U2

h
1� 1

12
hjð Þ2

� �
: (21)

The first term represents the energy stored in a plane ca-
pacitor with conductors separated by a distance h. It is pro-
portional to the surface—we recall that FU is written per unit
membrane width—and is therefore analogous to a surface
tension45 but with a negative sign, similar to what is observed
in electrowetting.46

Moreover, in analogy to the elastic energy [Eq. (11)], the
electrostatic energy represents a bending rigidity as can be
seen from the term~j2. The associated electrostatic bending
modulus is

BU ¼
eU2h

12
^

eU2H

12
, (22)

where in the remainder we will keep the leading order in strain
(h^H). This electrostatic stiffening may also be computed
using the Maxwell stress tensor (Appendix A1).

Electrostatics is naturally expressed in Eulerian coordi-
nates. When combined with the elastic formulation, however,
it is important to bring this to Lagrangian coordinates. Using
the transformations discussed above, this gives

FU ¼ �
e
2

U2

H

Z
dS

1þ et

1þ en

þ
Z

dS
1

2
BUh¢2: (23)

Like the elastic energy [Eq. (11)], FU is now a functional
of et(S), en(S), and h¢(S). Note that for the bending term we
neglect higher order corrections in et, en, and jH.

Variations

For the sake of simplicity, we choose here specific boundary
conditions. We assume that the position of both ends of the
strip is fixed. In particular, the end point position, measured
from the origin reads:

rend¼
Z

dS (1þ et)t: (24)

This constraint will be imposed with a Lagrange multi-
plier, f, which in fact represents the load applied at the end of
the plate. The total energy to be minimized then reads

F¼FeþFU ¼
Z

dSF (et, en, h), (25)

with the surface density of energy given by
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F (et, en, h)¼ 1

2
Y e2

t þ
2�

1� � enetþ e2
n

� �
þ 1

2
(BþBU)h¢2

� e
2

U2

H

1þ et

1þ en

� (1þ et)f � t, (26)

where this expression must be used with BU ¼ 0 and U¼ 0 in
the portion of the strip that is not covered by the electrode.

The equilibrium equations are obtained by variation of h,
et, and en. This gives the set of equations

dF

dh(S)
¼ � (BþBU)h¢¢� (1þ et)f � n¼ 0, (27)

dF

den(S)
¼ Y enþ

�

1� � et

� 	
þ e

2

U2

H

1þ et

(1þ en)2
¼ 0, (28)

dF

det(S)
¼Y et þ

�

1� � en

� 	
� e

2

U2

H
� f � t¼ 0: (29)

The terms involving BU and U are only present in the area
covered by electrodes. These equations are valid for large
displacement as they include the complete geometric non-
linearities and can therefore be applied to realistic EAPs. In
the following, we will for simplicity consider the small strain
limit and replace 1þ en^1 and 1þ et^1.

Equations (29) and (28) are in fact a force balance pro-
jected along the normal and tangential direction and provide
the equations governing the normal and tangential strain,

Y enþ
�

1� � et

� 	
¼ �HP, (30)

T � f � t¼Y etþ
�

1� � en

� 	
�HP: (31)

Here, we defined T � f � t as the membrane tension (in-
duced by the imposed force at the edge), and P as the elec-
trostatic pressure, defined as the usual attractive pressure
between two parallel conducting plates

P¼ e
2

U2

H2
: (32)

Usually, in plate or beam mechanics, one is not interested
in the normal strain. We therefore eliminate en and obtain the
equation governing the strain et:

T ¼ EH

1� �2
et�

1

1� �HP: (33)

The total tension consists of the elastic tension of the
membrane (first term), and a compressive (negative) ten-
sion induced by electrostatics (second term). While this
equation for et is the most important for the beam, we will
for later reference also compute the normal strain en, which
reads

EH

1� �2
enþ

1

1� �HP¼ � �

1� � T : (34)

Again, Equations (33) and (34) are also valid in the regions
that are free of electrode, by using P ¼ 0.

Interestingly, at the transition between the conductive zone
and the noncovered membrane, P exhibits a discontinuity
since the electrostatic pressure P drops to zero outside the
electrodes. But since T ¼ f � t is continuous, this implies that
there must be a discontinuity of the strain et and en at the
boundary of the electrode. Following Hooke’s law, this also
implies a discontinuity of the elastic stress, whose physical
origin will be discussed in the Force Transmitted by Surface
Charges section and in the Edge Effects section.

