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We report a new oscillatory propagation of cracks in thin films where three cracks interact mediated by
two delamination fronts. Experimental observations indicate that delamination fronts joining the middle
crack to the lateral crack tips swap contact periodically with the crack tip of the middle crack. A model
based on a variational approach analytically predicts the condition of propagation and geometrical features
of three parallel cracks. The stability conditions and oscillating propagation are found numerically and the
predictions are in favorable agreement with experiments. We found that the physical mechanism selecting
the wavelength structure is a relaxation process in which the middle crack produces a regular oscillatory
path.
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Fracture propagation in thin films resulting from residual
tensile stresses is common in everyday life and detrimental
in numerous practical applications including protective
coating, multilayered devices [1], and art [2]. By contrast,
crack propagation has recently been envisioned as a tool to
create patterns in thin films and tailor surface micro-
structures [3,4]. Oscillatory cracks, observed in thermally
quenched glass [5,6], tearing through thin sheets [7,8], or
channel cracks in thin films [3,9] have stimulated a number
of theoretical and numerical studies [10–14]. In this Letter,
we report a new oscillating propagation in thin layers when
three cracks interact with two delamination fronts. We
show that the propagation of several cracks interacting with
limited delamination can be predicted computing the
maximum energy release rate, based on simplifying
approximation on the dependence of the form of the energy
with the geometry of the delamination front. Our model
accounts well for the main geometrical features of observed
structures. Detailed analysis of energy released of each
crack progression shows that the physical mechanism
ruling the wavelength structure is a relaxation process.
Experimental observations.—Commercial organosilicate

coating [spin on glass (SOG), Accuglass T-12B, Honeywell]
was spin-coated on silicon wafer to produce uniform thin
films with micrometric thicknesses (h ∼ ½1.1–3.5� μm).
The adhesion energy with the substrate Γ0, the residual
biaxial stresses σ, and the fracture properties of the thin films
were characterized in [15]. Crack trajectories are followed
through a microscope in reflection mode. In the presence
of a moderate adhesion (Γ0 ∼ ½0.3–1.3� J=m2), residual
biaxial stresses leads to striking regular structures [15]
involving simultaneous propagation of cracks and delami-
nation fronts.

In Fig. 1(a) and movie S1 in the Supplemental Material
[16], we report a newmode of oscillatory crack propagation
where three cracks interact mediated by two delamination
fronts. The central crack follows a nearly sinusoidal
trajectory. Delamination at each side of the middle crack
is evidenced thanks to Newton’s interference patterns. The
delamination fronts do not reach the central crack tip
simultaneously [inset of Fig. 1(b)], but instead, swap
contact with the middle-crack tip. We note sþ (respectively,
s−) the curvilinear abscissa of the point where the upper
(lower) debonding front reaches the central cut. At a given
time [top left inset of Fig. 1(b)], the lower front reaches the
center crack and will be called the “driver” front. Such
propagation of a delamination front joining two advancing
cracks (“crack duos”) leads to a steady solution [15,20]
when isolated. The upper front is retarded with respect to
the crack tip (s− < sþ). This situation where a single crack
(here, the top one) is driven by a delamination front
following an existing crack path (“follower crack”) also
evolves into a steady solution [15,20] when the preexisting
cut is infinite (we review, in the Supplemental Material
[16], the salient features of asymptotic solutions for
follower and duo). But here, some time later [bottom right
inset on Fig. 1(b)], the role of the upper and lower fronts
have inverted (sþ > s−); the upper front has become the
driving point (forming a crack duo) and the lower front
corresponds to a follower fracture. Figure 1(c) presents the
measured distance between the driving and following
points Δs ¼ jsþ − s−j, revealing the periodicity of the
alternating dynamics between duo and follower.
The use of powerful linear elastic fracture mechanics

(LEFM), i.e., the study of the stress intensity factors along
the crack front, would be very difficult here: the fracture
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front in a thin film does not generally have a simple
geometry and includes corner singularities (where stress
intensity factors cannot be defined) at the surface of the film
[21]. Similarly, the debonding front has no reason to be a
straight line and is probably under nonuniform mode-
mixity [1]. Here, we choose to use a variational approach,
instead [22], based on direct calculation of the global
energy released during propagation, an approach equivalent
to LEFM (indeed, if the trajectory of the crack does not
involve kinks, the principle of local symmetry is strictly
equivalent to the criterion of maximal energy release rate
[23]). We also use simplifying approximations [15,20],
where the fracture energy only depends on the geometry of
the crack path and of the delaminated area (neglecting the
effect of mode mixity on energy dissipation). We will
compute the conditions for propagation for all cracks
(Griffith criterion), assume that they propagate in the
direction that maximizes the energy release rate, and
determine their individual speed. We obtain explicit propa-
gation rules and analytically and numerically study their
behavior. The mechanism of oscillation of the center crack
involves delamination-front ends that may join the central

