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Et merci à Marcela, Antu et Iago, dont la venue annoncée pour juillet m’a forcé à me
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1. A REVIEW ON TEARING : CRACK PATHS IN THIN
PLATES

This chapter is meant to become a short review article on crack paths in thin sheets (to be
submitted to International Journal of Fracture)

1.1 INTRODUCTION

The history of elasticity [1] starts with slender objects (rods in fact). Hooke’s elastic law were
evidenced on springs and wires (1660). The non-linear equations for equilibrium of an elastic
rod where correctly obtained in 1744 by Euler, long before linear 3D elasticity theory was
settled in the 19th century. Slender structures, with a lower dimensionality, are more simple
both from a theoretical and experimental point of view. How do cracks propagate in slender
structures such as thin sheets?

We will call “tearing” the situation where fracture propagation in a thin plate is coupled to
out-of-plane displacements. These situations are very common in everyday life (when opening
a package [2] or removing wallpaper [3]), and have implication in engineering design because
slender structures are very commonly used (for example the hull of a boat may be torn by a
rock [4]), but they are also responsible for the formation of peculiar ice rafts [5].

In this article we will review a variety of studies on tearing path, with the goal of organizing
them in a unifying framework. A unifying remark is that the crack path seem to be unusually
reproducible. We will show how this surprising robustness of tearing paths is related to the
central role of geometry in the mechanics of thin plates (basic ideas on fracture and thin
plates mechanics are reviewed in the following section). We will also try to advocate that
tearing could also be considered when teaching an introduction to fracture mechanics, because
of the remarkable geometrical simplicity of a first order model (presented in section 1.2, with
consequences on tearing developed in section 1.3). We also review attempts of a more complete
treatment of the problem in section 1.4.

1.1.1 Mechanics of slender bodies : bending, stretching and geometry

For a comprehensive review of the mechanics of slender bodies, see [6, 7, 8, 9, 10]. Here we
choose to introduce bending and stretching rigidity, and the role of geometrical non-linearitie
through some historical remarks.

An important and very early contribution to fracture of slender bodies was done by
Galileo [11] in 1638. He noted that a rod is a lot easier to break when loads are applied
perpendicularly to the rod rather than along its direction. His idea is to note that the force F
applied perpendicularly to the rod has a levering effect, and is equivalent to a stretching load
Q such that Qt = FL, where L and t are the length and thickness of the rod. This large stress
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augmentation factor Q = (L/t)F explains why we rather break a stick by bending it rather
than stretching it.

Fig. 1.1: Stretching, bending and the levering effect illustrated in Galileo’s book [11]

We see that Galileo had correctly associated torques with rotation of the section of the
rod (i.e. bending)1. Of course Galileo could not known Hooke’s law (20 to 30 years later),
expressed using Young’s modulus E (1801) : for the stretching case, the displacement δ of the
end of the beam is given by F/tw = σs = Eδ/L and a longitudinal rigidity

ks = Etw/L

where w is the width in the case of a rectangular section. This leads to an elastic energy per
unit length 1

2
σ2
stw/E.

If the same force F is applied perpendicularly to the rod (bending case), Galileo would
have concluded that the levering effect increases stresses by a factor L/t (now on the order
of (L/t)F/tw), and elastic energy by (L/t)2 which now scales like tw(FL/t2w)2/E where we
recognize an expression of the form F 2/kB. From this expression, Galileo would have correctly
deduced that the flexural rigidity of a beam with thickness t and width w is

kB ∼ Et3w/L3,

and found that his levering effect induces a factor (L/t)2 in the ratio between stretching to
flexural rigidity.

The deflection δ of the beam obeys F ∼ kBδ = Et3wδ/L3, which can be rewritten into a
linear relation between torque M = FL and curvature κ ∼ δ/L2 :

M = Bκ (1.1)

with B ∼ Et3w. This linear constitutive law is a possible starting point for the theory of beams
and plates. It holds as long as the curvature is small κt� 1. The correct value of the bending

1 Galileo uncorrectly placed the axis of rotation on the boundary of the beam. In fact the debate on the
position of the neutral line lasted until the end of the 18th and beginning of 19th century [1]
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stiffness [6, 7, 9, 12, 10] for a beam with width w � t is obtained by solving the 3D elasticity
in the section, and is B = Et3w/12(1− ν2).

Galileo had seen that slender structures have two modes of deformation, bending and
stretching, with very different relative stiffness, depending on the slenderness: kB/ks ' (t/L)2.
For the same force, thin rods will undergo large out-of-plane deflection (and therefore stresses),
but very small change of length. It is therefore tempting to consider that in the limit of
vanishing thickness, rods and sheets may be considered as inextensible.

But things are more complicated. These arguments were based on hypothesis of linear re-
sponse (for vanishing forces) : if loads are extremely high, bending may saturate and stretching
becomes the dominant mode again [13]. But even in the linear case, boundary conditions may
prevent the existence of isometric solutions (deformations compatible with no extension of the
neutral line). In fact this is in general the case for a good design in engineering, because the
rigidity of the structure is largest. For example the expected load on a truss should generate
stretching of its members, not pure bending. This argument defined the shape of Eiffel’s tower
[14] for a maximum rigidity against distributed wind loading.

In the case of sheets, the condition of isometric deformation is very restrictive. A neces-
sary condition is that Gaussian curvature has to be zero [15] everywhere. Surfaces isometric
to a plane, called developable surfaces, can be seen as a collection of straight lines with the
supplementary conditions that the tangent plane is constant along each line. If they are ex-
tended far enough, such surfaces always include singularities where the curvature is infinite.
Particular examples are cylindrical surfaces (singularity at infinity) and conical surfaces (one
singular point).

Crumple a piece of paper in your hands: isometric solution compatible with these boundary
conditions will in general include singularities [16, 17]. These crumpling singularities are in
practice regularized because they would lead to infinite bending energy [6, 8, 17], at the cost
of some localized stretching [16, 18].

We see that in the elasticity of thin sheets the interplay of two modes of deformation, and
the role of geometry gives a non-trivial and rich behavior.

1.1.2 Three-dimensional Fracture Mechanics

Although things have been observed to break for ages, with extremely important practical
consequences, modern mechanics of fracture is comparatively a young science. For a long time
failure was assumed, as Galileo did, to take place only when a critical stress is reached in the
material, disregarding stress concentration effects at the tip of a crack.

In this sense, the foundation of modern fracture mechanics only dates from the 20th century,
after Griffith’s work in 1921 [19]. The field has since then known an intense development, mostly
after Irwin’s contributions in the 1950’s. Several fundamental questions are very active field of
research.

For example the question of initiation of a crack from a homogeneous flawless material
is still difficult even if some empirical answer can be deduced from experiments. Another
type of question is to determine the mechanism of propagation at the level of micro-structure
of different materials (what is the origin of dissipation, at which scale does plasticity play a
role, how does heterogeneities modify the toughness of the material). The study of dynamical
propagation is also very active (what limits cracks speed, determines branching).

Finally, if we consider the quasistatic propagation of a pre-existing crack in a brittle mate-
rial, there is an unambiguous answer to the question “when will it propagate”, but not for that
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equally important one “in which direction ?” We will discuss here several experiment where the
main question is to understand how the tearing crack selects its path.

When does a pre-existing crack propagate?

Some early works before Griffith noted that linear elasticity equations lead to diverging stresses
near the tip of a notch [20]. More precisely [21, 22, 23], near a fracture front, the 3D isotropic
linear elasticity solutions have a universal behaviour, and can be seen as the superposition of
three singular solutions associated to modes I to III, with coefficients KI , KII , KIII called stress
intensity factors. These solutions are somewhat puzzling because stresses are infinite at the tip
as soon as the weakest force is applied on the material generates a non-zero K. It seems that the
material will break at the tip, and therefore the crack propagates at the slightest loading. This
is of course because linear elasticity does not hold for large stresses (in fact it is to be trusted
for vanishing stresses), and there is a zone close to the tip where these diverging solutions are
regularized by non-linear elasticity and/or plasticity.

So why bother about these elastic solutions? If the scales are separated enough (case of a
brittle material), these solutions still encode the loading and geometry of the problem into 3
numbers, which will be passed on to the process zone. We can therefore expect that a crack
propagates when a certain criterion F (KI , KII , KIII) = 0 is attained [22], but this criterion
cannot be learnt from linear elasticity alone.

Griffith stated that a pre-existing crack propagates when it releases enough energy (work
of the operator and stored elastic energy) to compensate for a cost of fracture Gc per area
of the new surfaces. Although he had in mind the surface tension of the material, this value
is negligible compared to plastic dissipation during propagation for most materials. If the
dissipation is localized around the crack tip, we can still define an effective irreversible surface
energy. However we should keep in mind that this quantity may depend on the details of the
plastic processes, and therefore on the stress intensity factors.

In term of stress intensity factors, the energy release rate for propagation in the direction
of the initial crack can be computed, so that the propagation criterion in this direction can be
expressed in the expected form (plane strain):

G =
1− ν2
E

(K2
I +K2

II) +
1 + ν

E
K2
III = Gc

This expression also gives Griffith’s criterion for a crack changing direction through a kink with
a given angle, if the stress Intensity factors K are the one that the crack tip undergoes after it
has turned and propagated an infinitesimal distance in the new direction [24].

In which direction?

Up to now we have assumed that the direction of propagation is known, and we have obtained
a propagation criterion, which is different for each arbitrary choice of the direction. How to
predict the direction of propagation? This question is still debated : two criterions are proposed.

Consider a 2D fracture problem in an isotropic material. It is reasonable to assume that a
crack continues its straight path if the stress field is symmetric with respect to this direction.
Looking at the linear elasticity solutions, we see that this is the case if kII = 0. This is the
Principle of Local Symmetry [21, 25, 26]. In a continuous experiment where the loading is
varied continuously, one expects a crack to adapt smoothly its path so that it keeps all the time

kII = 0.
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If a condition kII 6= 0 is suddenly imposed, then it is thought that the crack will kink and
choose a new propagation angle such that right after the kink, it will satisfy kII = 0.

Another point of view is to imagine that the magnitude of the loading is increased progres-
sively, and to suppose that cracks propagate as soon as they can, in the direction which first
satisfies Griffith’s criterion. Equivalently, cracks propagate in the direction which maximizes
the energy release rate for a fixed loading [27].

θ is the direction which maximizes G(θ) for a given fixed loading

These two criterions actually coincides if propagation is smooth : to say “kII = 0” is
equivalent to say that “G(θ) is maximum in the initial direction of the crack” [26, 24, 28].