We now turn our attention to the bending equation (27). In
the small strain approximation, it then reduces to the standard
elastica equation,47

(BþBU)h¢¢þ f � n¼ 0, (35)

where the only modification due to electrostatics is the ad-
ditional bending rigidity BU, present in the part covered by
electrodes. We also find that the torque (BþBU)h¢ is con-
tinuous across the edges of the electrode and therefore that
the curvature h¢ is either null or discontinuous at this
boundary. It is instructive to estimate here the relative
magnitude of the electrostatic added stiffness BU by noting
that BU=B¼ 2P=E(1� �2) is on the order of the strains
(en, et) in the material, assumed to be small in the previous
derivation. However, for practical cases where the stretch-
ing might be significant, the electrostatic bending rigidity
needs to be taken into account.

As a summary, the equilibrium equations for this electro-
statically activated beam are

(BþBU)h¢¢þ f � n¼ 0

T � f � t¼ EH

1� �2
et�

1

1� �HP,

where we emphasize that these equations are valid every-
where on the strip, taking (BU ¼ 0,P¼ 0) on parts that are not
covered by electrodes. However, we remind the reader that the
discontinuities in P and BU at the boundaries of the electrode
lead to discontinuities of strains et, en, and curvature h¢.

Equivalent growth model

An alternative way to write the equilibrium for the strain
[Eqs. (33) and (34)] is the form

EH

1� �2
(et � e0

t )¼T : (36)

EH

1� �2
(en� e0

n)¼ � �

1� � T , (37)

with

e0
t ¼ (1þ �)

P
E

; e0
n¼ � (1þ �)

P
E
: (38)
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Written in this way, these equations allow another inter-
pretation of the electrostatic loading: applying a voltage is
equivalent to defining a new reference state (e0

t , e0
n), where by

reference state we mean the state attained when there is no
external mechanical loading T. This situation is similar to
cases of inelastic strain, such as those produced by growth or
plastic deformation, which effectively redefines the refer-
ence state. Hence, the electrostatic loading can be seen as a
modification of the rest length of the strip and providing a
new bending rigidity BþBU .

Geometrically nonlinear equations
and buckling instability

To illustrate how the electrostatic loading enters the
equations, let us for example study a simple but geometrically
nonlinear problem, namely the electrostatically induced
buckling instability where the membrane has its two ends
clamped. Under an imposed potential U on the electrode, the
straight solution h(S)¼ 0 remains a solution. For this initially
flat state t¼ (1, 0) and Equation (33) implies that et is
piecewise constant. Imposing the constraint of no edge dis-
placement, then implies

R
etdS¼ et, ULU þ et, 0(L� LU)¼ 0,

where LU is the portion of the membrane that is covered by
the electrode and L is the total length. Then, Equation (33)
implies that the flat state comes with a compressive tension

T ¼ � 1

1� �HP LU

L
: (39)

We see that the magnitude of this compressive force in-
creases with the potential U and depends on the fraction LU=L
that is covered by the electrode. Within the viewpoint presented
in the Equivalent Growth Model section, this compression has a
very simple interpretation, as the strip can be seen as taking a
new rest state, which becomes longer (and stiffer) in the elec-
trode area; for fixed edges, this implies a global compression.
The linear stability analysis of Equations (33) and (35) around
this solution shows that this system is unstable under classical
buckling (see Bense et al.37 for a study of an axisymmetric case
for this buckling problem). For the simplifying case where the
entire membrane with length L is covered with the electrodes,
the electrostatic pressure, and thus et and BU, are uniform along
the membrane. The buckling threshold can be identified for
small perturbations of the elastica equation, which becomes

h¢¢þ HP
(1� �)(BþBU)

h¼ 0: h(0)¼ h(L)¼ 0 (40)

Defining Euler’s critical load Tc¼ 4p2(BþBU)=L2 for
clamped–clamped boundary conditions, we thus find

HP
(1� �)(BþBU)

¼ 4p2=L2: (41)

This determines the critical electrostatic pressure P, and
thus the critical potential U, for buckling.

Stress-Based Approach

We have established above the conditions of equilibrium
from variational principles, offering a systematic and rigor-

ous route to describe the state of the membrane. Now we
provide a detailed interpretation of these results in term of
stresses (mechanical point of view) and point out various
subtleties associated to finding an accurate description in
terms of a balance of forces. For the sake of clarity, reason-
ings will be performed in the simple case of a flat membrane.

