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Elastocapillary adhesion of a soft cap on a
rigid sphere
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J. Bico *a

We study the capillary adhesion of a spherical elastic cap on a rigid sphere of a different radius. Caps of

small area accommodate the combination of flexural and in-plane strains induced by the mismatch in

curvature, and fully adhere to the sphere. Conversely, wider caps delaminate and exhibit only partial

contact. We determine the maximum size of the cap enabling full adhesion and describe its dependence

on experimental parameters through a balance of stretching and adhesion energies. Beyond the maximum

size, complex adhesion patterns such as blisters, bubbles or star shapes are observed. We rationalize these

different states in configuration diagrams where stretching, bending and adhesion energies are compared

through two dimensionless parameters.

I. Introduction

Wrapping a thin sheet on an adhesive sphere has been shown
to generate a rich family of branched or oscillating patterns of
adhesion.1,2 More generally, crushing a sheet of paper in the
hand leads to the development of crumpling singularities.3

Such complexity is a consequence of the relatively high cost in
stretching elastic energy involved in non-isometric deforma-
tions of thin sheets (proportional to the thickness h of the
sheet) in comparison with isometric bending (proportional
to h3). Indeed, following Gauss’ seminal Theorema Egregium,
mapping a plane into a sphere is a non-isometric transforma-
tion, and therefore generates tensile or compressive stresses
along the surface.4 Compressive stresses tend to induce wrinkles
as observed in the mechanical embossing of a plate on a curved
surface5–7 or when a flat thin sheet is deposited on the surface
of a spherical droplet of water.8 Conversely, regions under biaxial
tension usually remain smooth and match the imposed
geometry.7 In the case of the wrapping of a stiff adhesive sphere
by a naturally flat thin sheet, the typical width of the contact
pattern is mainly dictated by a balance of stretching and adhe-
sion energies, while bending energy is also involved in the
selection of the adhesion pattern. We propose to extend this
wrapping problem to the adhesion of a soft cap on a sphere of
different curvature, a situation that could seem mundane for
patients wearing contact lenses. Commercial contact lenses are

indeed only available within a few discrete radii of curvature, in
the vicinity of 8.6 mm, and may not exactly fit the shape of the
eyes they are aimed to adhere on. Such mismatch can hinder the
adhesion of the lens or induce stresses in the eye, leading to
undesired discomfort or abrasion issues.9 How does a contact
lens accommodate a possible mismatch in curvature?

Inspired by the practical issue of contact lenses, we designed
a model experiment where a thin and shallow cap of radius of
curvature r and base of radius a is deposited on a solid sphere
of different radius R covered with a thin film of wetting liquid
acting both as adhesive and lubricant (Fig. 1a). While caps with
a base smaller than a critical value amax can accommodate the
difference in curvature, larger specimens lead to complex adhe-
sion features such as blisters, branched stripes or star-shaped
bubbles that are reminiscent of the shapes observed in the liquid
blister test10 (Fig. 1b). The criterion for full adhesion is also valid
when the same elastic cap is deposited on the inner surface of a
rigid sphere. However, adhesion patterns display a distinct set
of morphologies such as circular, annular or oblong contacts
(Fig. 1c). We first determine experimentally and theoretically the
maximum size of the elastic cap leading to full contact for a given
mismatch in curvature, generalizing the work by Hure et al.1 We
then describe the different patterns obtained beyond this critical
size in a configuration diagram where stretching, bending and
adhesion energies are compared.

II. Experimental methods

Elastic caps are produced following the simple procedure
developed by Lee et al.:11 equal masses of liquid base and catalyst
of polyvinyl-siloxane elastomer (Elite Double from Zhermack)
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are mixed and poured on a rigid hemisphere. After curing,
homogeneous shells of radius r ranging from 25 to 200 mm,
uniform thickness 160 o h o 800 mm, Poisson ratio n C 0.5
and Young modulus E = 1.00 � 0.05 MPa or 750 � 20 kPa
(corresponding to Shore 32 and 22, respectively) can be readily
peeled away. Before peeling, the elastic shell is cut along a circle
of radius a that becomes the base of the cap. In order to prevent
possible suction effects of the cap to the rigid surface, a small
hole (with a typical diameter of 500 mm) is punched at the
center of the soft cap to equalize pressure.