But if there is a kink, each criterion lead to different answers. Starting from a loaded
crack, the new stress intensity factors experienced by a kinked extension can be computed
[24], and the energy release rate are deduced in the different directions. It is found that the
direction which maximizes the energy release rate does not satisfy kII = 0. The principle of
local symmetry therefore predicts a different direction. The difference in angle between the two
directions is very small, and is almost indistinguishable in experiments. But this leads to some
uncomfortable questions:

• If we follow the Principle of Local Symmetry, then as loading increases there are first
other directions along which it is energetically favorable for the crack to propagate. Why
would fracture refrain to propagate when Griffith criterion is satified, and wait for higher
load to propagate in a direction where kII?

• Suppose that we follow the direction given by the maximum energy release rate criterion.
Just after the kink, the direction selected does not obey kII 6= 0. A new kink is therefore
necessary, but it will again lead to a non zero shear stress intensity factor kII , so that
the story repeats itself. This criterion leads to a cascade of kink [21], which is not very
satisfying. One suggestion to avoid this paradox is to note that the kinking event cannot
be continuous in time [28] but undergoes a dynamical phase.

Another way to solve this uncomfortable dilemma is to zoom out, and follow Cotterell and
Rice [26] : “in practical terms the crack should come under the KII = 0 criterion when the
fracture process zone is no longer affected by the discontinuity”. The experimentalist point of
view is also to wonder if kinks (mathematical discontinuity of the direction of the crack) exists:
can a crack turn with a radius of curvature smaller than the irreversible process zone that it
carries around with it?

We will adopt a pragmatic conclusion: as long as we are not interested in the process of
discontinuous point of the crack path, both criterion give the same result.

1.1.3 Tearing thin plates

We can think of a crack in a thin plate as a fracture front propagating in a 3-dimensional
object, whose thickness t happens to be smaller than the other lengthscales (typical size L).
But traditional approach to thin plates mechanics takes advantage of the small parameter t/L
to reduce the elasticity in the direction of the thickness, and obtain 2dimensional description.
In this point of view, the crack tip becomes a point and the crack path is a curve.
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Stress intensity factors in thin plates

A possible approach for the description of a crack singularity in a thin elastic plate is to define
the equivalent of modes I, II, III for linear thin plate elasticity. Williams found the singular
solutions valid around the crack tip [29, 22, 30] for Kirchhoff plate equations [9, 7, 6]. In addition
to the usual in-plane modes KI and KII , there are two other modes, k1 and k2 which correspond
to a symmetric bending mode and antisymmetric twisting-transverse shearing mode2. The
energy release rate for propagation (again in the direction of the crack) is [30]

G =
1

E
(K2

I +K2
II) +

π

3E

(
1 + ν

3 + ν

)
(k21 + k22)

Two difficulties arise if we were to follow this approach.

• First, we are actually interested in situations with very large geometric non-linearites,
and the validity of this approach is not clear, as well as the practical recipe to compute
the stress intensity factors from the imposed large scale loading.

• A second question is to deduce the direction of propagation from the values of the stress
intensity factor. What is the equivalent of the Principle of Local Symmetry? The stress
field associated with k1 is symmetric with respect to fracture direction, whereas that of
k2 is antisymmetric (like usual mode II). But the angular dependence of these two anti-
symmetric mode is different. The condition for a symmetric stress field is k2 = KII = 0.
Should we consider that these two conditions are necessary for a crack to propagate
straight? We only need one condition to determine one angle.

Energetic approach

Because of these difficulties, we will adopt an energy point of view in the remaining of this
article: Griffith’s criterion and the criterion of maximum energy release rate. The energy
release rate will be computed from variation of the elastic energy of the system (and operator’s
work), and not from an explicit calculation of the stress intensity factors. This approach has
the advantage of allowing large out-of-plane displacements if one can evaluate bending and
stretching energies. It is not often possible to obtain exact expression for these energies, but
we will see how an interesting approximated simplified model.

This approach assumes that the process zone is small enough that the crack that the crack
tip can be treated as a point (the details of the local field around it are not important). Another
important assumption is that fracture energy Gc is independent of the fracture mode.

1.2 PEELING AND THE “INEXTENSIBLE FABRIC”
APPROXIMATION

Before entering the subject of tearing, we present an approximation used in the study of peeling
when measuring adhesion energies [31, 32]. We will then use this approximation (that we name
“inextensible fabric model”) for tearing configurations.

2 Because of inherent assumption in the kinematics of Kirchhoff equations the shear stresses diverge in r−3/2

instead of r−1/2, a feature which can be corrected within a Timoshenko-Reissner plate theory [22, 30]. But
these effects are only relevant at a distance to the tip inferior to the thickness.
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Consider a thin sheet adhering to a substrate (adhesion energy Γ), with width w, bending
rigidity B = Et3/12(1−ν2) due to a Young’s modulus E and thickness t, pulled perpendicularly
to the substrate (see figure 1.2) with an imposed force F . All the material stuck on the substrate
is in its rest state and has zero elastic energy.

The work of the operator is converted to elastic and surface energy (Griffith’s criterion for
adhesion):

Fdy = dEel + Γwdx, (1.2)

where Eel is the elastic energy of the flap, and is a function of the force F , the geometry (width
w and length L of the flap) and material properties.

Fig. 1.2: Peeling of an adhesive strip perpendicularly (φ = π/2). left : a strip with no bending
rigidity, with a sharp corner at the peeling line. right: a strip with bending rigidity.
In fact this second figure can be seen as a zoom of the figure on the left close to the
peeling front

Inextensible plate, with zero bending rigidity : inextensible fabric model

In this case, the main point is that there is no elastic energy in the system and dEel = 0. Ge-
ometry also imposes dy = dx because lengths are conserved (inextensibility). The propagation
of a peeling front therefore requires a constant force [31]

F = Γw.

Including stretching

We keep bending stiffness B = 0 for now, but consider in-plane strains. Because it is subject
to a pulling force F , the flap is stretched, with a strain ε = F/Etw. The elastic energy stored
in the extensible flap Eel = EtwLε2/2 = F 2L/(2Etw) increases with flap size L, and may
therefore be large if the flap is long. We will however see that it is possible to ignore the
stretching of the plate in most cases, even if the flap is extremely long.

In fact the peeling force F is here also constant (and so is the strain ε). Because the flap is
elastic, equation (1.2) now includes a term dEel = Etwε2dL. Another difference with previous
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case is that the distances are stretched so that when the front advances, dx = dL = dy/(1 + ε).
Finally equation (1.2) becomes

F (1 +
F

2Etw
) = Γw,

a result first shown by Kendall [32]. It is surprising that the peeling force F is found lower
than if the flap were inextensible, because of the additional work needed for the ever increasing
stretching energy. But in fact the extensibility of the strip leads to a larger travel distance for
the same advance of the peeling front, so that the operator indeed provides a larger energy (than
in the inextensible case) by the work of a smaller force. Because we assumed F/Etw = ε� 1
for the use of linear elasticity, we simply find F ' Γw(1 − ε/2) at linear order. The peeling
force is therefore very slightly modified by the finite rigidity of the material if the flap is not
seen to stretch by a large ammount (ε = F/Etw � 1).

Bending energy in an inextensible strip

The shape and elastic energy of the flap is invariant in the z direction, and can therefore be
determined using an inextensible elastica equation. The solution of this problem can be written
analytically (see Appendix 1.6.1 with φ = π/2):

Eel = (2−
√

2)
√
FBw,

under the assumption that L�
√
Bw/F , or in other terms, that the size of the fold (boundary

layer where curvature is localized) is much smaller than the length L of the flap.
In this framework, the solution of Griffth’s criterion involves a constant force F . Indeed,

with constant F and w, the fold shape remains identical. As a result dEel = 0 and dy = dx, so
that equation (1.2) leads again to

F = Γw.

When the bending rigidity of the sheet B goes to zero, the elastic energy of the flap Eel ∼
√
BΓw

does vanish, as well as the radius of curvature (and the size) of the fold3 R ∼
√
B/Γ. At the

end we are left with a straight fold shape having sharp angle on the peeling line, and zero
bending energy. This model converges towards the inextensible, infinitely flexible sheet limit,
or the “inextensible fabric model”.

Conclusion

We have seen in this simple situation that the “inextensible fabric” approximation does a good
job at predicting peeling forces and elastic state of the system under certain conditions:

As we could have expected, stretching of the material can be neglected if strains ε ∼
F/Etw � 1 are small. We see that stretching energy F 2L/2Etw vanishes when rigidity Et
becomes infinite, as we can expect for a spring with increasing rigidity k under a constant force
(the energy F 2/2k decreases with rigidity).

The situation is reversed with bending energy which becomes negligible when bending
rigidity vanishes in this strongly non-linear regime. Indeed for low bending rigidity, the ge-
ometry of the system is only modified in a boundary layer with size R ∼

√
Bw/F , where

curvature (on the order or 1/R) and bending energy are localized. The total bending energy in
this system

√
BFw does vanish with rigidity B (the loading F kept constant). The infinitely

3 We find again the elasto-capillary lengthscale [33, 34] over which surface and bending energies equilibrate.
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bendable approximation describes well the geometry if the size of system L�
√
Bw/F is large

compared to the size of the fold.
We observe that for a given geometry and material, there is a range of force F

Bw/L2 � F � Etw. (1.3)

for which the strip is close to being inextensible, infinitely bendable, and therefore can be
assumed to store no elastic energy. This is demonstrated rigorously 4 in [13].

1.3 INEXTENSIBLE FABRIC MODEL : FRACTURE MECHANICS
OBEYS GEOMETRY

In this section we study how fracture propagates in an inextensible fabric. We will see that this
leads to a very simple model for crack propagation, where geometry plays the dominant role.
We will also compare its preditcions to experiments in the different configurations described
in the literature, which we classify according to the number of cracks involved and the type of
loading (“pulling” or “pushing”).

An important assumption will be that the number of crack remains constant in the exper-
iment (it is very difficult to initiate new cracks in the material used in experiments). In all this
section, the argument will be developed with imposed force F .

1.3.1 Two cracks configurations (pulling and pushing are straight)

Pulling on the flap

We consider the case where a flap between two notches is pulled, as in figure 1.3. In the
assumption of inextensible fabric, if the plate is clamped on the dashed boundaries, only the
flap can be moved out of its initial position, the rest of the sheet being rigidly linked to fixed
boundaries. Indeed any displacement of other points would generate an elongation prohibited
by inextensibility. This also true if the sheet is not clamped on its boundaries, but instead
adheres on a flat substrate from which it is pulled. In this case a straight peeling front joining
the cracks propagates simultaneously with them. We note Γ the adhesion energy (Γ = 0
corresponds to clamped boundary conditions) and w the width of the fold.