Pelrine’s point of view: can the electrostatic coupling
be reduced to a homogeneous pressure?

We start by evaluating a common approach found in the
literature on incompressible electroactive elastomers (Pois-
son ratio �¼ 1=2)48: it is often assumed that the electrostatic
effect can be entirely reproduced by considering a pressure
2P exerted by the electrode on the membrane, which is twice
as large as the electrostatic pressure acting on a rigid plate
capacitor. Considering a flat membrane, the electrostatic free
energy per unit width is proportional to the covered zone l and
inversely proportional to the thickness h:

FU ¼ �
e
2

U2l

h
: (42)

The variation of the free energy FU with respect to the two
degrees of freedom h and l,

dFU ¼
qFU

qh
dhþ qFU

ql
dl (43)

reveals the resultant of the forces exerted on the electrode. The
variation with respect to h gives a force normal to the electrode
and equal to Pl, while the variation with respect to the length l
gives a negative tension equal to �Ph, which must be a force
parallel to the electrode. Noting that the free energy [Eq. (42)] is
proportional to the surface, this force is analogous to a negative
surface tension. Note that volume conservation implies that the
two degrees of freedom are linked by hdl¼ � ldh, which
means that both terms in Equation (43) are equal, hence Pel-
rine’s doubled pressure equivalence.

To clarify the interpretation proposed by Pelrine, let us
consider the case of a compressible elastic strip submitted to a
normal stress P=� on its surface, in the absence of any elec-
trostatic field. We can solve Hooke’s elasticity equations in
the membrane using (rZZ ¼ �P=�, rXX ¼ T=H) and obtain

EH

1� �2
et�

1

1� �HP¼ T : (44)

Indeed, this is the exact same equation as (33), for arbitrary
�. Hence, replacing all electrostatic effects by a mechanical
pressure amplified by a coefficient 1=� with respect to the
real electrostatic pressure exerted on a rigid plate capacitor,
we recover the equation for the in-plane extension that was
obtained rigorously through variational principle.48 This
analogy also provides the correct equation in cases where the
strip is only partially covered by an electrode.

However, this interpretation is not as successful when
considering the normal strain en. Applying an effective pres-
sure P=� leads to

EH

1� �2
enþ

1

�
HP ¼ � �

1� � T : (45)
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Comparing this to the variational result (34), one finds
that the effective pressure approach does not correctly de-
scribe the normal strain en, except for the particular limit
�¼ 1=2, that is, if the material is incompressible. Hence, we
conclude that in the planar case the effect of electrostat-
ics can be accounted for by an enhanced normal pressure,
but only in the incompressible limit. We refer to Suo40 for a
justification of this fact based on the remark that the addi-
tion of an isotropic pressure has no effect on incompressible
media.

However, even in this particular case of incompress-
ible materials (�¼ 1=2), there is an additional drawback
of the ‘‘double pressure’’ interpretation when we turn to
nonplanar states. Applying a pressure 2P on both faces of
a on an element of length ds of elastic strip with a curva-
ture j results in a nonzero net force 2PHjds acting along
the normal n. Defining now f as the internal force in the
strip, the equilibrium balance on an element of length ds
leads to

df

ds
þ 2PHjn¼ 0:

As a consequence, this would lead to a nonconstant in-
ternal force f, in contrast with previous results. The torque
equilibrium equation (35) would also be different and simply
lead to Bh¢¢þ f:n¼ 0. It does not provide the electrostatically
induced added bending stiffness of the strip BU. It is therefore
not exact that all electrostatic effects can be completely re-
placed by a double electrostatic pressure on the faces of the
electrode. This approach does not extend to geometrically
nonlinear problems such as electrostatically induced buck-
ling.

The Maxwell stress approach

To improve upon the stress-based interpretation, we now
turn to a more systematic procedure to finding the distribution
of electrostatic forces inside the elastic membrane. In con-
tinuum mechanics, electrostatic effects can be introduced via
the Maxwell stress tensor.41 It is defined as a tensor field
whose divergence gives the electrostatic force density and
reads:

sM
ij ¼ e

q/
qxi

q/
qxj

� 1

2
e
q/
qxk

q/
qxk

dij: (46)

Its derivation is based on the total electrostatic force on a
body, via

Fi¼
Z

dV
qsM

ij

qxj

¼
I

dAsM
ij nj: (47)

One verifies by direct evaluation that

qsM
ij

qxj

¼ e
q2/

qx2
k

q/
qxi

¼ � q
q/
qxi

, (48)

where in the last step, we used Gauss’s law and q is the charge
density. So indeed, the divergence of sM gives the expected
force density �q=/.