Caps adhere on the rigid sphere through a thin layer of
ethanol mixed with methylene blue to visualize the contact
area. As ethanol of surface tension g = 22.0 � 0.2 mN m�1

perfectly wets both the cap and the rigid hemisphere, a layer of
alcohol remains deposited on both surfaces upon debonding.
Adhesion energy thus corresponds to 2g per unit area.

Based on light absorption, we estimate the thickness of the
residual layer of alcohol to be less than 100 mm in these contact
regions, which is much lower than the millimetric deflection of
the cap. Thicker layers are localized in menisci surrounding

these regions. The width of the menisci is typically a fraction of
millimeter and tends to vanish as alcohol slowly evaporates. In
our analysis, we thus neglect the potential effect of the thickness
of the layer of liquid in the deformation of the caps.

III. Maximum size of the cap

For a given mismatch in curvature, what is the maximum size
of the cap leading to total adhesion? Capillary energy promotes
adhesion while bending and stretching energies oppose the
deformations of the cap.12 Within the limit of shallow caps
(a { R,r), the adhesion energy is proportional to ga2. The
bending energy involved in the transformation scales as
Eh3a2DC2, with DC = 1/R � 1/r (see derivation in the Appendix).
Bending is therefore negligible in comparison with capillary

adhesion if DC { 1/Leb, where Leb ¼
Eh3

12ð1� n2Þg

� �1=2

is the

classical capillary bending length for a plate.13 The experiments
of this section are carried out in the regime DC o 1/Leb,
whereas this condition will not be always verified in the next
section, beyond the critical size.

Owing to Gauss’ theorema egregium, a change in the radius of
curvature of a spherical cap also involves distortions of the
metrics of the surface. The cap thus accumulates elastic energy
due to strains along the surface. For spherical caps (a { r), the
relative difference in the projected radius a and the radius
measured along the surface scales quadratically with a/r.
Flattening a cap of curvature 1/r and base radius a thus induces
strains proportional to (a/r)2 along the surface. Changing the
curvature of a cap from 1/r to 1/R thus leads to strains of the
order of

e � a2
1

r2
� 1

R2

����
���� (1)

The associated elastic energy scales as Eha2e2, while the
capillary adhesion energy is of the order of ga2. Balancing both
terms gives the maximal size amax of a fully adhering cap:

amax � R
g
Eh

� �1=4 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

r

� �2

�1
�����

�����
vuut

(2)

The limit r/R - +N corresponds to the relation obtained by
Hure et al.1 for a plane sheet adhering on a sphere: amax B
R(g/Eh)1/4. Conversely, the opposite limit R/r - +N describes
the case of an elastic cap deposited against a flat surface and
leads to amax B r(g/Eh)1/4. Finally, if the cap and the sphere have
the same curvature (r = R), no elastic cost opposes adhesion, and
amax is infinite. A more complete derivation of amax, based on the
minimization of the potential energy is given in the Appendix
and leads to a prefactor equal to 4.

To test eqn (2), we measure the maximum cap size amax

leading to full adhesion in a range of radii 25 o R, r o
100 mm, and stretching parameter 2.8 � 10�5 o g/Eh o
1.1 � 10�4. The critical size is determined with an uncertainty