No elastic energy is involved in this inextensible fabric approximation: as the crack prop-
agates, energy conservation (Griffith’s criterion) is simply:

Fdu = Γwdl + 2Gctds

The geometric conditions du = dl(1− cosφ) and dl = ds cos θ can be deduced on figure 1.3, so
that the energy release rate per crack is simply

G(F, θ) =
F (1− cosφ)− Γw

2t
cos θ. (1.4)

The geometrical factor (1−cosφ) is well known in the theory of peeling [31], but applies equally
to the clamped boundaries situation (with no adhesion energy Γ = 0).

4 As the slenderness ratio e = t/L vanishes, 3D-elasticity converges towards the inextensible, infinitely bend-
able model if the normalized loading η = F/Etw follows η ∼ e. This falls in the conditions (1.3), which can be
rewritten into 1� η � e2.
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pulled fold

Fig. 1.3: Simple pulling geometry. The sheet is clamped on the dashed boundaries, with two
notches. The resulting flap is pulled in a direction with an angle φ with respect to
the plane. What is the direction θ of propagation?

The consequence is that in all these configurations, the energy release rate for a fixed
loading F is maximum for θ = 0, and we obtain the first rule :

Cracks propagate perpendicularly to a pulled fold. (1.5)

The force necessary for crack (and peeling) propagation depends on material properties F =
(Γw + 2Gct)/(1 − cosφ). However we note that the direction of propagation is independent
of all material properties (fracture energy Gc, material rigidity and thickness t, magnitude of
adhesion Γ), and independent of many loading characteristics : the size of the flap w, the location
of clamped boundary conditions, the angle of pulling φ, and the speed of the experiment (as
long as kinetic energy can be neglected)!

In experiments [3] the crack path are indeed remarkably reproducible however, however the
cracks are observed to converge (θ > 0) and we will see in section 1.4.1 how this convergence is
related to the finite bending rigidity of the sheet.

Recent experiments have shown how these laws are modified when a flap is torn from a sheet
adhering on a curved cylindrical substrate [35]. The geometry of the flap is obtained through a
reflection with respect to a plane P, an operation that conserves lengths (see figure 1.4-a). The
fold joining the two cracks is therefore lying along the intersection of this plane with the curved
substrate, a portion of an ellipse, which geometry is set in the experiment by the curvature of
the substrate and the pulling angle φ. Unless the peeling angle is φ = π or φ = 0, this means
that the fold is a curved line in the plane of the sheet. For simplicity we will consider the case
with φ = π/2, so that u = l, and Griffith’s criterion simply reads Fdl = Γwdl + 2Gctds. The
energy release rate 2tG = (F − Γw)ds/dl is maximum when the ratio ds/dl is maximized, or
in other words, when the cracks advance the least amount for a given step dl of the front.

The smallest path length for the crack to reach the displaced (identical) front is obtained
when propagation is perpendicular to the front (as illustrated in figure 1.4-c). We therefore
find that rule (1.5) still holds, if understood locally. This is a consequence of the fact that
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a) b) c)

Fig. 1.4: a) Inextensibility requires that the peeling front from a cylindrical substrate lies at
the intersection (dotted line) of the substrate with a plane P (yellow), an allipse.
b) indeed, the complete geometry of the peeling flap is obtained by reflection with
respect to plane P . The height above the substrate l is equal to the length u for a
perpendicular peeling angle φ = π/2. c) When the cracks propagate symmetrically
by ds, the front will lie on the same ellipse, but displaced by dl. The ratio dl/ds is
therefore maximized when the cracks propagate perpendicularly to the peeling front,
leading to a diverging propagation in the situation presented here.

cracks are point singularities in this model: each crack propagates perpendicularly to the local
orientation of the fold in its neighborhood, and we expect the rule (1.5) to be very general.

In the case of curved substrate the two cracks will therefore not keep a constant distance,
but will converge, or diverge5 depending on the sign of the curvature of the cylinder. In the
case of figure 1.4, the cracks are diverging.

Pushing on the flap

We now consider the case of a blunt object pushing between two notches, as in figure 1.5. The
sheet is clamped on all the dashed boundary conditions. Part of the sheet bends out of the way,
until the objects hits the boundary of this bendable zone, which we will call the “active front”.
We note that the bendable zone covers the exact same geometrical area as the flap in previous
configuration, for the same geometrical reasons, so that the “active front” and the “pulled fold”
share the same geometrical line. Because there is no easy experimental realization of a peeling
version of this pushing configuration (where the plate would not be clamped on the boundaries,
but adheres on a substrate), we only consider the clamped configuration and take Γ = 0.

Here the energy release rate is again given by the rate of work of the operator, 2Gtds = Fdx,
with the simple relation ds cos θ = dx, so that we are lead to the same equation as (1.4) where

5 The experimental flap shapes are more complex because converging effects due to finite bending rigidity
(section 1.4.1) has to be considered, and may dominate over the diverging terms for weak substrate curvature
or thick sheets [35].
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active front

Fig. 1.5: Pushing on two cracks. The sheet is clamped on the dashed boundaries, with two
notches. The resulting flap is pushed upon by a blunt object. What is the direction
θ of propagation?

φ = π/2.

G(F, θ) =
F

2t
cos θ

The maximum energy release rate therefore also predicts that in the pushing configuration
θ = 0, so that the fracture propagates in the direction perpendicular to the pushed front, which
is also here the direction of pushing. These two directions do not always coincide, and we will
see in paragraph 1.3.3 (see in particular figure 1.12) that the general rule is

Cracks propagate perpendicularly to a pushed front. (1.6)

In experiments, small negative propagation angle θ < 0 are observed and cracks slowly
separate. This can be attributed to in-plane strains (section 1.4.2).

Robustness of tearing path

We see that within this approximation the energy release rate does not depend on material
properties, nor on the history of the crack, nor on the actual size of the flap or location of
clamped boundary conditions, nor speed of the experiment, but only on the direction θ of the
crack with respect to the fold/front, and intensity of the force. This is at the root of the
remarkable reproducibility and robustness of the tearing crack paths that will be presented in
the next sections.

We have also shown the rationale behind the organization of this review : there is a
strong analogy between pushing and pulling in the inextensible fabric model, although the two
situations sometimes lead to different behaviour in experiments because of thin sheet elasticity.

In fact if a pushing experiment is performed as in figure 1.5, an instability takes place
(unexplained to our knowledge), and one of the crack wins over the other one which stops
propagating. Pushing on two cracks is not generally observed [36] (unless the material is
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plastically deformed [37]) and leads to single crack configurations, which are reviewed in the
next section.

1.3.2 Pulling on a single crack (hyperbolae and spirals)

We review here several tearing experiments where only one crack propagates, and compare the
trajectory of the cut with predictions by the inextensible fabric model.

Trouser test

The “trouser test” is a standard configuration used to measure the fracture energy in thin
plates and elastomeres. In a strip with a cut, the two flaps are clamped and pulled away from
each other (see figure 1.6). Here the work of the operator is Fdy, when the crack advances by

θ

F

y

0

Fig. 1.6: Trouser test. θ is the angle of propagation.

a surface tds, with geometry imposing dy = 2ds cos θ. The energy release rate G = 2(F/t) cos θ
is maximum for θ = 0. The propagation is predicted in the direction parallel to the boundaries
of the strip. In fact if the notch separates the strip in two flaps with equal width, the crack
path should be straight (θ = 0) for reasons of symmetry, independently of the assumption of
inextensible fabric. This straight propagation is observed in experiments where the flaps are
rolled on parallel cylinders [38], even if the notch is off centered.

Pulling on two points

An ingenious tearing experiment which somehow generalizes the trouser test configuration is
reported in [39]. A notch is cut in a thin sheet, and two points A,B are selected, one on each
side of the notch. These two points are pulled away from each other, so that only forces (no
torque) are applied, represented in red on the figure 1.7. In what direction does the crack
propagate?

A key observation is that for infinitely bendable sheets, the two red lines (AC, BC) drawn
on the sheet that join the pulling points to the crack tip C become a single straight line when
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A

C

B
A

C
B

Fig. 1.7: Two points on a flat sheet (left) are pulled away from each other (right).

loading is applied. This is a consequence of the fact that an infinitely bendable sheet cannot
sustain torques. We note l the total distance between ACB in the loaded configuration. As the
crack advances by a distance ds, the energy release rate is here Fdl

A
C

B
Initial cut

Boundaries of the sheet

A
C

B

Fig. 1.8: Tearing hyperbolae: The crack in C propagates when the sheet is pulled by points A
and B. The optimal direction bisects the angles ACB (θ1 = θ2). So that the possible
trajectories are hyperbolae, with focal points in A and B, drawn on the right.

Because the sheet is inextensible, l can also be found on the flattened sheet (initial configu-
ration) by adding distances l1=AB to l2 =BC measured along the red lines (figure 1.8). Simple
geometry shows that dl1 = cos θ1ds if θ1 is the angle between the direction of the crack and the
line AC. As a result, the energy release rate becomes Fdl/tds = F (cos θ1 + cos θ2)/t. Because
the sum θ1 + θ2 is constant, the maximum energy release rate is achieved when θ1 = θ2 : the
crack propagates in the direction that bisects the sector ACB.

As a result, the crack path has the property of being at each point C tangent to the bisector
of angle ACB. This is the definition of a hyperbola with focal points A and B. All the hyperbola
have an asymptote. Indeed when the crack moves away from A and B, l1 ∼ l2 � AB, so that
the crack almost follows the line (AC) which is the same as (BC), with a constant angle with
respect to the segment AB. Depending on the initial position of A,B and the crack tip C, one
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of the hyperbola (and final asymptote) is selected. If in the initial case l1 < l2, the crack path
turns initially towards A. If l1 = l2, then this property stays true all along the crack path which
follows a straight line.

Some experiments were performed with paper in [39] to check this theory, but the agreement
with the theory was obtained with an ad hoc fitting parameter introduced to account for
anisotropy of the paper.

Pulling on a flap, with one crack

We now come back to situations where we pull on a flap, but this time with only one crack.
We start with a sheet held on its boundaries (or adhering on a flat substrate), that is cut
along a particular path : a circle plus a curved line (as in figure 1.9-a). This defines a flap

pulled fold

hole
curved cut

crack

T

T

T

Fig. 1.9: Cutting a brittle sheet along a line leads to a propagation in a spiraling shape. a)
The initial seed (a hole plus a curved line) and b) the resulting flap. c-d) The crack
propagates perpendicularly to the fold. e-f) The crack path evolves into a spiral.
Gray region corresponds to the convex hull of the crack path. In dotted blue line is
the pulled fold.