From a mechanical perspective, the coupled electrostatic–
elastic problem consists of solving

qsij

qxj

� q
q/
qxi

¼ 0, or
q
qxj

sijþ sM
ij

� 	
¼ 0, (49)

with appropriate boundary conditions. This provides the de-
tailed information of the elastic stress, as well as the stress
resulting from the applied electrostatic forces.

To illustrate this, we consider a flat portion of the mem-
brane that is covered by the electrode (far away from the
edge). The electrostatic field obtained in Equation (17) has
only a component along z, with q/=qz¼U=h. In the limit of
small deformation, we replace z^Z and h^H, so that the
Maxwell stress tensor becomes:

sM
ZZ ¼

1

2
e

U2

H2
¼P, sM

XX ¼ �
1

2
e

U2

H2
¼ �P: (50)

Note that far away from the edges, sM vanishes everywhere
outside the electrodes. We now compute the total membrane
tension by integrating the total stress projected in the X di-
rection, over the gap between the electrodes. This gives:

T ¼
Z H=2

�H=2

stotal
XX dZ¼

Z H=2

�H=2

(sXX þ sM
XX)dZ¼HÆsXXæ�HP,

(51)

where ÆsXXæ is the average elastic axial stress in the mem-
brane. Using Hooke’s law and the kinematics of Equation (9),
we do recover

T ¼ Y[etþ
�

1� � en)]�HP: (52)

This result is strictly identical to Equation (31), and we
see that the integral of the Maxwell stress gives the correct
tension inside the membrane. We also recover, as previ-
ously deduced from energetics, that the elastic stress is
discontinuous at the boundary of the electrode since the
elastic stress obeys the standard mechanical rule ÆsXXæ¼
T=H outside the electrode. We finally note that by studying
the Maxwell stress in curved geometries, we may also re-
cover the electrostatic additional bending stiffness BU

(Appendix A1).
Given the symmetric appearance of the elastic stress s and

the Maxwell stress sM in Equation (49), it is tempting to give
them the same interpretation—namely, as the actual distri-
bution of elastic and electrostatic force per unit area acting on
the boundary of the body. r � n gives the force of elastic
origin acting through this surface, and in this spirit, the
Maxwell rM � n would give the electrostatic force (sum of the
elementary charge interaction) acting on this surface. But this
is not the case. For example, there are no charges in the
membrane (excluding the conductors), so that no electrostatic
load is directly applied through any of the surfaces—yet, the
Maxwell stresses are nonzero throughout the membrane. The
Maxwell stresses are therefore not the contact stresses ap-
plied by charges within the material but provide an effective
representation of long-range electrostatic forces. In fact,
there are different possible choices of the Maxwell stress.41
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Force transmitted by surface charges

The actual distribution of electrostatic forces on the elastic
material therefore remains to be determined. We start by
considering the mechanical equilibrium of the volume en-
closed by the dashed contour in Figure 2a, which involves
both a part of the conductors and of the elastic membrane.
The control surface separating the system from the exter-
nal region is chosen along a normal to the plate, as is done
standardly for the mechanical interpretation of surface ten-
sion. The boundary on the right is considered to be a free
edge, free of any elastic or electrostatic forcing, so that the
total tension T ¼ 0. There is a resultant electrostatic force,
localized in the vicinity of the left boundary. Namely, the
positive charges in the upper plate inside the control volume
are subjected to a force due to surface charges in both upper
and lower plates outside the control volume. However, those
in the upper plate are in closer proximity, so the resultant
force is dominated by the repulsive interaction—as indicated
by the red arrow. By symmetry, the same argument applies to
the charges of the lower plate inside the control volume.
When explicitly computing the integrals over the charge
densities, one finds the force exerted on the upper (or lower)
plate to be PH=2 oriented to the right (Appendix A1). As
T ¼ 0, the total repulsive electrostatic force PH must be

balanced by a tensile elastic stress of equal magnitude, ori-
ented to the left (Fig. 2a, orange arrows).

