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I. GENERAL PROPAGATION OF FRACTURE
AND DEBONDING FRONT

We give here a quick review of several fracture situa-
tion (previously described in other works) and put them
in the same framework developed in this article. These
configurations serve as the basis for comparison, and were
used to prepare initial conditions for 3-crack interaction
in the present study.

A. Isolated channel cracks

We start by the well described isolated “channel crack”
in a material under bi-axial stress. In our notations, the
energy released during propagation is γeh on each side of
the fracture cut (per unit increment of crack area). We
recall that e is the elastic energy per unit area in the film
and that γ is a non-dimensional number that depends
on the relative mechanical properties of the layer and
substrate. Griffith’s criterion therefore reads [1]

2γeh = Gc (1)

where Gc is the fracture energy.
It was shown that when adhesion is decreased, fracture

propagation is favored through the collaborative effect of
delamination which results into two remarkable modes
of regular fracture propagation, the duo and the follower
modes [2, 3], that we review now.

B. Duo of cracks.

In the duo mode, two cracks are observed to propagate
parallel to each other, and are joined at their tips by a
straight delamination front with a very specific length ld
(Fig. S1a).

We therefore consider the general situation of two
cracks delimiting an extended debonding zone. Here
we take the energy difference with the pristine state as
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FIG. S1. a) Duo of crack. Sketch of the duo configuration
(left). Snapshot of duo of cracks (right). (b) Follower crack.
Sketch of a follower crack (left). Snapshot of an example of
follower crack observed in a spiral crack propagation (right).

Er = eA + ef(l) + γeh(S+ + S−), where l is the length
of the debonding front, and S+ (resp S−) the curvilinear
abscissa for the position of the upper (resp inferior) frac-
ture tip along its trajectory. Griffith’s criterion for crack
S+ reads

dEr = ΓdA+GchdS+,

where Γ is the debonding energy. Experimentally the
adhesion energy is found to increase with the velocity of
the delamination front (see section III for the experimen-
tal characterization of the adhesion energy) consistently
with a simple linear relation:

Γ(v) = Γ0

(
1 +

v

η

)
(2)

when Γ & Γ0 where η is a kinetic parameter that has
to be determined experimentally. This variation of the
adhesion energy with velocity is based on experimental
observations, but other generic kinetic laws are consid-
ered in section IV of Supplemental Material.



2

Denoting n the unit vector normal to the front, u
its tangent vector pointing towards the crack S+ cho-
sen as reference, and T+ its direction of propagation
(see the sketch in Fig. S1a), simple geometry gives 2dA =
l(n.T+)dS+ and dl = (u.T+)dS+ so that Griffith’s cri-
terion can be rewritten as

l

2
[e−Γ(V+)]n.T+dS++ef ′(l)u.T+dS++γehdS+ = GchdS+,

which we rewrite in a condensed way as

F+.T+ + γeh = Gch, (3)

with the notation F+ = [e− Γ(V+)](l/2)n+ ef ′(l)u. We
recognize on the left-hand side of equation (3) the En-
ergy Release Rate for the fracture (integrated over the
thickness). We assume that fracture propagates in the
direction of maximum energy release rate, so in direc-
tion T+ aligned along F+. In that case, equation (3)
becomes |F+| + γeh = Gch and sets the value of ad-
hesion energy Γ(V+), and therefore the velocity of the
crack V+ through (2).

A similar treatment for crack S− gives

F−.T− + γeh = Gch, (4)

with the notation F− = [e−Γ(v−)]l/2n−ef ′(l)u. These
equations provide similarly the direction of propagation
T− (aligned along F−) and the speed v−.

We have therefore found the propagation rules for the
two cracks, and it is found that in general they con-
verge toward a “duo” state with a constant distance ld, in
which both vectors T± are perpendicular to the debond-
ing front (therefore along n), which imposes that ld obeys
f ′(ld) = 0. Since f(l) = βlh− αl2, with α and β dimen-
sionless constants (see main text, and [2, 3]), we finally
obtain ld = βh/2α.