(figure 1.9-b) that can be pulled perpendicularly to the plane of the sheet. The crack should
therefore propagate perpendicularly to the pulled fold, as we have seen before. But as the
crack propagates, the geometry of the flap evolves in a more complex way : the fold rotates
progressively (figure 1.9-d), so that the crack tip follows a spiraling trajectory (figure 1.9-f).
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Spiral patterns are sometimes observed in the fracture of strained film bonded to a sub-
strate: converging spirals are reported in drying layer [40, 41, 42, 43, 44] when the material
debonds from the substrate. Another different morphology is the diverging spiral crack ob-
served in however similar systems [45, 46, 47, 48] where stresses are due to the deposition of
the films. However in both cases the spirals seem to be archimedian, with the radius decreasing
or increasing by a specific characteristic distance at each turn. Fracture propagation is due to
residual tensile stresses, so that he loading is also completely different from the tearing situation
studied here.

Following the inextensible fabric model, the evolution of the fold can be deduced from
simple geometry. We first look for the points which stay fixed in an inextensible sheet with
clamped boundaries when a given continuous line is cut. All the points of a segment joining two
fixed points are fixed: they cannot be displaced in any direction without changing the length
of the segment. But this argument does not hold if the segment intersects the crack trajectory
because the material segment is not continuous. The area swept by all segments joining two
points of the boundary that do not intersect the cut line is therefore an area which is rigidly
fixed. The remaining points are not rigidly linked to the boundary6, and are free to move out-of
plane. This is the flap region, which can also be defined as the set of segments joining any two
points of the cut line, i.e. the convex hull of the cut line.

Indeed on figure 1.9, the flap region does correspond to the convex hull of the previous cut
(in grey on drawings on the left). The advancing front of this convex hull is the pulled fold (in
dotted blue line), a segment which starts on the advancing crack, and ends tangentially to the
cut line at point T (drawn in orange).

Consider the height z of the 3D structure on figure 1.10 obtained when the operator pulls
on the tip of the flap. Because the sheet is considered infinitely flexible, z is simply the distance
between the pulling point and the line along which the flap is fixed (the advancing front, also
denoted pulled fold, in orange) measured along the cut flap: this is the length of the shortest
curve drawn along the flap that links the tip to the front (in red on figure 1.10). The distance
z is therefore the length of the path from the pulling point to point T . Under loading by the
operator, this curved line becomes straights, causing the complex three-dimensional structure
bent around it at no energetic cost in this model.

Because inextensible fabric have no elasticity, the energy release rate reduces to the work
of the operator G = Fdz/ds. The direction of propagation therefore maximizes the geometrical
ratio dz/ds. This is the direction which minimizes the crack advances ds for a fixed dz. If the
height increases by dz, this leads to an advance by dz of point T (figure 1.10-right), and the
position of the pulled fold (orange line) is set, because of the tangency condition. The crack
tip must lie on this line, and the minimal distance from previous position is obtained through
a jump perpendicular to this fold line.

As a result, the crack propagates perpendicular to the pulled fod : here again, we have
recovered the rule (1.5). In fact, this is not too surprising because the local loading configuration
near the the crack tip (one side pulled up, the other side attached to the boundaries) is identical
to that experienced in a double crack geometry (as in figure 1.3).

We now have a construction rule for the the crack trajectory, starting from a seed line : the
crack always propagates perpendicularly to pulled fold (boundary of the convex hull of the crack
path), which always stays tangent to previous crack trajectory. We note that this construction
rule is based on angles, has no internal length scales, so that it applies equally at all scales. A

6 Things are more complex if there are several non-connected cuts
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T

T

Fig. 1.10: Pulling on a flap with only one crack leads to a spiral. (left) The pulling fold is
along a straight segment (in orange) joining the crack tip to a point T where it
is tangent to the crack path. The height of the tip of the flap above the clamped
plane z is given by the length of the crack path from the flap tip to the tangency
point T . (right) During fracture, the tangency point T advances by dz, so that
the crack must lie on the new tangency line. The maximum energy release rate
corresponds to the direction of shortest step ds for the crack to reach the new
yellow line: perpendicular to the fold line.

famous geometric curve with this scale-independant shape property is the logarithmic spiral,
whose radius grows exponentially with the number of turn. It is sometimes called equi-angular
spiral, because angular properties are conserved along the spiral. Indeed, the geometry of the
spiral at one point is identical to that around any other point, only scaled out and rotated.
Amongst those spirals, only one has the pitch that corresponds to the construction rule that we
defined: its radius grows like exp (pψ) (ψ being the polar coordinate angle), where p ∼ 0.274
[49].

Starting from any geometry of initial seed, we do observe on a simple numerical integration
that the construction leads to a spiral trajectory, which asymptotes towards this spiral. In the
experiments [49], we observe a behavior compatible with an exponential growth, but with
a slightly different exponent (see section 1.4.2), and with oscillations which we interpret as
anisotropy effects.

An interesting feature is the robustness of this natural spiral path (independent of position
of boundaries, speed, pulling angle), and its exponential growth. It may be used as an easy
opening trick for packages. As the user pulls on the pre-cut tab, the crack spirals and quickly
reaches the boundaries of the package. An entire face of the package is destroyed, and the
product may be removed easily (easy opening patent [50]).

1.3.3 Pushing on a single crack (oscillations and spirals)

In recent years, several quasistatic tearing experiments have involved the propagation of a single
crack by pushing a blunt tool through a thin sheet.
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Oscillation

In a typical experiment [36, 51, 52, 53, 54, 55], a blunt tool perpendicular to the plane of the
sheet is displaced with a constant velocity along a straight trajectory. The sheet is clamped on
its boundaries and includes a single notch in which the tool is inserted. If we use a sharp tool,
like a knife, the material is cut at the tip of the tool and the crack path follows the trajectory
of the tool. But if the tool is blunt, the crack path quickly takes a regularly oscillating path
(see figure 1.11). We note w the maximum width section of the tool measured perpendicular
to the pushing direction, as can be seen on figure 1.14.

TT

Fig. 1.11: Oscillatory crack path : the wake in a solid. Although the out-of-plane bending is
very complex, the crack path is very regular. Notice the flaps in the wake of the
cylinder.

These oscillating shapes are reminiscent of the oscillating crack path observed in thermal
loading [56, 57, 58, 59] when a hot glass strip is dipped in cold water. If the dipping speed
is high enough that thermal diffusion does not have time to operate, thermal stresses develop
and the plate fractures. Depending on the speed, a straight crack path becomes unstable and
an oscillating path develops. But the mechanism is clearly very different. A more similar
phenomenon is observed in the wake of a cylinder in a layer of visco-elastic fluid [60] which may
behave like an oscillating fracture.

Experiments [51, 52, 53] have revealed striking features of this phenomenon: the crack path
is independent of the the speed of the tool (as long as it stays much smaller than the typical
dynamic fracture speed), it is independent on the geometry of the clamping conditions (which
may be close or far away from the tool path). The amplitude and wavelength are observed to
be proportional to the width of the tool, on a large range of scale. The amplitude to wavelength
ratio depends very weakly on the shape of the object. These observations beak down when the
tool becomes comparable to the thickness of the sheet: for thin enough tools, the oscillations
diseappear through a discontinuous transition [51], or when the tool is strongly inclined [55].
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The inextensible fabric model gives some interesting predictions for this phenomenon. We
first define the convex hull of the crack path, which can be seen as the reunion of “flaps”
(figure 1.12) and is again the zone where out-of-plane displacements of the plate are possible.
The blunt tool must therefore always entirely lie in this area. When the object touches (and
pushes) the convex hull boundary front, the crack must therefore propagate so that the convex
hull extends. It is easier to consider the rather artificial situation in figure 1.12 where the object
is drawn very small compared to the amplitude of the oscillations. The boundary of the convex
hull is a line (drawn in yellow) that joins the crack tip to the point T of tangency. Suppose that

flapflap

T

flapflap

T

Fig. 1.12: (left) The crack path convex hull defines “flaps” (white area) which easily bend
around the tool. If the tool were to advance by dz and cross the boundary of
the convex hull (in orange), it would generate stretching in the inextensible film.
Instead the crack tip will propagate (right) by a distance ds so that the pushed front
(orange boundary) advances and the tool still belongs to the flap region (white).
The direction of propagation for the crack that minimize ds/dz is perpendicular to
the pushed front.

the tool is pushed out of the convex hull by a distance dz as in figure 1.12, leading to a crack
advance by ds. Griffith criterion also writes Fdz = Gctds, where F is the force imposed by the
operator. The direction for the maximum energy release rate is again the one that maximizes
dz/ds7. We can repeat the argument seen with figure 1.10 : the minimal crack advance ds
compatible with a given advance of the tool by dz takes place in direction perpendicular to
the convex hull front. Note that the direction of propagation is independent of the direction of
pushing, and of the actual place where the object pushes on the active front.

We have recovered the propagation rule 1.6 (cracks propagate perpendicular to a pushed
front).

When the crack propagates, simple geometry sets the new convex hull and therefore the
evolution of the active front. Numerical integration8 of these geometric rules quickly converges

7 We note an argument based on the same principle was developed in [54] for the case of a cylindrical rigid
tool. The crack tip was assumed to be located on a circle centered on the tip but with larger radius. Because
no elastic energy was attributed to the sheet, the ratio dz/ds was minimized to obtain the angular velocity of
the crack, and therefore the crack path.

8 Interactive software written by B.Audoly, Institut Jean Le Rond d’Alembert, CNRS/UPMC, 2003
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a b c d e

Fig. 1.13: Numerical evolution of geometrical rules for a triangle tool. In white, the convex
hull of the crack path, and grey, the points rigidly linked to the clamped boundaries.
The triangle always lies in the white area, and is in contact with a boundary at a
point circled in red.in cases a),d),e) : during this “left” phase, the crack propagates
towards the left. Soon after a), the triangle does not contact the left front, but hits
the cut boundary, so that the mirror “right” phase takes place in b),c).

towards a periodic oscillating trajectory (figure 1.13). The oscillation is divided in alternating
symmetric phases: when the crack goes to the left, this is because the object, advancing straight,
pushes leftward from the right on a front (figure 1.13a,d,e). This phase stops when the pushing
front is no more touched by the left side of the object, that is when the crack has reached
a distance equal to w/2 from the centerline (figure 1.13a). At this point the process should
stop, but the object may now push on the other front (the right front) and a new phase may
start, mirror symmetric from the previous one. We see that the oscillation path is a way for a
single crack to do the job of the two cracks in fig 1.5 : open a channel convex hull wide enough
to always enclose the pushing object. Because the propagation rule (1.6) is indenpendent of
the size of the front, the crack path for a geometrically similar larger object should simply be
identical but scaled up from the cut obtained with a smaller object.

More than that, if only the width w of an object is known, the crack path can be con-
structed as the curve which periodically repeats itself when the following geometrical rule is
applied: propagate the crack perpendicularly to the convex-hull front line which is then ad-
vanced accordingly, and stop when a distance w/2 from the centerline is reached. The process
is periodic if the obtained curve is the mirror of the first one. The consequence of this simple
argument is that the fracture wake in a thin sheet is independent of the shape of the object (and
only depends on its width).