Considering now the general case (T 6¼ 0, Fig. 2b), the
total force across a section of the membrane (the tension) can
be expressed as T ¼ �HPþ < sXX >H, where the direct
electrostatic force 1

2
PH complements that transmitted from

one side to the other through the elastic stress:

sXX ¼
E

1� �2
et�

�

1� � P: (53)

The total membrane tension T consists of a bulk-elastic
contribution and an electrostatic contribution localized ex-
actly at the surface. In Figure 2b, we exemplify the case
where the length of the membrane is kept unchanged that is,
when et¼ 0. A fraction, determined by �, of the vertical stress
of electrostatic origin is redistributed horizontally, leading to
an elastic contribution to the tension, due to electrostatics, but
transmitted as a contact force in the bulk of the membrane
(orange arrows).

Consider now the system enclosed by the very same contour,
but containing only the conductors, as shown in Figure 2c. The
electrostatic force exerted by the external region on the system
is the same as before (red arrow). It must be balanced by an
opposite force (green arrows) exerted by the membrane on the
electrode, which below we show to be located at the edge.

Edge effects

So far, the discussion of the electrostatic field has been
simplified by avoiding the proximity of the edges of the
conductor. Namely, the expressions for / and the resulting
elastic stress have been evaluated at distances from the edge
large compared to the thickness H, avoiding fringe effects.
In this thin membrane description, Equation (51) implies a
discontinuity of elastic tension HÆsXXæ near the conductor’s
edge since T is constant while P suddenly vanishes beyond
the conductor’s edge. In the light of Figure 2c, it is therefore
of interest to investigate the mechanics near the edge and
reveal the origin of the discontinuity.

In Figure 2d, we consider the free body diagram similar to
Figure 2a, but now considering the membrane only that is,
excluding the conducting plate. Hence, no surface charges
are included into the control volume so that there are no
Coulombian forces acting on the system. Instead, there are
only contact forces that act at the boundary of the enclosed
volume. From the action–reaction principle, one can infer
that the normal stress exerted on the membrane is equal to the
electrostatic stress (Fig. 2e). As a consequence, turning back
to Figure 2d, a compressive stress of magnitude P is exerted
on the membrane in the vertical direction. In the horizon-
tal direction, we recall that the elastic tension on the left
boundary has a magnitude HP, pointing to the left (orange
arrow in Fig. 2d). At equilibrium, this horizontal force must
be balanced. However, the right side is free of elastic stress
and the surface charges that gave the balance in Figure 2b can
no longer come to the rescue, as these are not inside the
control volume. Indeed, the only possibility is that a point
force emerges at the conductor edge, as previously indicated
in Figure 2c. This point force is the origin of the ‘‘disconti-
nuity’’ of the elastic tension, as observed in the thin mem-
brane description.

a

b

c

d

e

FIG. 2. (a) Distribution of forces exerted by half of the
system on the other half in a situation where no external
tension is applied. (b) Same, when an external tension is
applied to prevent extension (blue arrow). (c) Electrostatic
force exerted by the left part of the capacitor on the sub-
system delimited by the dashed line (red arrow). The
electrostatic free energy has a contribution proportional to
the surface, in a close analogy with a negative surface ten-
sion. Accordingly, this energy is associated with a repulsive
force in the plane of the conductors. It is balanced by an
opposite force from the membrane located at the edge
(green arrow). (d) Distribution of surface stress applied to
the membrane (green arrows). The elastic tension results
from the elastic stress applied on the left boundary (orange
arrows). (e) The normal stress exerted by the capacitor on
the elastic membrane can be determined from the action
reaction principle, considering a piece of conductor as the
system. Color images are available online.
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How can such a point force occur? To address this ques-
tion, we again change control volume—this time we consider
only the electrostatic forces on the capacitor, excluding the
elastic membrane. The electrostatic forces on the surface
charges of the plate must be directly transmitted to the elastic
membrane onto which the plate is glued (Fig. 2c). The inset of
Figure 3 shows the fringe field near the edge of the plate,
which can be solved analytically by conformal mapping49,50

that is, using a change of coordinates preserving orientation
and angles locally. The idea behind this analysis is to take the
solution to the infinite plane capacitor and then to fold the
boundary by a conformal mapping to match the boundary of
the finite capacitor. The derivation is given in Appendix A1.
Based on this analytical solution for /, we can compute the
surface charge density

r¼ � e=/ � n, (54)

where n is the normal pointing outward the conducting plane.
Even though the solution is for an infinitely thin plate, we
note that one needs to distinguish between the ‘‘inside’’ (or
‘‘membrane side’’) of the plate (n pointing into the mem-
brane, blue vector in Fig. 3) and the ‘‘outside’’ (n pointing
away from the membrane, red vector in Fig. 3). The force per
unit area on the conductor will be along the normal direction
and follows as

sn¼ �
1

2
r =/ � nð Þ¼ 1

2
ej=/j2¼ 1

2e
r2: (55)