C. Follower crack

We observe that sometimes a fracture propagates
nearly parallel to the path of a preexisting cut (as
observed for example in spiral crack propagation in
Fig. S1b). We call it a case of “follower crack”. We note
that the debonding front joins the crack, that we note
S to a point with abscissa s along the pre-existing crack
(see the sketch in Fig. S1b). For simplicity we consider
the case of a straight pre-existing fracture, along a direc-
tion vector t.

We now must compute the energy difference with re-
spect to state including the pre-existing crack. The en-
ergy difference therefore is Er = eA+ef(l)+γehS−γehs,
where −γehs corresponds to the stress already released
by the pre-existing crack. We use the same geometrical
convention with vector u pointing towards the crack tip.
The dynamics of the debonding front may be determined
by applying Griffith’s criterion, for a fixed crack position

FIG. S2. Sketch of the three cracks interactions.

dEr = d(ΓA).

1

2
(e− Γ)ln.tds− ef ′(l)u.tds− γehds = 0

(where t is the unit vector tangent to the pre-existing
cut), which can also be written

f .t = γeh (5)

where we have noted

f = n[e− Γ(v)]l/2− e(βh− 2αl)u. (6)

This equation provides the speed v = ds/dt of the point
where the debonding front joins the pre-cut.

We next look for the direction and speed of the crack
S using Griffith’s criterion dEr = d(ΓA) + GchdS which
leads to

1

2
[e− Γ(V )]ln.TdS + ef ′(l)u.TdS + γehds = GchdS,

and we recover equation (3). The same analysis provides
the direction, along vector

F = [e− Γ(V )](l/2)n + ef ′(l)u (7)

and the speed V = dS/dt of the fracture tip. Here we
have discarded geometrical factors and assumed for sim-
plicity that the velocity of the debonding front is equal
to that of the crack. This approximation is fully justified
when t and n vectors are nearly parallel.

This provides propagation law for both point (s, S). It
is often found that the crack tends to follow geometry
of the pre-cut trajectory at a distance lf from it [2, 3].
Analytical solution in the case of a straight pre-cut is
reported in [2, 3]. The delamination front makes here a
defined angle with the preexisting crack and has a well
defined length lf ∼ 32h > ld .

D. Three cracks interactions

Here the energy difference with respect to the pristine
state is

dEr = edA+ ef ′(l)dl±γehds (8)
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where, (+) holds for a the part in yellow in Fig. S2, while
(-) holds for the part in grey. As in the main text, we
choose here to consider the case where the front edge s−-
lags behind the center crack s+. The surface variations
in terms of ds± and dS± (see Fig. S2) writes,

dA± =
l±n± · (T±dS± + t±ds±)

2
, (9)

and expressing dl± in terms of ds± and dS±, we find

dl+ = u+ · (−t+ds+ + T+dS+) (10)

dl− = u− · (−t−ds− + T−dS−) (11)

The Griffith criterion, accounting for energy conserva-
tion, indicates that the elastic energy released is compen-
sated by the energy expense of cracks propagation and
delamination. For the case of a middle crack linked to the
upper front, this is, dEr = Γ(dA+ + dA−) + Gch(ds+ +
dS+ + dS−) wich leads to,[

(C+(ΓS+)n+ +D+u+) ·T+ − (Gch− γeh)
]
dS+

+
[
(C−(ΓS−)n− +D−u−) ·T− − (Gch− γeh)

]
dS−

+
[
(C+(Γs+)n+ −D+u+) · t+ds+

]
+
[
(C−(Γs−)n− −D−u−) · t−ds−

]
− [(Gch− γeh)ds+ + γehds−] = 0 (12)

where, C± = (e − Γ±)l±/2 and D± = ef ′(l±) = e(βh −
2αl±). For simplicity used the notation that shows before
where F± = (C±n±+D±u±) and f± = (C±n±−D±u±).
In order to derive the propagation equations for cracks
and follower front, we apply independent progression for
each variable. This is,

F+.T+ + γeh = Gch (13)

F−.T− + γeh = Gch (14)

f−.t− − γeh = 0 (15)

f+.t+ + γeh = Gch, (16)

which were presented in the main text.