This is shown in figure 1.14, where an experimental path for a disk tool is compared to
that obtained from numerics with different tool shapes. In the numerics, even if the object is
not left-right symmetric, the crack path will be the same and the wavelength is λ ∼ 1.32w.
Contrary to assumption in [53] there is no reason to believe that this shape is composed of
arches of cyclöıds.

In experiments [51, 52], we observed that as long as the object is much larger than the
thickness of the plate, the amplitude is comparable to the width of the object (between 0.75w
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Fig. 1.14: Oscillatory crack path : the wake in a solid. Left to right : picture of a sheet
cut by a cylinder (disk). Simulation of geometrical rules for a similar cylinder, a
triangle and an inclined plate. In doted blue line is the active pushed front, always
perpendicular to the crack path tangent. All the crack are pictured in a “right”
phase, propagating towards the right, with the tool pushing towards the left of the
pushing front.

and 0.95w) for w varying from 0.3mm to 50mm, and wavelength to width ratio is found to vary
between 1.15 < λ/w < 1.5 for very different tool shapes and even for asymmetric shapes. The
origin of these small variations are discussed in section 1.4.2.

Although this argument gives an elegant explanation for the remarkable robustness of the
crack path, it should be used with some care because of a hidden assumption : that the object
always pushes on the active boundary of the convex hull. This assumption is not satisified in
two situations.

First, we used the implicit assumption that the left-right phases alternate after the active
pushing front has become parallel to the pushing direction. In other words we assumed that
the crack has reached one of the boundary x = ±w/2 before the foremost point of the object
hits the convex hull limit. But this is only true if the blunt tool is not too elongated along
the pushing direction, for example for square, circle [52]. In the opposite case, the crack path
may start the mirror phase before the end of the previous one, and an interesting dynamics
takes place : in general we observe several oscillations on a short wavelength / short amplitude
around the object tip. But this does not open a wide enough channel for the tool, so that
eventually a large scale (comparable to w) phase takes place again. This phenomenon repeats
in a complex but periodic crack path, see figure 1.15a. This peculiar behaviour which is also
qualitatively observed in experiments, was never really documented to our knowledge.

A second, more frequent situation where our assumption always fails (even for non elon-
gated tools) are the kink points where the system switches from one phase to the other. We
have indeed assumed that the object always pushes on the active boundary of the convex hull.
But in the case of a tool with disk geometry, we see that the object hits the convex hull on
a curved cut line, not on a straight boundary originating on the crack tip (figure 1.15b). As
a result, a small advance of the crack will not produce movement of the object, and therefore
extracts no work. Without energy released, the crack cannot propagate, and the system is
locked. Propagation is possible only after the crack is allowed to jump for a finite distance, so



22 1. A review on tearing : crack paths in thin plates

that the pushing tool now touches the new convex hull active front. Within the inextensible
fabric model, the system would therefore not allow propagation after one phase of the oscilla-
tion, even for infinite pushing force. In practice a dynamic jump of the crack is observed (see
section 1.4.2).

a b
active front

active front

active front

Locked! Unlocked

Fig. 1.15: The universal shape model should not hold : a) for an elongated the tool (like this
inclined plate), complex oscillations may arise. b) At the kinking point, the left
phase (figure on left) locks. In the center figure, a vanishingly small advance of
the crack does not allow any advance of the tool. This is because the tool does
not push (red circle) on the active front (blue dotted line), but on the crack path.
Only a large advance of the crack allows movement (figure on the right). Within
this model, the system is geometrically locked. In practice a dynamic jump of the
crack is observed.

Pushing Spiral

The oscillating path alternates left and right phases because the tool pushes alternatively on
the left or right active front. It is however possible to stay in one of these phases [49], if the
tool is continuously pushed against one of the active front (see figure 1.16).

In the experiment [49], a blunt tool is pushed against the flat portion of the same ridge,
which is found to rotate as the crack tip propagates The movement of the tool has to be
constantly adjusted so that it continually pushes against the flat portion of the ridge. There
are many tool trajectories (consisting of pushing at different distance from the crack tip on
the ridge) which are consitent with this experimental rule, but they all lead to almost identical
crack path [49]. A spiraling path develops (figure 1.17), and within the inextensible fabric
approximation, the spiral is identical to the self-developing pulled logarithmic spiral described
previously (in experiments the observed pitches are however slightly different [61]).
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Active front (ridge) Active front (ridge)a) b)

Fig. 1.16: Cutting by pushing continuously on the same flat portion of the ridge (a). The
crack path turns, and the pushing direction must rotate if in order to push on the
same ridge (b). The final crack path is a spiral, see figure 1.17.

2.2 Tool path dependence 19

In Fig. 2.5 we present the superposition of the tool positions and the contour (post-

mortem) of the crack paths. The solid and dashed outlines are the crack paths,

and the circle and squares are the respective tool trajectories.

10[cm]

A
B

Figure 2.5: Tool Trajectories and its respective resultant crack paths.

Since the video gives us the position at equal intervals of time, ∼ 0.5 second, the

distance between two consecutive points of the tool path is a measurement of its

velocity. It is obvious that the crack path was very different. However, as can be

seen in Fig. 2.5 the resulting crack paths are very similar and the small difference

at the end of the spirals (∼ 1cm)can be contrasted with the rapid growth of the

spiral: any small difference at the beginning is quickly amplified. The difference is

very small compared to the final size of the spiral, no more than 1% of the 1.3m

diameter.

Fig. 1.17: Two spiraling cracks obtained by the same initial conditions (continuous and dotted
lines), and pushing always on the same active front of the convex hull with a blunt
tool [49]. In circles and squares are represented the positions of the tool in the
experiments at fixed time intervals corresponding to the crack path with the same
color. Although the speed and trajectory of the tools are very different, the crack
path is very close, as predicted by the zero thickness model.

1.3.4 Conclusion on inextensible fabric model

Assuming that the sheet behaves as an inextensible fabric, the direction of propagation for a
crack maximizes the extraction of the operator’s work. In a variety of examples which can be
divided into pulling (on a flap) or pushing (with a blunt tool) configurations, we have seen
that the angular distribution of energy release rate can be simply computed from geometry
arguments.
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Within this model, the crack path is therefore independent of the speed of the experiment
(as observed [49, 51, 52, 53, 50, 39]) because no kinetic energy is included, independent of the
material properties and thickness of the sheet (only weak variations observed in experiments
with isotropic material [51, 53]), independent of the location of boundary conditions (this is
a common and very clear experimental fact [37, 49, 51, 52, 53, 50]). All these properties are
very unusual for a fracture problem. Within this approximation, the crack path is completely
determined by geometrical rules and it seems that mechanics reduces to geometry.

These properties of the inextensible fabric model seem to explain the striking reproducibil-
ity of crack path in experiments. In the following section we study how these results are
modified when thin plate elasticity is included.

1.4 INCLUDING BENDING AND STRETCHING RIGIDITY

Although the inextensible fabric model gives some very interesting predictions on the crack
paths in quasistatic tearing, we have seen that it misses some features (locking of the oscillating
crack path, for example).

We would also like to estimate the error on the crack path when this approximation is
used, and quantify the validity of the model when applied to experiments.

Because the mechanics of thin sheet is non-linear, the analysis is difficult and we will
restrict the study to one case where an analytical solution can be found (pulling on a sheet
with adhesion) and review simple estimates for other cases.

1.4.1 A complete tearing solution : pulling on strongly adhering sheet

We start with the case of tearing a sheet adhering strongly on a flat substrate, because the
elastic energy of the system can be computed exactly [3]. The shape is indeed almost invariant
along the direction of the fold : if adhesion dominates (Γw � Gct), the system is very close to
the case of pure peeling, and we will use the results in appendix 1.6.1.

Fig. 1.18: Tearing and peeling at imposed displacement u = δ − l cosφ.

The argument can be made equally with imposed force or imposed displacement. It is
instructive to choose this time an imposed displacement u = δ − l cosφ, which corresponds to
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peeling with an angle φ (see figure 1.18 for definitions). When the length of the flap is very
large compared to the typical curvature of the fold, the elastic energy is a function Eel(w, l− δ)
of the width of the flap and of the geometrical distance l − δ which encodes the curvature of
the fold.

Eel(w, l − δ) =
4Bw

(l − δ) [1− cos(φ/2)]2

Although this expression is valid for a rectangular flap, we will use it for flaps with arbitrary
shape where we take w as the distance between the cracks: the bending energy is localized
in a small region (the fold), so that we can consider that the distance between cracks alone
defines completely the elastic energy (see Appendix 1.6.2 for a justification). This is in fact an
important property which explains why the crack path is here independent of its past trajectory,
in contrast with fracture front in a linear three-dimensional medium.

In absence of work of the operator (the displacement u is fixed), Griffith’s criterion

dEel + 2Gctds+ Γwdl = 0

is rewritten in G = Gc with the energy release rate per crack G given by

2Gt = −dEel
ds
− Γw

dl

ds
.

We can compute

dEel =
∂Eel

∂(l − δ)

)
w

d(l − δ) + dw
∂Eel
∂w

)
(l−δ)

where geometry imposes dl = ds cos θ ; dδ = dl cosφ; dw = −2ds sin θ, so that Griffith’s
criterion is

G(u, θ) =
cos θ

2t

[
−Γw − ∂Eel

∂(l − δ)

)
w

(1− cosφ)

]
+

sin θ

t

∂Eel
∂w

)
(l−δ)

= Gc (1.7)

The direction of propagation is given by the equivalent characterizations:

• the direction θ that minimizes the displacement u necessary to satisfy propagation in that
direction (G(u, θ) = Gc).

• the direction θ that maximizes G(u, θ) for a fixed displacement u. This formulation is
easy to write, but we also have to impose in a second step G(u, θ) = Gc.

We therefore obtain a second equation ∂G/∂θ = 0 where all geometric distances w, l, u (and
therefore also δ) are held constant in the computation of the angular derivative:

2t
∂G(θ)

∂θ

)
l,w,δ

= − sin θ

[
−Γw − ∂Eel

∂(l − δ)

)
w

(1− cosφ)

]
+ cos θ

∂Eel
∂w

)
(l−δ)

= 0 (1.8)

It is useful to use an expression for the derivative at fixed w, ∂Eel/∂(l − δ) = −Eel/(l−δ) = −F
(see appendix 1.6.1), and finally the energy release per unit advance of the crack, and its angular



26 1. A review on tearing : crack paths in thin plates

derivative are

G(θ) =
F (1− cosφ)− Γw

2t
cos θ +

1

t
sin θ

∂Eel
∂w

)
(l−δ)

= Gc (1.9)

∂G(θ)

∂θ
= −F (1− cosφ)− Γw

2t
sin θ +

1

t
cos θ

∂Eel
∂w

)
(l−δ)

= 0 (1.10)

If we inject Eel = 0, only the first terms remain, and we recover equation (1.4) of the
inextensible fabric model. Note that in this fixed displacement argument, these “geometric”
terms come from some derivatives of the elastic energy, which remains identical even when the
elastic energy vanishes. If we were to use directly the inextensible fabric model and Eel = 0
from the start in equation (1.7), the “fixed displacement” approach would fail. We always have
to use an “imposed force” approach (as in section1.3) with such an inextensible model, where
these same terms are computed simply from the work of the operator.