At the edge of the plate, where the normal n turns from
upward to downward, there is indeed a singular horizontal force.
In reality, conductors are not infinitely thin so that the tangential
force is not a delta function but a distributed peak. More pre-
cisely, the characteristic thickness of the conductors fixes the
typical size over which the tangential force is spread over space.

Let us now discuss the results from the conformal mapping
discussed in Appendix A1. The exact solution for the charge
density is given in a parametric form. We denote by x the

horizontal coordinate along the membrane and locate the
right edge at x¼ 0 so that the membrane is in the half-space
x < 0. The mapping involves the following coordinate
transformation

x¼ n� þ
H

2p
1� e2pn�=H
� 	

, (56)

where nþ is the new (noncartesian) coordinate for the outside
part of the capacitor (nþ varies logarithmically with x) and
n� the inside part of the capacitor (n�^x asymptotically).
The exact solution for the charge density reads

r� ¼ � e
U

H

1

1� e2pn�(x)
, (57)

where r� is the surface charge that resides on the exterior (+)
and at the interior (-) of the plate. One verifies that both
inside and outside the capacitor, r diverges near the edge
according to

r~e
U

H

ffiffiffiffiffiffiffiffiffiffi
H

4pjxj

s
: (58)

Hence, the associated normal stress, which points in op-
posite directions on both sides, presents a 1=jxj divergence,

sn¼
1

2e
r2~e

U2

H2

H

8pjxj : (59)

One can indeed understand that such a 1=jxj singularity
gives a finite horizontal contribution when integrating around
the edge. Namely, we remind that the plate will in reality have a
finite thickness that comes along with a ‘‘rounded’’ edge,
providing a cutoff scale r. In this rounded section, the normal n
has a horizontal contribution. Since furthermore the length of
this section is proportional to r, the integral over stress sn~e U2

Hr
will give a finite horizontal contribution ~eU2=H~PH. Hence,
the point force indicated in Figure 2d is due to the integrable
stress singularity at the conductor’s edge.

Finally, we analyze the vertical force on the conductor. Inside
the capacitor, we find that r� decays to eU=h away from the
edge while outside the capacitor, rþ decays to 0. Since the
normals are pointing in the opposite direction, the vertical stress
sZZ exerted on the electrode (and hence on the membrane) can
be expressed as a difference of sn between both sides:

sZZ ¼ e
U2

H2

1

1� e2pn� (x)ð Þ2
� 1

1� e2pnþ (x)ð Þ2

" #
: (60)

This result for sZZ , properly normalized, is represented in
Figure 3 as a function of the cartesian coordinate x. Close to
the edge, the normal stress diverges as:

sZZ~e
U2

H2

2

3

ffiffiffiffiffiffiffiffi
H

pjxj

s
: (61)

This vertical force is a weaker singularity than for sn and
does not lead to a point force at the edge upon integration.

FIG. 3. Normal stress distribution as a function of the
distance to the edge (solid line). Dashed line shows the an-
alytical asymptotics. Each piece of conductor is associated
with two surface charges, one above and the other below the
conductor, and accordingly, with two normal unit vectors~n.
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Concluding Remarks