Fig. 1 (a) Sketch of the experiment: an elastic cap of radius of curvature r
and base of radius a is deposited on a rigid sphere of radius R covered with
a layer of ethanol to provide adhesion. Ethanol is dyed with methylene blue
to visualize the contact area between the cap and the sphere. Alternatively,
the cap can also be deposited against the inner surface of the sphere.
(b) Caps deposited on the outer surface of the rigid sphere (top views). For
a given curvature mismatch, adhesion is total for caps of narrow base (b1).
However, beyond a critical radius amax of the base, complex adhesion
patterns are observed: for instance star shaped bubbles for r o R (b2) or
branched strips for r 4 R (b3). (c) Caps deposited inside a sphere. While the
criterion for full adhesion is preserved (c1), distinct patterns are observed
beyond the critical size: circular or oblong patterns for r o R (c2) or star-
shaped contact for r 4 R (c3). Scale bars represent 1 cm.
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of 1 mm. In Fig. 2, we represent the experimental values of

the normalized maximal adhesion size �amax ¼
amax

R

Eh

g

� �1=4

as a

function of %R = R/r. All the data collapse on a single master
curve, in good agreement with the theoretical law (eqn (2), with
a prefactor 4 as derived in the Appendix). We attribute the
scatter of the data to friction between the cap and the sphere
when the liquid layer becomes too thin.

IV. Beyond the critical size

Caps larger than the critical adhesion radius amax present
complex contact patterns as illustrated in Fig. 1b and c. The
physical parameters in our experiments are E, g, r, R, a and h.
They are expressed using two independent units, namely
lengths and forces. From the Vaschy–Buckingham theorem,
the complete description of this problem should require
four dimensionless numbers. However, we have identified
three main physical ingredients that are competing: adhesion,
bending and stretching energies. We thus expect the different
configurations to be described by only two relevant dimension-
less numbers comparing respectively stretching and bending
energies with capillary adhesion. Natural choices are the ratios
a/amax for stretching vs. adhesion and 1/(LebDC) for bending vs.
adhesion, respectively. Note that the last parameter can be positive
or negative depending on DC = 1/R � 1/r.

For the same curvature mismatch DC, the adhesion patterns
differ significantly as the cap is pressed outside or inside the
sphere. We thus present the various configurations in two separate
diagrams in Fig. 3a and b.

A. Contact lens configuration: soft caps outside rigid spheres

Fig. 3a summarizes the adhesion patterns observed when the
cap is placed outside the sphere. As described above, caps
with a base of radius a smaller than amax fully adhere to the
sphere (region (1) of the diagram). As a increases, delamination
occurs and contact is only partial. In the limit of stiff caps
(1/|LebDC| { 1), adhesion is too weak to bend the cap, which
remains mostly undeformed. In this regime, contact is limited
to a small region of the cap, defined by the intersection of the
undeformed cap and sphere. If the sphere is more curved than
the cap (DC 4 0), contact occurs only in the vicinity the center
of the cap (region (2a)). In the opposite situation (DC o 0),
only the periphery of the cap touches the sphere. The corres-
ponding annular contact preserves an air bubble at the center
(region (2b)). Conversely, caps with lower bending modulus
(1/|LebDC| c 1) display contact patterns with more complexity
and lower symmetry (patterns (3a,b) and (4a,b)). If DC 4 0, the
adhering region takes the form of elongated strips or branched
patterns, as observed when a sphere is wrapped with a thin
adhesive sheet.1 For DC o 0, we observe the central bubble to
evolve to star-like shapes with 3 to 8 arms.

For a 4 amax, the various domains are defined by the relative
magnitudes of adhesion and bending energies. As a tentative
rationalization, consider the transition from patterns (2a) to (3a).
In pattern (3a), the contact area scales as aamax and the adhesion
energy is of order gaamax. As the cap is overcurved by an amount
DC over its entire area, the bending energy scales as Eh3a2DC2.
We thus expect the transition between both regimes to occur
for a/amax B 1/(LebDC)2. Following the same argument, the
transitions between various adhesion patterns would occur for
different values of the ratio of the adhesion and bending
energies, i.e. for a/amax = ci�j/(LebDC)2, where ci–j depends on
the boundary between adhesion patterns i and j. The boundary
between adhesion on a disk (pattern (2a)) and along a strip
(pattern (3a)) is well described by c2a–3a = 5 � 1. For the
transition from strip to branched patterns, we find experimen-
tally c3a–4a = 0.8 � 0.2. In the region DC o 0, the transitions
appear more continuous, and different patterns are observed in
the same region of the parameter space. A more complete
classification of the family of patterns may require the dimen-
sionless numbers that we have disregarded. While the selection
of the various patterns most likely relies on the competition
between adhesion, bending and stretching energies, the expres-
sions for these energies may be different from what we propose
due to the complex shapes of the patterns.