We now have an extra elastic term due to the variation of elastic energy with the width
of the fold w. We have two equations, with two unknowns: the force F (or equivalently the
displacement u) which determines the energy and the orientation of the crack.

These equations are coupled but they can be gathered graphically in a vectorial balance,
which may be interpreted as an Eshelby force balance [62] (figure 1.19): equations (1.9) and
(1.10) correspond to vectorial projection along axis (A, B) on figure 1.19. A projection of this

A

B

a

b

Fig. 1.19: Equations for Griffith criterion (1.9) and the maximum energy release rate (1.10),
can be represented in the form of a force balance which bears similarity with
Young’s law for the wetting angle of a liquid

balance along the horizontal and vertical directions (a,b) gives the more convenient expressions

F (1− cosφ)− Γw = 2Gct cos θ (1.11)

∂Eel
∂w

)
(l−δ)

= Gct sin θ (1.12)

Because Γw � Gct (strong adhesion), the first equation gives F (1− cosφ) ' Γw, whereas the
second one gives

sin θ ' 2
√
FB/w[1− cos(φ/2)]/(Gct)



1.4. Including bending and stretching rigidity 27

because the derivative ∂Eel/∂w = Eel/w = 2
√
FB/w[1− cos(φ/2)], as seen in appendix 1.6.1.

We can inject the value of F and find

sin θ =

√
2ΓB

Gct
f(φ) with f(φ) =

[
1− cos(φ/2)

sin(φ/2)

]
(1.13)

To our knowledge this equation has never been explicited for all values of peeling angle φ.
We see that the tears are always converging (θ > 0), with an angle independent of the width w.
The shape of the flap is therefore a triangle. This is in good quantitative agreement with
experiments [3] in the case φ = π where f(π) = 1 where adhesion, bending rigiditiy and
thickness were varied. It should be noted however that the folds were observed to include
some plastic deformation and the measured angles θ were half the predicted ones. A good
agreement was also observed in the case φ � 1, where f(φ) ∼ φ/4 and the triangle angle
did vary linearly with the peeling angle [35]. In this last article the “elastic” converging effect
was put in competition with the geometric divergence of the cracks when peeling on a curved
substrate

In the limit of vanishing bending rigidity B → 0, we see that the sin θ ∼
√
t ∼ B1/6 also

vanishes and we recover the θ = 0 prediction of our inextensible fabric model, although the
convergence is rather slow. The attraction of the cracks towards each other is faster when the
adhesion is high, and the accuracy of the inextensible fabric model will therefore depend on the
strength of adhesion.

In general, with strong adhesion the converging effect is significant. This is particularly
annoying when we try to remove adhesive tape and only manage to peel part of it (then the
flap will always end up in a triangular shape). They are also observed on torn posters in
public spaces (see figure 1.20), which are considered by artist Jacques Villeglé as a collective
anonymous form of art [63] (see figure 1.20).

Conclusion

In the inextensible fabric model, propagation should take place perpendicularly to the pulled
fold. In fact the elastic energy stored in the fold leads to converging paths: by converging
towards each other, the cracks reduce the width w of the fold and are able to release bending
energy.

1.4.2 Estimates for other cases

Pulling on two cracks without adhesion

If adhesion is weak, or if the sheet is clamped on its boundaries without adhesion, the cracks
are also observed to be attracted towards each other, and annihilate, leading to a pointy flap. A
striking experimental result (figure 1.22) is that in the case of pulling on a sheet with clamped
boundary condition with a pulling angle φ = π, the shape of the resulting pointy flap is not
a triangle, but follows a power law: the width of the flap w varies like the distance to the
tip l like w ∼ l3/4. However a different exponent (w ∼ l2/3) is observed in a “three flap”
experiment [64] as can be seen on figure 1.21. These configurations may seem at first very
similar (and indeed they are identical in the inextensible fabric limit), illustrating the fact that
we are interested in fine features of the crack trajectory which now depends on the details of
the loading configuration.
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Fig. 1.20: “L’éclatement des célestins” (1964) by J.Villeglé

Fig. 1.21: Different loading conditions lead to different converging exponents. Single flaps
loading (left), and “three flaps” (right) experimental configurations were studied
in [64].

In the framework presented here, the prediction of the shape of the flaps requires the precise
knowledge of the elastic energy of the system. It is tempting to suppose again that the elastic
energy reduces to an energy localized in the fold, and therefore is a function of its width w and
l− δ, Eel(w, l− δ). This is compatible with the fact that the crack path is very robust and does
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Slope 3/4

L(mm)

 x (mm)

L(mm)

 x (mm)

Fig. 1.22: Experimental measurement of the shape of a torn flap: the width w ∼ l3/4 follows
a power law as function of distance to the tip l over at least 3 decades. We note
that a different behavior is expected at a distance comparable to thickness of the
sheet (l < 100µm), but is not evidenced here. Inset : the same data in a linear
plot.

not seem to depend on its previous history. We therefore recover the equations seen before,
with Γ = 0 and φ = π.

2F = 2Gct cos θ

∂Eel
∂w

)
(l−δ)

= Gct sin θ

The simplest estimate of Eel is to suppose that although adhesion is zero (and therefore
does not dominate) the elastic energy can be estimated similarly through an elastica equation.
In the limit of small angle θ � 1, which is reasonable experimentally, F = Gct and using
appendix 1.6.1,

θ = 4

√
B

wGct
= 4

√
lB
w

(1.14)

where we have defined

lB =
B

Gct
.

lB is a length which characterizes the magnitude of bending rigidity with respect to fracture
property of a sheet. In experiments [3, 51, 52, 64], lB was between 30 to 80µm, so that the
predicted angles are indeed small. An interesting feature is that the converging angle increases
when the cracks are closer together, as observed in the experiments (figure 1.22). However the

predicted converging shape θ ∼ dw/dl leads to a power law of the type w ∼ l
1/3
b l2/3, with an

exponent 2/3 close but different from the observed 3/4.



30 1. A review on tearing : crack paths in thin plates

In fact the fold cannot be assumed to be a collection of identical elastica slices anymore.
It may take a non developpable shape, therefore including stretching energy as well as the
bending energy considered before [17]. In [64], the authors observe that the sheet is deformed
on a large region ahead of the cracks, whose geometry gives an idea of stress distribution close
to the crack tip. Although they lead to the correct exponent of the power law for two different
loading configuration (one and three flaps), it is not clear yet how these geometrical arguments
could be translated into the energy framework presented here. Another recent theoretical work
based on the study of stress singularity [65] for non-linear plates, and a postulated generalization
of the principle of local symmetry in this configuration predicts converging tears, but do not
predict a power law shape.

Pulling on one crack (pulled spiral)

In the case of the spiraling propagation of a single crack obtained when a flap is pulled (fig-
ure 1.9), the flap is deformed into a more complex shape (see figure 1.10), and are more difficult
to describe. However we expect similar effect : bending energy involved in the fold can be re-
leased if the crack converges towards. Propagation should not take place perpendicularly to
the fold line (as the inextensible fabric model model predicts) but slightly inwards.

In our experiments [49], the radius of the spiral does grow exponentially r = r0 exp pθ (with
modulations which are due to the anisotropy of the material) as predicted by the inextensible
fabric model. However the measured average exponential pitch is p =0.24, a value close but
significantly lower than p =0.27 expected from inextensible fabric theory. The fact the growth
factor of the spiral is lower than expected is due to the slight inward propagation. The prop-
agation angle directly measured on the experiment is on average deflected inward by an angle
on the order of 3o degree. This is very close to the value of 4o predicted by equation (1.14) for
a fold with w = 10cm.

Pushing on two cracks : diverging tears

We consider a sheet with two cracks, and a blunt tool pushed on the active front between the
cracks. We have seen that if elastic energy is neglected, the propagation is perpendicular to
the active front, and if one crack is blocked, an exponential spiral is observed. In fact in the
experiment [49], the pitch of the spiral is measured to be p = 0.29, larger than the theoretical
prediction p = 0.27 this means that the direction of propagation is not perpendicular, but
has a small outwards component which is measured in the experiments as θ ∼ 2o for a sheet
with 50µm thickness. Can this deviation from the inextensible fabric model be explained by
including elastic energy?

We see on figure 1.23 that the force F results in an indentation of the front line, by a
distance d = δ − l, where l (resp. δ) corresponds to the position of the cracks (resp. of the
pushing tool). It is reasonable to assume that the elastic energy is a function of the width w
and of the indentation distance, Eel = Eel(w, l − δ).

The applied force F is computed by the formula Fdδ = dEel when the crack (and l) is
fixed (energy conservation), so that

F =
∂Eel
∂δ

)
(l,w)

= −∂Eel
∂l

)
(δ,w)
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a) b)

Fig. 1.23: Elastic model for pushing on two cracks. a) 3D view where the strained zone is
presented in light gray. b) top view, where the indented triangular zone is colored
in dark gray (compare with figure 1.25).

The second equality holds because Eel depends only on the relative position of the tool and
the crack. If the crack propagates by a distance ds while the tool is held fixed (δ =cst), then
Griffith’s criterion

∂Eel
∂l

)
(δ,w)

dl +
∂Eel
∂w

)
(δ,l)

dw + 2Gctds = 0

can be rewritten into

F cos θ + 2
∂Eel
∂w

)
(δ,l)

sin θ = 2Gct

where we recognize a configuration very similar to that of equation (1.9). We therefore obtain
similar results:

F = 2Gct cos θ (1.15)

∂Eel
∂w

)
(δ,l)

= Gct sin θ (1.16)

Note that inward propagation (θ > 0) is predicted as before if the elastic energy increases with
the distance between the crack.