We presented a theoretical study of partially active elec-
tromembranes. We derived the equilibrium equations of an
electrostatically activated beam with variational techniques.
These equations were then written in an alternative way, al-
lowing a new interpretation in terms of reference state: the
electrostatic solicitation is seen as defining a new stress-free
reference state. The analogy with swelling, biological growth,
or plastic deformation makes this point of view particularly
convenient when considering out-of-plane displacement and
buckling problems. Indeed, the difficulties arising from elastic
strain discontinuities (whose origin is the singular electrostatic
forces at the boundary of the electrode) simply come from a
difference in rest state in this equivalent framework. We also
showed that Pelrine’s approach, often used, that consists of
considering that the electrostatic solicitation acts as a doubled
pressure along the thickness of the membrane leads to the same
equation for the in-plane extension. However, for polymers
whose Poisson ratio differs from 1=2, the doubled pressure does
not yield the correct equation governing the normal strain.
Moreover, by including geometric nonlinearities in our ener-
getic approach, we shed light on an electrostatically induced
added bending stiffness phenomenon. This feature is missing in
Pelrine’s approach, which also generates spurious nonbalanced
pressure forces. In the second section, we clarified the intricate
balance of forces in this system. In particular, we examined the
question of the doubled pressure along the thickness and gave an
interpretation of the Maxwell stress tensor. Finally, we consid-
ered several control contours, as is often done for surface tension
problems, to understand how forces are transmitted by the
charges. More precisely, by calculating the electric field at the
edges of the electrode, we elucidate the major role played by
the edge effects and show that it is the origin of the elastic
discontinuity of the elastic stress highlighted in the previous part.

This work is pertinent for the description of geometrically
nonlinear slender electroactive plates in the small strain ap-
proximation and in 2D case (elastica). It provides a better
understanding of the physics of dielectric polymers that
might prove useful for further developments. It remains to be
generalized to more general kinematics of plates. It would be
interesting to also consider the effect of large strains, which
are often generated in electroactive devices. We, however,
expect that the features we have presented here (e.g., singular
forces at the border of the electrode leading to discontinuities
in elastic strain, equivalent description in terms of a new rest
state) will still be relevant in the more general case.
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Appendix

Appendix A1

A Conformal Mapping to Solve Electrostatics

Definitions

We now zoom at a scale comparable to H, sending conse-
quently the size of the capacitors to infinity. Although one can
use again the Green theorem, we will proceed through a con-

formal mapping. The 2D space is characterized by the complex
coordinate z¼ xþ iy. We define the complex potential

w(z)¼w(x, y)þ i/(x, y), (62)

where /(z) the electrostatic potential. The lines of iso-w are
orthogonal to lines of iso-/, similar to the stream function
and potential in ideal flow. On the domain where w(z) is

(Appendix continues /)
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holomorphic, the functions w and / are harmonic and satisfy
the Cauchy–Riemann equations. Hence, we can write

dw

dz
¼ q/

qy
þ i

q/
qx
¼ �Ey� iEx: (63)

On a conductor, the density of charges reads

r¼ � e=/ � n, (64)

and =/ is in the normal direction. Hence, the normal force
per unit area can be computed as

� 1

2
r=/

� �
� n¼ 1

2
ej=/j2¼ 1

2
e

dw

dz

����
����
2

: (65)

Conformal mapping

We consider the solution of the infinite plane capacitor, in
the plane f¼ nþ ig. We allow g to vary from � h=2 to h=2,
with boundary conditions /¼ � U=2. The solution of course
reads /¼Ug=h, which in terms of the complex potential gives

w(g)¼ Uf
h
: (66)

One verifies dw=df¼U=h, so as expected Ey¼ �U=h
and Ex¼ 0. Now we perform a mapping from the f-plane to
the physical plane of interest, defined by z¼ xþ iy, according
to Veberič51

z¼ fþ h

2p
1þ e2pf=h
� 	

: (67)

We verify below that this folds the conductors at
g¼ � h=2 for n > 0 onto the same conductors in the range
n < 0. Now, we use that f=h¼w=U, so that we find

z

h
¼ w

U
þ 1

2p
1þ e2pw=U
� 	

: (68)

This is a closed form solution w(z) as defined by its inverse.
The properties of the field and the charge density are encoded
in the derivative

dw

dz
¼ dw

df
df
dz
¼ U

h

df
dz
: (69)

So, we can derive all results of interest from the map z(f)
defined by Equation (67). For simplicity, we set h¼ 1, so that

z¼ fþ 1

2p
1þ e2pf
� �

: (70)

We find that

dz

df
¼ 1þ e2pf: (71)

Singularities are encountered at when the derivative van-
ishes, which are found at f¼ � i=2 (we remind that g is
restricted between -1/2 and 1/2). Indeed, these correspond to

the plate edges z¼ � i=2. This means that the field strength
(scaled on U=h) reads

df
dz
¼ 1

1þ e2pf
, (72)

and indeed diverges at the edges. To analyze the nature of the
singularity, we expand the result f¼ i=2, which gives

df
dz

~
1

f� i
2

: (73)