crack tip either simultaneously or alternatively, as observed
experimentally. In the following, we demonstrate that, if
both delamination fronts join the central crack tip simulta-
neously, a stationary solution of three parallel cracks exists.
The limits of the stability of this solution are explored in the
phase diagram defined by the main independent parameters
of the problem.
A model for coupled fracture and debonding.—Before

any fracture occurs, the film is under isotropic uniform
residual stress σ, corresponding to an elastic energy e ¼
hσ2ð1 − νÞ=E per unit of film area, where ν is the Poisson
ratio, and E the Young modulus. We assume that, when a
cut with a length s bounds a delaminated surface A defining
a straight delamination front with length l, the energy
difference with respect to the pristine state is [15,20]

Er ¼ eAþ efðlÞ þ γehs; ð1Þ
The first term in this expression would represent a complete
release of stress in the delaminated region, therefore,
proportional to its area A. But stresses parallel to the
debonding front remain on the order of σ in the debonded
region close to the debonding front with an area of order l2,
with an energy cost ∝ el2. The tilting of the debonded flap
along its front provides an extra energy gain ∝ elh so that
fðlÞ ¼ βlh − αl2, with α and β dimensionless constants.
Finally, the term γehs accounts for the elastic energy
released along the crack edge outside of the delamination
area (γ ¼ 0.64 was numerically computed for simple
channel cracks [1,15]).
We apply these assumptions to the case of three

interacting cracks, as in Fig. 2, whose curvilinear position
along their trajectories are noted sþ; Sþ; S−. Here, we have
considered the case of the lower debonding front lagging
behind at position s−—in the opposite case where sþ is
lagging, it suffices to exchange þ and − in Eqs. (6)–(7).
Griffith’s criterion, accounting for energy conservation,
indicates that, during propagation, the elastic energy
released dEr compensates the expense of propagating
cracks and delamination

dEr ¼ dðΓAÞ þGchðdsþ þ dSþ þ dS−Þ; ð2Þ

where Gc is the fracture energy in the film and Γ the
adhesion energy. We assume, for the sake of simplicity, that
fracture energy Gc is a constant, but that the adhesion
energy Γ depends linearly on the velocity v of the front

ΓðvÞ ¼ Γ0ð1þ v=ηÞ; ð3Þ

where η is a kinetic coefficient, accounting for energy
dissipation, and Γ0 is the delamination energy at vanishing
speed. The debonding front, being driven at a weak
interface, is subject to (nonuniform) mode mixity, modi-
fying the debonding energy [1], but our simplified
approach uses an effective spatially averaged debonding

0

33

67

0 12 24

(c)

(b)

6

3

0

0 12 24 36

(a)

Num. Simulation

FIG. 1. (a) Snapshots of four crack configurations taken at
equally spaced time intervals, Δt ¼ 11 s, illustrating middle
crack oscillation. (b) Positions of ends of delamination fronts
reaching the middle crack, sþ and s−, measured along the middle-
crack path as defined in the insets. (c) Position of the driver point
sþ with respect to the follower point s−. Dashed blue line in
(c) shows numerical solution and dashed blue lines on the lowest
panel in (a) depict the pattern obtained from numerical solution,
for γe=Gc ¼ 0.49 and e=Γ0 ¼ 1.44. Adjusting the period of
oscillation to that of the experiment leads to η ≈ 4.5 μm=s.
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energy only dependant on speed, assuming that the mode-
mixity distributions are similar in propagation modes
considered here. This simple description is coherent with
experimental measurements of ΓðvÞ (see Supplemental
Material [16] where other dependences of Γ with the
velocity are also considered).
By independently varying each variable, we obtain one