Because an exact computation of the elastic energy Eel is difficult, we assume that it is
entirely due to unavoidable stretching of the plate, which still bends infinitely easily. If the
sheet is infinitely bendable, we can assume as in “tension field theory” [66, 10, 67] that it
cannot sustain compressive stresses, but only tensional stresses. The elastic response in this
case is peculiar and non-linear. A simple estimate is to consider that an indentation distance
d = l−δ generates extensional strains on the order of (d/w)2, on an area of size w2 (gray area in
figure 1.23), so that the elastic energy would follow the scaling law Eel ∼ Etw2(d4/w4). Similar
arguments were used in [68] to predict the number of cracks observed when an aluminum foil
is perforated.
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If we use this form of elastic energy Eel = Etd4/w2, equations (1.16) become for small
angle θ, F = 4Etd3/w2 = Gct, so that (1.15) and (1.16) show that the crack propagates in
direction

θ ' −
(
Gc

Ew

)1/3

= −
(
lE
w

)1/3

(1.17)

when the angle of penetration

α = 2
δ − l
w

reaches αc '
(
Gc

Ew

)1/3

=

(
lE
w

)1/3

(1.18)

where we have defined

lE =
Gc

E

a material length which characterizes the fracture process9. In experiments [3, 51, 52, 64], lE
was between 5 to 10µm, so that the predicted angles are again small.

Outward propagation (θ < 0) is indeed predicted because elastic energy decreases with the
distance between the cracks w. The angle of propagation is here independent of the thickness
of the sheet, but decreases with the width w of the active front. For the materials used in [49],
this expression leads to angle on the order of 3o for w=10cm, which has the right order of
magnitude when compared to the divergence angle measured [49] in the pushed exponential
spiral (an average of 20).

Experimental measurements of the indentation force in geometries corresponding to that
of figure 1.23 (but where the crack could not propagate [49]) agree with the functional form

Eel = AEtw2(d/w)n (1.19)

for the elastic energy, confirming that stretching energy dominates in this system. However a
surprising (and yet unexplained) fractional exponent n = 3.5 was found instead of 4, leading
to replacing the 1/3 exponent in equations (1.17) and (1.18) by 1/(n− 1) = 0.4.

In practice the result is that the diverging angle has a very weak dependance on the width
and tends to zero for large width w. In that limit, the shape of the diverging cut should be
given by the differential equation dw/dl ∼ −θ ∼ (lE/w)1/3, and a power-law shape

w ∼ l3/4l
1/4
E (1.20)

Unfortunately, in experiments with brittle thin sheets, this diverging solutions is unstable
and one of the crack dies, whereas the other one starts to oscillate as in figure 1.14. However
when the experiment were performed on plastic material (metal sheets) [37], the instability is
suppressed, and cracks are observed to diverge, together with an interesting pattern of plastic
folds (see figure 1.24), which was named “concertina tearing”. The transition between the
oscillation and the concertina solution as plasticity increases is documented in a numerical
study [36], but not yet really understood. These experiments in plastic materials were initially
motivated by the Exxon Valdez accident in 1989 : the tanker’s hull was cut by a blunt rock,
and because of the diverging path the resulting concertina opening was much bigger than
the rock, causing a large oil spill and a major ecologic disaster. The wavelength is predicted
through minimization of plastic dissipation to be λ ∼ w2/3t1/3. The direction of propagation

9 It can be interpreted as a size around the crack tip where strains become very large.
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c)

Fig. 1.24: Concertina tear: diverging tears when a blunt object is pushing two cracks in a
metal sheet, taken from [37]

is estimated by the direction of maximum stress, leading to a power law w ∼ t1/4l3/4, the same
exponent as in equation (1.20), but the crack path is here independent of material properties.
It is surprising that although the cracks are diverging here, the global shape of the cut has the
same geometry as the converging tears.

This diverging exponent 3/4 is also observed in a recent numerical study [36] for a similar
plastic case. In the same paper, the authors suggest an explanation of the exponent based on
the maximum energy release rate, completely neglecting plastic deformation. The wavelength
λ ∼ w2/3t1/3 of the concertina is found as the minimum of elastic energy which is then estimated
as Eel ∼ B(w/t)1/3. Using the equation Gct sin θ = ∂Eel/∂w, the authors conclude that the
tears are diverging with an exponent 3/4, but seem to forget the sign in the derivative. Because
the elastic energy in this model increases with width w, the tears are in fact predicted to
converge instead of diverging, which makes the model questionable.

In these interesting studies, the predicted independence on thickness or material parameter
was not clearly tested (only one material tested, and one thickness), and the power law which
gives a good fit of the torn shape was not tested on a large range of lengthscale. One may
also wonder if the divergence in w ∼ l0.71l0.29E predicted by the rules (1.17) and (1.18) using the
empirical energy (1.19) with n = 3.5 could not also be compatible with the experimental data.

Pushing on one crack

We have noted that if the material behaves elastically, the diverging paths are not observed
and instead only one crack remains, and oscillates (figure 1.11). In the inextensible fabric
model, leaving aside the locking problem, these oscillations were found to be universal (tool
independant) up to a scaling factor. What is the crack path if we include the elastic stretching
energy?

Again we assume that the loading near the crack is similar to what it would experience
in the double crack symmetric case studied above, and will propagate according to the rules
(1.17) and (1.18). These rules which take elasticity into account are still geometric at the end,
and numerical integration lead to oscillations.

But a first remark is that the rules for propagation are not scale-invariant anymore, they
depend on the size of the active front w. As a result the shape of the crack path obtained with
a large disk cannot be obtained though a simple zooming factor from the cut due to a smaller
disk. In other words the wavelength λ and amplitude of the oscillations are not proportional
to the diameter of the object. However in practice the dependence on w is a very weak power,
and this non-linear dependence was not reported in experiments [51, 52, 53].

For the sake of simplicity, we will neglect this weak variation of the angle θ with the object
size. Because the direction of propagation has an (almost) constant angle with respect to the
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active front, we find again that the shape of the oscillation is independent of the shape of the
object, and only depends on its width.

Another consequence is that the locking problem in the kinking event between each phase
shift can now be solved by including elastic stretching. Before the kinking event (see fig-
ure 1.15b), the tool hits the curved crack path, but not the straight active front. Within the
inextensible fabric model, the crack could not propagate and the tool was therefore locked.
In cases where we push on a curved front, the rules (1.17, 1.18) were generalized [52] in the
following way: the difference of the convex hull of (crack path + tool) with the convex hull
of the crack path alone (in light gray in figure 1.25) defines an indented zone (in dark gray in
figure 1.25). This indented zone plays the same role as the indented active front in figure 1.23-b.
But here this zone is not initially connected to the crack tip because of the curvature of the cut
(see figure 1.25-b). As the tool advances, the indented zone also grows, reaching the crack tip,

a) b) c)

f )d) e)

Fig. 1.25: Unlocking propagation and dynamic phase : when the tool leaves the convex hull
of the crack path (light gray area) by pushing on a non-active front (a-b), an
indentation zone develops (dark gray) disconnected from the crack tip, in contrast
with figure 1.23-b. Propagation is possible only when indentation angle α reaches
the critical value αc (c,d). But as the crack advances, because of the curvature
of the convex hull limit, the indentation angle increases (e), leading to a dynamic
jump up to configuration (f) where α = αc is recovered .

and defining the effective indentation angle α (figure 1.25-c). When α reaches the critical value
computed at (1.18), propagation may take place, in direction θ given by (1.17), with respect to
the tangent to the crack. As the crack propagates, both convex hull grow, but the indentation
angle α is found to increase instead of decreasing (figure 1.25-e) : the condition for propagation
is overshot, and a dynamic phase takes place. These dynamic jumps are very clearly observed
in the experiments.

During these phases, the quasi-static approach is not relevant anymore, so that we must
make an arbitrary assumption on the direction of propagation. A first option is to assume that
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the crack keeps a constant direction with respect to the active front of the crack convex hull.
In that case we would recover the property that the path is independent of the shape of the
tool (only depending on its width). In [52] the direction of propagation is assumed to follow
a constant angle (π/2 − θ − αc) with respect to the limit of the indented zone (1.17). This
condition is equivalent to (1.17) when propagation is quasistatic, because (1.18) is satisfied.
But because the evolution of the indented zone depends on the details of the shape of the tool,
a weak dependence of the crack trajectory on the shape of the tool is predicted, which can be
fitted to that observed in experiments [52].

Instability of a straight crack path

The inextensible fabric model nicely describes the oscillating propagation of the crack, but
another solution exists (at least when using a symmetric tool) where the crack propagates on
a straight line ahead of the tool. This solution is never observed in experiments, and therefore
must be unstable, so that the left-right symmetry of the problem is broken. Only if the tool has
a width much smaller than the thickness of the film, the straight path is stable. The instability
only develops when the tool becomes on the order of 4 to 5 times the thickness [51].

It is clear that the inextensible fabric model and the more refined description including
stretching energy cannot predict the instability onset, because they don’t include any thickness
dependence. The nature of the instability can only be understood when bending and stretching
effect are included. An experimental investigation of this instability was performed with an
inclined tool [55], where stretching spreads on a larger zone, with the result of restabilizing the
straight path if the tool is more inclined, even for a tool much wider than the sheet’s thickness.

Perforation experiments

When an object impacts on a clamped plate perpendicularly to its plane, a pattern of cracks may
develop with a characteristic radial geometry. The understanding of this phenomenon requires
the description of the interaction of bending and stretching waves with crack propagation. In
a quasistatic version [68], a cone is pushed perpendicularly through a plate, and the evolution
of a pattern of radial cracks is observed. Here in most cases the symmetry imposes radial
crack path propagation, and the question is really to predict the number of cracks. Assuming
a number n of cracks, and using estimates of the elastic energy similar to equation (1.19),
Griffith’s criterion was applied to determine the equilibrium position of cracks, and therefore
the total energy. The optimal number n which minimizes the total energy of the system is a
function of Gc/Ew, where w is now the local radius of the cone. In the experiments, the value
of this non-dimensional number is small, and in practice the optimal number of crack is always
close to 4, and hardly reaches 5 for very large values of the non dimensional values of Gc/Ew.

It is interesting to compare this prediction with the inextensible fabric model, where elas-
ticity is neglected. Geometry shows that for n radial cracks, the length of the cracks is just
w/ cos(π/n) and the energy to minimize is simply the fracture energy Gctwn/ cos(π/n) which
has a minimum for n = 4. The inextensible fabric model therefore gives a good estimate of the
optimal crack pattern.

Starting from a random distribution of cracks, the system evolves most of the time towards a
radial crack pattern with 4 to 11 cracks, because of energy barrier preventing the evolution of the
number of cracks towards the optimal number. However sometimes multiple spiraling branches
are observed [69], which are certainly collaborative version of the pushed spirals reported in [49].
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It would be interesting to compare their pitch to predictions of the inextensible fabric model
including multiple cracks.

1.4.3 Conclusion on elastic effects

A complete understanding of tearing should include thin plate elasticity : bending and stretch-
ing effects should be included together with the geometrical non-linearities (the only ingredient
in the inextensible fabric limit). But such a complete description is very difficult from an
analytical point of view, except in some isolated cases.