B. Covering cavities: soft caps inside rigid spheres

The situation where the soft cap is deposited inside the spherical
cavity is described by the same dimensionless parameters
(Fig. 3b). We limit our study to a o R to avoid strong geometrical
confinement of the cap in the hemisphere. Similarly to the
previous case, buckled patterns appear when a exceeds amax.
In this regime, stiff caps (1/|LebDC| { 1) tend to maintain
their shapes, leading to very partial adhesion with the sphere:
small circular contact zone for caps more curved than the

Fig. 2 Normalized maximal adhesion radius āmax as a function of %R = R/r
as predicted by eqn (2). Triangles (circles) correspond to caps deposited on
the outer (inner) side of the rigid sphere, respectively. The color code
represents the value of DCLeb for each data point. The data are well fitted
by the asymptotic (DCLeb = 0) theoretical law derived in the Appendix:

�amax ¼ 4=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2
�� ��� 	q

(blue solid line). The brown dashed line corresponds

to the full law eqn (16) with DCLeb = 1.
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sphere (DC o 0) and contact along the periphery for DC 4 0.
More flexible caps display complex adhesion patterns:
elongated contacts (region (III.b)) for DC o 0 or multiple
delaminated peripheral areas (region IV.a) for DC 4 0. The
boundary between point-like adhesion and strip adhesion
can be described as in the case of adhesion outside a sphere:
a/amax = cII.b–III.b/(LebDC)2, with cII.b–III.b = 0.3 � 0.2. For DC 4 0,
the boundaries cannot be described by a law of the form
a/amax B 1/(LebDC)2. In contrast with adhesion outside a sphere,
large caps inside a cavity are geometrically confined, which
induces additional contacts. Further theoretical and experimental
studies are needed to elucidate this complex behaviour.

V. Conclusion

We studied the adhesion of an elastic cap on a rigid hemisphere
of different radius. The mismatch in Gaussian curvatures
prevents a complete adhesion, unless the cap is smaller than
a critical size. We derived this maximum size analytically by
balancing stretching and capillary energies. The theoretical law
we obtained describes adequately the experimental data, as
shown by the collapse on a single master curve. We described
the different delamination patterns observed in a configuration

diagram based on two dimensionless numbers a/amax and
1/(LebDC). We derived some simple scaling arguments to
account for the boundaries between the different patterns.
Nevertheless, the details of the shapes and boundaries between
different adhesion patterns in the parameter space still remain a
challenge to address theoretically and numerically. Unexplored
regimes may arise in the limit of very thin inextensible sheets
where the mismatch in Gaussian curvature is accommodated by
crumpling14–16 or ‘‘wrinklogami’’.17 This ‘‘contact lens’’ problem
could finally be extended to surfaces of arbitrary Gaussian
curvature. The interplay of geometry and adhesion still contains
mysteries to unravel.

Conflicts of interest

There are no conflicts of interest to declare.

Appendix

We derive the energy involved in the adhesion of an elastic shell
on a sphere as presented by Majidi et al. for an elastic sheet in
contact with a rigid sphere.12 We first determine the elastic
energy corresponding to the deformation of a cap of radius of

Fig. 3 Diagrams of configuration for the observed adhesion patterns when caps are put on the outside of spheres (a), and when caps are put inside of
spheres (b). Different colors and symbols correspond to different patterns. Solid curved lines are scalings for boundaries between different adhesion
patterns. Black bars on each picture are 1 cm.
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curvature r, base radius a, thickness h laid on a hemisphere
of radius R (as represented in Fig. 1). We first assume r 4 R.
In the limit where a is small compared to R and r, spherical
profiles of the sphere and cap are approximated by parabolic
profiles w(r) C �r2/2R and x(r) C �r2/2r.