II. SYMMETRIC 3 CRACKS

In the case of symmetric propagation of three cracks
(as in the inset of main figure 2), we may directly take
equation (12) with ds± = ds and t± = t, and find the
equivalent of (13-15) in this symmetric case:

(f+ + f−).t = Gch (17)

F±.t + γeh = Gch (18)

where F± must also be aligned with the direction of prop-
agation t = cos θn− sin θu, where θ is the angle between

the delamination front n and the direction of propaga-
tion t. Together with this information, equation (18) can
be replaced by |F±| = Gch− γeh together with

sin θ = −e(2αlT − βh)

(Gc − γe)h
cos θ =

(e− Γ)lT
2(Gc − γe)h

(19)

where lT is the length of the debonding fronts. Equation
(17) for the central crack writes (e−Γs)lT cos θ+2e(βh−
2αlT ) sin θ = Gc, which, using (19) leads to

cos 2θ =
Gc

2(Gc − γe)
(20)

Finally, using this value for θ, equations (19) lead to

lT =
βh

2α
+

Gch

2
√

2αe

√(
γe

Gc
− 1

)(
γe

Gc
− 1

2

)
(21)

Γ = e−
√

2Gch

lT

√(
γe

Gc
− 1

)(
γe

Gc
− 3

2

)
(22)

III. EXPERIMENTAL CHARACTERIZATION
OF THE ADHESION ENERGY
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FIG. S3. Velocity of a delamination front v as a function
of the adhesion energy Γ normalized by the adhesion energy
at vanishing speed Γ0. The dashed line is a linear fit v =
η(Γ/Γ0 − 1) of the experimental data.

In Fig. S3, we plot the variation of the velocity of the
delamination front v as a function of the adhesion en-
ergy Γ normalized by the adhesion energy at vanishing
speed Γ0. The adhesion energy is measured by moni-
toring the shape of a delamination front around a fixed
straight crack as proposed by Jensen et al. [4]. The as-
pect ratio of the front depends on the ratio of the residual
stress σ0 with a critical stress σc, on the Poisson ratio of
the film and on only moderately on a parameter account-
ing for mode 3 contribution at the tips of the straight
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FIG. S4. Dimensionless wavelength λ/h (a) and dimensionless
amplitude A/h (b) of oscillation vs. e/Γ0. Solid lines repre-
sents power velocity laws η(Γ/Γ0 − 1)ε, dashed red lines are

obtained for an exponential law v0

[
1 − e−ϕ(Γ/Γ0−1)

]
where

v0 = 4.5µm/s and ϕ = 1. All curves are traced with
η = 4.5µm/s and γe/Gc =0.49.

crack [3]. The adhesion energy Γ(v) can thus be inferred
from the shape of the front [3].

A simple linear description of the adhesion energy with
the velocity, Γ(v) = Γ0(1 + v/η), is coherent with the
experimental measurements in the experimental range.

This description is also compatible with independent ex-
perimental measurements in other similar systems [5, 6].
To show the generality of the instability process, we next
test the robustness of the oscillations to other kinetic lax
(i.e. the dependence of the adhesion energy with veloc-
ity) and the effect of the kinetic law on the selection of
the geometry of the oscillations.

IV. EFFECT OF KINETIC LAW ON
WAVELENGTH AND AMPLITUDE OF

OSCILLATIONS

In order to investigate the influence of the delam-
ination speed on the oscillation features, we compute
numerically the wavelength and amplitude and oscil-
lations for different kinetic laws, namely, power laws:
v = η(Γ/Γ0−1)ε, with ε = 0.5, 1 and 2, and an exponen-
tial law based on experimental observations on similar
systems [5]: v = v0(1 − e−ϕ(Γ/Γ0−1)), where v0 is a lim-
iting speed and ϕ a decay coefficient of order 1. Figure
S4 compares wavelength and amplitude of oscillations for
power laws, with η = 4.5µm/s and for an exponential law
with v0 = 4.5µm/s and ϕ = 1, such that in the limit of
ϕ(Γ/Γ0 − 1) << 1, the exponential tends to the linear
law with the same value of η = 4.5µm/s. In all cases, os-
cillatory cracks are observed and the instability process
appears for all the kinetic laws considered, albeit with
different pattern geometry.
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