In the pushing case, stretching energy seems to dominate over bending energy, and deflects
the cracks from the inextensible fabric model trajectory outwards by an angle θ ∼ (Gc/Ew)1/3.
This is because for a given indentation, the elastic energy decreases with inter-crack distance
w, and therefore can be released when the cracks move away from each other. The inextensible
fabric model predictions are valid when θ � 1 or equivalently when

F ∼ Gct� Etw

and we recover here the condition of (1.3) which ensures that stretching energy can be neglected.
This condition can be rewritten

w � lE = Gc/E (1.21)

using the charateristic lengthscale lE. Large systems compared to this lengthscale lE can be
considered almost inextensible.

In the case of tearing by pulling, the cracks (which are expected to propagate perpendic-
ularly to the pulled fold in the inextensible fabric model) are deflected inwards by bending
effects. Part of the bending energy of the fold can indeed be released when its size is reduced.
The deflection angle is on the order of

θ ∼ B

RGct
∼
√
BF

w

1

Gct

where R is the typical radius of curvature of the fold, due to the applied force F .
In absence of adhesion, the typical force for tearing is on the order of F ∼ Gct and the

deflection will be small (θ ∼
√
B/Gctw � 1) when

F ∼ Gct� B/w

or equivalently when

w � lB =
B

Gct
. (1.22)

Bending effects on the cracks path are negligible only if the system size is “large enough”,
w � lB, compared to the bending lengthscale lB = B/Gct.

We had written earlier (in section 1.2) the necessary condition for which we expect the
bending state of the sheet to be close to that of an inextensible fabric : the size R of the fold
had to be small compared to the length of the flap (1.3) or F � Bw/L2. This is equivalent to

L�
√
wlB. (1.23)

This condition ensures that curvature is localized in a small region (compared to the size of
the system), a necessary hypothesis to apply our infinitely flexible model. We note that if both
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conditions are satisfied, then L� lB. A necessary condition for the validity of the inextensible
fabric is therefore that all dimensions (w,L) of the system are large10 compared to the bending
length scale lB. We note in particular that if the geometry of a system is scaled up (but keeping
the thickness constant), all conditions (1.21,1.22,1.23) will be eventually satisfied, and in this
sense inextensible fabric model applies to large systems.

In the case of strong adhesion Γw � Gct, the pulling force is F ∼ wΓ, and the deviations
to the inextensible fabric model are of the order of

√
ΓB/Gct. We see that the magnitude of

these deviations depend on the strength of adhesion, but not on the size w of the system. The
inextensible fabric model is rarely a very good approximation in this case.

Apart from the case of peeling with strong adhesion, current theories are approximated at
best, and only partial understanding is achieved, even in simple cases. We also lack a unified
picture which would determine clearly which effect should be included in the theories: bending
or stretching? or both?

10 But condition (1.23) is more restrictive, the condition on the length of the flap depends on its wdth
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1.5 CONCLUSION

In this review we have seen in different experiments the remarkable features of quasistatic
brittle tearing (fracture propagation in thin sheets when large out-of-plane bending is involved).
Fracture paths are extremely reproducible, and follow regular geometric figures.

This is due to the fact that in a first approximation the sheets can often be considered
as inextensible and infinitely flexible (the inextensible fabric model). In such simplified sys-
tems, there is no elasticity, and only the geometrical non-linearities are left, so that fracture
mechanics obeys geometry. Although these configurations are highly non-linear, they might be
an interesting example to teach in an introduction to fracture mechanics, because they con-
vey essential non-trivial features of Griffith’s criterion without the mathematical difficulties of
three-dimensional elasticity.

A better description of the system should include non-linear thin sheet elasticity, but this
leads to great difficulties, and only one case is really accessible to analytics. Nevertheless rough
estimates suggest that the geometrical rules obtained in the inextensible fabric model should
be a good guide for analysis if the system is large compared to two lengthscales :

lE = Gc/E,

which characterizes the effect of membrane stresses and

lB = B/Gct,

which quantifies the effect of bending stiffness11, where Gc is the fracture energy, E the Young’s
modulus, B the bending rigidity, and t the thickness of the plate.

11 An additional condition ensures that curvature in folds is localized on an area much smaller than the system
size
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1.6 APPENDIX

1.6.1 Peeling an elastica

We consider an inextensible rod, with a tangent having an angle θ at the point of curvilinear
abscissa s, subject to a horizontal force F (see figure 1.26). The torque balance on an element
with size ds reads dM/ds+ F sin θ = 0, where the relation (1.1) can be injected.

Fig. 1.26: A portion of the shape of a peeled elastica with an angle φ = π (left) leads to an
angle φ when rotated (right).

Finally, the elastica equation is [12, 9]

Bθ̈ +
F

w
sin θ = 0

with the boundary conditions θ(0) = 0, and a force F , but no torque applied at s = L, θ̇(L) = 0.
We can expect the flap to be curved only on a localized region near the clamped condition s = 0.
What is the size of this region? Dimensional analysis directly shows that the only length-scale
left in the problem is

√
Bw/F , so that the flap shapes for different loading and rigidity will

all be similar, up to a simple scaling factor, as long as they are very long compared to this
curvature, L�

√
Bw/F . The elastic energy per unit width which only depends on B and F/w

can only be written as Eel/w = a
√
FB/w.

These results are also found by estimating the radius of curvature of the fold R from a
torque balance. The torque Bw/R ∼ FR is produced by force F with a lever arm of the order
of R. Because 1/R ∼

√
F/Bw, we also find that Eel ∼ Bw/R ∼

√
BFw. We also note that

the bending energy density scales like F/w.
In fact these quick arguments can be made exactly because an explicit solution is available

in the case where L = ∞: we first normalize all distances by the typical length
√
Bw/F and

find θ̈ + sin θ = 0. Here we look for the solution where with the condition θ(0) = 0, θ(∞) =
π, θ̇(∞) = 0. These solutions are the same as the 2D meniscus of a liquid under gravity and
surface tension [70].

A first integral of this equation gives θ̇2/2 = 1 + cos θ, using the boundary conditions at
s =∞. If we keep θ̇ > 0, this can be rewritten into θ̇ = 2 cos θ/2, which can be integrated into

sin(θ/2) = tanh(s).
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This implicit solution with s ∈ [0,∞] corresponds to a peeling angle φ = π. But for a different
peeling angle φ, the solution is simply a rotated portion of the same solution s ∈ [s0,∞], where
tanh(s0) = sin(π/2− φ/2) = cos(φ/2), as seen in figure 1.26.

We compute the nondimensional elastic energy using these solutions:

Eel/
√
FBw =

∫ ∞
s0

θ̇2/2ds = 2

∫ ∞
s0

cos2(θ/2)ds = 2[tanh(s)]∞s0 = 2[1− cos(φ/2)].

Finally we obtain
Eel = 2

√
FBw[1− cos(φ/2)] (1.24)

Another estimate gives in
∫
θ̇2/2ds =

∫
(1+cos θ)ds = l−δ, where l and δ are the distances

on figure 1.26. In dimensional terms, we find

Eel = F (l − δ),
which shows that l − δ = 2

√
Bw/F [1− cos(φ/2)], and

Eel =
4Bw

(l − δ) [1− cos(φ/2)]2 (1.25)

Yet another interesting quantity is based on direct integration, which shows that h =
∫

sin θ =

−[θ̇]∞s0 = 2 cos(θ(0)) = 2 sin(φ/2). In dimensional form, this means that

h = 2
√
Bw/F sin(φ/2) = (l − δ) sin(φ/2)

1− cos(φ/2)

and to the elastic energy

Eel =
4Bw

h
[1− cos(φ/2)] sin(φ/2)

1.6.2 Why does the crack loose memory (almost) instantaneously?

In the pulling configuration of pulling on an adhering sheet, (figure 1.18) , the past history of
the crack only enters the problem through the shape of the flap. We consider that the flap
continues to have a cylindrical shape invariant in the z direction. The elastic energy reads

Eel =
B

2

∫ ∞
0

w(u)κ2(u)du

where u is the curvilinear abscissa along the fold, and the function κ(.) is the curvature of the
fold, an universal function that depends on (l − δ)−1. As the cracks propagate by δs , this
energy varies for two reasons: the profile w(l) is modified because the origin of the fold has
advanced by δl, and the curvature profile is modified (because l − δ has changed).

δEel =
B

2

∫ ∞
0

[w(u+ δl)− w(u)]κ2(u)du+
B

2

∫ ∞
0

w(u)δ[κ2(u)]du

The key point is that the curvature profile is localized on a small region with size r comparable
to l − δ. If we assume that on this small lengthscale, w(u + δl) − w(u) can be replaced by
δl(dw/du)u=0 and w(u) ∼ w(0), we get

δEel =
dw

du

)
u=0

δl
B

2

∫ ∞
0

κ2(u)du+ w(0)
B

2
δ

[∫ ∞
0

κ2(u)du

]
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In the first term we recognize the elastic energy of a slice of fold with unit width, multiplied
by the the variation δw. Because of the invariance of the fold in direction z, this is exactly

dw
∂Eel
∂w

)
(l−δ)

whereas the second term is in fact a derivative where the width w = w(0) is held constant:

∂Eel
∂(l − δ)

)
w

d(l − δ)

so that we recover the equations of section 1.4.1

dEel =
∂Eel

∂(l − δ)

)
w

d(l − δ) + dw
∂Eel
∂w

)
(l−δ)

.

When inserted in Griffith’s criterion, all the quantities depend on w and dw/ds, so that
finally the equation of evolution of the width can only be a first order equation of the type
dw/ds = F(w) : the evolution of the inter-crack distance w only depends on its actual value,
not on the past.
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[69] R. Vermorel. Elasticité et fragmentation solide. PhD thesis, Univ. Provence Aix-Marseille
I, 2010. 35

[70] B. Roman, C. Gay, and C. Clanet. Pendulum, drops and rods: a physical analogy. Sub-
mitted, 2001. 39


	A review on tearing : crack paths in thin plates
	Introduction
	Mechanics of slender bodies : bending, stretching and geometry
	Three-dimensional Fracture Mechanics
	Tearing thin plates

	Peeling and the ``inextensible fabric'' approximation 
	Inextensible fabric model : fracture mechanics obeys geometry
	Two cracks configurations (pulling and pushing are straight) 
	Pulling on a single crack (hyperbolae and spirals)
	Pushing on a single crack (oscillations and spirals)
	Conclusion on inextensible fabric model 

	Including bending and stretching rigidity
	A complete tearing solution : pulling on strongly adhering sheet 
	Estimates for other cases
	Conclusion on elastic effects

	Conclusion
	Appendix
	Peeling an elastica
	Why does the crack loose memory (almost) instantaneously?