Expanding the mapping around the point gives

z� i

2
¼ � p(f� i

2
)2, (74)

so that the singularity can be written as

df
dz

~
1

(z� i
2

)
1=2
: (75)

At the plate, we can write z¼ xþ i=2, so that

df
dz

����
up

~
1

x1=2
: (76)

This implies that the field, and thus the surface charge,
diverges as 1=x1=2. Next, we write the equations in terms of
the real coordinates as:

x¼ nþ 1

2p
1þ e2pn cos 2pg
� �

, (77)

y¼ gþ 1

2p
e2pn sin 2pg: (78)

The upper plate is located at g¼ 1=2. The relationship
between x and n is not bijective and we well therefore note
n�(x) the two branches of solution corresponding to the upper
and lower side of the plate.

x¼ n� þ
1

2p
1� e2pn�
� �

, (79)

y¼ 1

2
: (80)

For large negative values of n, one finds n�^x (inside
capacitor), while for large positive values, one finds
nþ^ ln (� 2px)=(2p) (outside capacitor, folded from
n > 0). As mentioned, the field is given by

df
dz
¼ 1

1þ e2pf
¼ 1

1þ e2p(nþ ig)
, (81)

which can be seen as a function of x and y by the inverse of
Equation (78). At the upper plate, g¼ 1=2, this reduces to

df
dz
¼ 1

1� e2pn�(x)
: (82)

(Appendix continues /)
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Negative Surface Tension Through the Coulomb Law

To determine the electrostatic force exerted on the sub-
system chosen in Figure 2a by the rest of the electrodes, we
introduce the Green function � ln (r=h)=2pe of the electro-
static interaction in the planar problem.52 We focus here on
the infinitely extended plane capacitor, with a uniform sur-
face charge �r at y¼ � h=2. Evaluated at the top electrode
n¼ h=2, we find the potential

U

2
� /(x, h=2)¼ �r

Z 1
�1

dx¢
1

2pe
ln

(x� x¢)2

h2

 !

þr
Z 1
�1

dx¢
1

2pe
ln

(x� x¢)2þ h2

h2

 !

¼ r
2pe

Z 1
�1

dx¢ ln
x¢2þ h2

x¢2

 !
¼ rh

2e
: (83)

We therefore recover the standard law r¼ e=/ � n, which
gives r¼ eU=h for a plane capacitor.

We now divide the membrane into two parts and determine
the distribution of forces exerted by one side on the other. The
horizontal component of the electric field due to the other half
membrane therefore reads:

qxV1
2
(x, y)¼ r

4pe
ln

x2þ (h� y)2

x2þ y2

� �
: (84)

The electric potential induced by half a capacitor as:

V1
2
(x, y)¼ r

4pe

Z 1
0

dx¢ ln
(x� x¢)2þ (h� y)2

(x� x¢)2þ y2

 !
: (85)

On the capacitor (y¼ 0), we get:

V1
2
(x, 0)¼ rh

4pe
x

h
ln (1þ h2=x2)� 2 tan� 1 h

x

� �� �
: (86)

The horizontal repulsive force (the opposite of the tension
TU) exerted by one side on the other of the form:

� TU¼ r V1
2
(0, 0)�V1

2
(1, 0)

h i
¼ r2H

4e
¼ e

4

U2

H
¼ PH

2
: (87)

Electrostatic Bending Stiffness Computed
from the Maxwell Stress Tensor

We may also compute the effective bending stiffness from
electrostatic origin using the Maxwell stress tensor defined in
Equation (46). From the potential computed in a curved ca-
pacitor [Eq. (17)], we deduce the Maxwell stress tensor
component

sM
XX ¼ �

e
2

U2

h2
1þ Zj½ �2¼ � e

2

U2

h2
1þ 2Zj½ � (88)

at linear order in j. This lead to a total torque (per unit width)

M¼
Z Z¼ h=2

Z¼ � h=2

rXX þ sM
XX

� �
ZdZ¼

�Bj� e
U2

h2

h3

12
j

� �
¼ � (BþBU)j,

(89)

where we have computed the elastic stress rXX from Hooke’s
law and the strains defined in Equation (9). We have therefore
recovered the electrostatically induced additional bending
stiffness BU with the same expression as in Equation (22).
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