Radial and azimuthal strains across the thickness of the
shell (direction z) are related to the radial displacement u and
to both profiles w(r) and x(r):

errðr; zÞ ¼ u0 þ 1

2
ðw02 � x02Þ þ zDC

¼ u0 þ 1

2
r2DKþ zDC

(3)

eyyðr; zÞ ¼
u

r
þ zDC (4)

where �0 is the derivative with respect to r, DK ¼ 1

R2
� 1

r2
is

the mismatch in Gaussian curvature and DC ¼ 1

R
� 1

r
is the

difference in mean curvature.
In the absence of shear, the local mechanical equilibrium in

the plane of the shell is given by
dsrr
dr
¼ syy � srr

r
. Radial and

azimuthal stresses srr and syy are related to strains through
Hooke’s law,18 which in the present configuration writes (in the
limit of thin shells, szz B (h/R)srr { srr,syy):

srr ¼
E

1þ n err þ
n

1� nðerr þ eyyÞ
� �

(5)

syy ¼
E

1þ n eyy þ
n

1� nðerr þ eyyÞ
� �

(6)

The local equilibrium then reduces to the following differential
equation:

u00 þ u0

r
� u

r2
¼ 1

2
ðn � 3ÞrDK (7)

The boundary conditions are u(0) = 0 by symmetry, and
srr(a) = 0, which expresses that the edge of the cap is stress-free
(we neglect tension created by surface tension). The homogeneous
equation is the classical Lamé equation,18,19 whose solutions are
of the form u(r) = ar + b/r. The 1/r term diverges in 0 and is
therefore not present. Moreover, a particular solution of eqn (7)

is uðrÞ ¼ 1

16
n � 3ð Þr3DK The solution of eqn (7) then writes:

uðrÞ ¼ 1

16
ð1� nÞra2 þ ðn � 3Þr3

 �

DK (8)

Using eqn (3) and (4), we derive the radial and azimuthal
strains:

errðr; zÞ ¼
1

16
ð1� nÞa2 þ ð3n � 1Þr2

 �

DKþ zDC (9)

eyyðr; zÞ ¼
1

16
ð1� nÞa2 þ ðn � 3Þr2

 �

DKþ zDC (10)

We can now express the elastic energy:

Eel ¼
ða
0

ðh=2
�h=2

2pr
1

2
sijeijdrdz

Eel ¼
E

2ð1� n2Þ

ða
0

ðh=2
�h=2

2prðerr2 þ 2nerreyy þ eyy2Þdrdz

(11)

The elastic energy may thus be decomposed as the sum of
stretching Est and bending Eb contributions:

Est ¼
p
384

Eha6DK2 (12)

Eb ¼
Eh3

12ð1� nÞDC
2pa2 (13)

(note that due to the crossed term erreyy, the dependence of Eb
with n is not 1/(1 � n2) as in the bending of a plate along a
single direction). The total potential energy Etot is the sum of
the elastic and the adhesion energies:

Etot ¼
p
384

Eha6DK2 þ Eh3

12ð1� nÞDC
2pa2 � 2gpa2 (14)

We minimize Etot with respect to a to find amax:

amax ¼
g
Eh

1

DK2

� �1=4

256� 128ð1þ nÞðLebDCÞ2

 �1=4

(15)

Assuming r o R would lead to the same result. The expression
for amax can finally be written:

amax ¼
R

g
Eh

� �1=4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

r2
� 1

����
����

s 256� 128ð1þ nÞðLebDCÞ2

 �1=4

(16)

In our experiments LebDC is small, we can therefore neglect
128(1 + n)(LebDC)2 in eqn (16), to find:

amax ’ 4R
g
Eh

� �1=4 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

r2
� 1

����
����

s (17)

and recover the scaling law derived in the main text.
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