condition for the propagation of each crack

Fþ:Tþ þ γeh ¼ Gch; ð4Þ

F−:T− þ γeh ¼ Gch; ð5Þ

fþ:tþ þ γeh ¼ Gch; ð6Þ

where Tþ;T−, and tþ are unit vectors for the direction of
propagation of the top, bottom, and center cracks. In these
equations, F� ¼ ½e − ΓðV�Þ�l�=2n� þ eðβh − 2αl�Þu�
and f� ¼ ½e − Γðv�Þ�l�=2n� − eðβh − 2αl�Þu� are two
vectors associated with the variation of the delaminated
zone (with n and u unit vectors normal and tangent to the
delamination front as in Fig. 2). V� ¼ dS�=dt and vþ ¼
dsþ=dt are the crack velocities. The left hand side of
Eqs. (4)–(6) provide the energy release rate for each of the
three cracks, which are expected to propagate in the
direction of the maximum energy release rate [24–26].
As a result, the top, bottom, and center cracks propagate

along a direction given by vectors Fþ;F−; fþ, respectively.
Inserting these value for (Tþ;T−, tþ) into Eqs. (4)–(6)
provides the velocity of each crack, using Eq. (3).
A last variation governs the speed (ds−=dt) of the

delamination front along the existing cut, for which the
cost of the preexisting crack 2γeh must be subtracted from
the energy balance

f−:t− − γeh ¼ 0; ð7Þ
where t− is the unit vector tangent to the central cut at point
s−. Finally, Eqs. (4)–(7) provide the direction of propaga-
tion and speed for all relevant points and, therefore, the
dynamics of the system.
Symmetric solution: three parallel cracks.—First, we

consider the symmetric case where both fronts reach the
central crack tip [as sketched in the inset of Fig. 2(b)]. The
equations for the crack dynamics are obtained by taking
T� ¼ t� ¼ t together with sþ ¼ s− and Sþ ¼ S−.
Equations (4)–(7) are combined into

F�:tþ γeh ¼ Gch; ð8Þ
ðfþ þ f−Þ:t ¼ Gch; ð9Þ

where it must be enforced that all cracks have the same
speed. We find the orientation of the delamination front
(i.e., the angle θ between n and t) and their length lT as

cos 2θ ¼ Gc

2ðGc − γeÞ; ð10Þ

lT ¼ βh
2α

þ Gch
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These analytical expressions are in good agreement with
direct numerical computation [Figs. 2(b) and 2(c)]. We
note that the geometry of this three-crack solution scales
with the film thickness h, and only depends on e=Gc, but
not on the adhesion energy Γ0, as already observed in two-
crack situations (duo and follower [15]). A phase diagram
in the (γe=Gc; e=Γ0) space representing the domain of
crack propagation is presented in Fig. 3(a). Positive values
of the fracture speed are required, i.e., Γ ≥ Γ0 in Eq. (12),
where the equality defines the lower boundary of existence
[red line in Fig. 3(a)]. The upper boundary is given
by γe=Gc ¼ 0.5 as deduced from Eq. (11). Therefore,
we have found an analytical expression for the three-
crack symmetric solution and, next, numerically study its
stability.
Three crack stability: numerical simulations.—First, we

investigate the stability of the symmetric three-crack
solution by preparing the system in the stationary trio
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FIG. 2. (a) Sketch of the three cracks. S� are the positions of the
driving and following cracks that move together with their
respective delamination fronts. s� stand for the positions of
the front ends reaching the middle crack. T� and t� are auxiliary
vectors describing crack directions, whereas n� and u� are
normal and tangent vectors to the driving (þ) and lower (−)
debonding fronts. (b) and (c) Black lines represent analytical
predictions of the angle θ and the dimensionless length lT=h for
three parallel cracks with γe=Gc. Blue open circles are numerical
simulation with γ ¼ 0.64, h ¼ 1 μm, and η ¼ 4.5 μm=s.
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configuration according to Eqs. (10)–(11). Then, a very
small perturbation is imposed in the form of a slight delay
of one of the debonding fronts (thus, creating a follower
point), and the system is allowed to evolve in time. For
some conditions, this leads to an oscillatory solution. For
example, for the parameter corresponding to the black
square in Fig. 3, the numerical prediction of the crack path
[dashed line in Figs. 1(a) and 1(c)] is found to be in good
agreement with the experimental observations (where η ¼
4.5 μms−1 defining the dependence of adhesion energy
with speed is the only adjusted parameter).
The time evolution of the three-crack system is solved

numerically using 100 × 100 data points in the parameter

space defined by γe=Gc and e=Γ0. We find that the three
crack solution is stable in regions I and II. Above the
dashed purple line (region II), oscillations are observed
briefly after perturbation but relax after a few oscillations.
Steady oscillations are only observed in region III, a small
region of the phase diagram above the solid purple line.
Experimental conditions where we observed oscillating
propagations are indicated with red circles in the phase
diagram and are found to be in favorable agreement with
numerical predictions.
In Figs. 3(b) and 3(c), we plot the amplitude and

wavelength of the oscillatory solutions vs e=Γ0 and
γe=Gc. The instability is subcritical since the amplitude
jump to a finite value for both critical parameters is ðe=Γ0Þc
and ðγe=GcÞc [Figs. 3(b) and 3(c)]. Both amplitude and
wavelength scale almost linearly with the middle crack
speed [vc ∼ ðe=Γ0 − 1Þ]. However, the dependence with
γe=Gc is more complex.
Instability mechanism.—Experimentally, the trio solu-

tion is typically reached starting from a pair of cracks in a
duo configuration later followed by a third crack propa-
gating parallel in the follower configuration (left upper
inset in Fig. 4). Experimental observations and numerics
both show that the follower front (here, lower front s−)
always advances faster than the duo driving front (upper
front sþ). It eventually reaches it in a capture event, where
the fronts exchange roles. They also switch the equation
defining their speed from the geometry Eq. (6)⇋ Eq. (7)

(a)

(b) (c)

FIG. 3. (a) Phase diagram of the stable trio and its correspond-
ing oscillatory solution. Region I (yellow): Trio propagates
straight and are stable. Region II (gray): The trio stationary
solution (purple inset) becomes subcritically unstable against a
small delay in the delamination ends joining the central crack.
Region III (purple): The trio stationary solution is unstable
against a delay of delamination ends. All lines in (a) were plotted
with γ ¼ 0.64. Red circles are experimental points where
oscillatory trio is observed. Black open square and circles
indicate the points on the phase diagram for which the right
panels were obtained. Solid blue and black lines give the
existence domains for duo and follower, respectively. Dimen-
sionless wavelength, λ=h, (solid line) and dimensionless ampli-
tude, A=h, (dashed line) of oscillation vs e=Γ0 (b) and vs γe=Gc
(c), respectively.
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FIG. 4. Relative speed, Δv of the following point with respect
to the driving point right after the capture event. The initial
condition is depicted in the left upper inset: dots indicate
positions of lower (black) and upper (red) fronts on the crack
path. Right upper inset: Instantaneous speeds of the following
point and driving front if Δv ≥ 0. Lower inset: Instantaneous
speeds of front extremes on the crack trajectory as indicated on
left upper inset, if Δv < 0. These points periodically alternate
between following and driving points; vertical dashed lines
indicate capture events. Open circles indicate values used in
the insets
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and, therefore, undergo a discontinuous jump in velocity in
our simplified model.
To evidence the instability mechanism, we focus our

attention in the numerics on the velocity difference Δv
between the new following front and the most advanced
(driving) front immediately after the capture event (Fig. 4).
If Δv ≥ 0, the following point is faster than the driving
point and will capture it at the next time step. The two
fronts then alternate at each time step, which reveals that, in
practice, they move together. This dynamics persists in time
and a steady state is reached (upper right inset Fig. 4).
Conversely, if Δv < 0 (for larger values of γe=Gc, see
Fig. 4), the distance between fronts continues to increase
first, but as these two fronts evolve toward their steady
states, their relative speed is inverse, so that the following
point is able to eventually catch the driving point. The
process repeats itself into an oscillation (which either
decays or is steady) that bears the features of a relaxation
oscillation: a sudden acceleration at the capture point
followed by a process in which both the following and
driving fronts tend to a stationary propagation speed (inset
in Fig. 4) finally triggering a new event.
Conclusions.—We have presented a general, simple and

efficient framework based on direct computation of the
global energy release rate that is able to capture the rich
dynamics of multiple crack tips coupled with delamination.
Such phenomena would be out of reach of the powerful
tools of linear elastic fracture mechanics. The new insta-
bility mechanism leading to oscillatory fracture presented
here falls in the class of oscillation-relaxation, with a strong
perturbation relaxing toward equilibrium (but then trigger-
ing a new event). Such a relaxation mechanism seems to
capture the main features of other oscillatory fracture
problems [7,14,15] where the trajectory often evidence
kinks at the point of maximum amplitude, suggesting
periodic strong perturbations. Thus, the situation elucidated
here is the first case of fracture propagation where we can
express the relaxation mechanism in a simple set of
equations and which can serve as an inspiration to describe
oscillatory fracture in general.
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