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PACS 46.32.+x – Static buckling and instability
PACS 47.55.nk – Liquid bridges
PACS 81.16.Dn – Self-assembly

Abstract – Wet fibrous structures such as nanotube carpets or macroscopic brushes tend to self-
assemble into bundles when the liquid evaporates. The aggregation process relies on a balance
between capillary attraction provided by liquid bridges and restoring torque due to structure
stiffness. The final self-organized structure is found to result from a cascade of pairing of smaller
bundles into bigger ones. We first describe, both experimentally at a macroscopic scale and
theoretically, the case of a single pair of fibers and then generalize this description to more complex
3D assemblies. We finally show the relevance of our results to micro-scale experiments from the
literature.

Copyright c© EPLA, 2007

Introduction. – Surface tension driven self-assembly
of micro-structures has been proposed as a useful tool
for elaborating micro-devices at scales where conventional
machining is not appropriate [1]. Conversely, the capil-
lary attraction and stiction of wet slender structures may
also induce disastrous damages in photoresist patterns [2],
microelectromechanical systems [3,4], biomimetic materi-
als [5] and is more dramatically involved in lung airway
closure (neonatal respiratory distress syndrome) [6]. At
a macroscopic scale, a more innocent consequence is the
aggregation of the hairs of a wet dog into clumps. Experi-
ments have been recently conducted with carbon nanotube
carpets: when a drop of wetting liquid deposited on the
surface evaporates, the tubes assemble into bundles lead-
ing to “hut” structures [7–12] or cellular patterns [13–15].
In order to capture the elementary mechanisms of this
self-assembly, first studies were conducted with two lam-
ellae [16,17] and then 2D macroscopic brushes composed
of evenly spaced lamellae [16]. Here we focus on the 3D
case which is more relevant for practical applications.

Experimental setup. – The experiment consists in
immersing a brush of long (approximately 30 cm) parallel
flexible fibers (glass and polystyrene, see caption of
fig. 4), clamped in a regular triangular lattice of spacing
d= 3.1mm, into a perfectly wetting liquid (silicon oil with

(a)Present address: Matière et Systèmes Complexes, UMR 7057
CNRS - Paris 7 - 2 Place Jussieu, 75005 Paris, France.

surface tension γ = 20.6 10−3Nm−1). When the brush is
quasi-statically withdrawn (typical velocity 0.5mms−1),
a complex 3D aggregation cascade is observed: fibers stick
together, forming successively larger and larger bundles
(fig. 1). We explore the internal structure of the cascade
by scanning successive sections of the brush lit by a
horizontal laser sheet. Tracking the position of each fiber
as a function of the distance from the roots provides a 3D
mapping of the brush. The sticking events are found to
occur mainly by the aggregation of two objects (and not
three as one could expect for a triangular lattice), see fig. 2.

Two-fibers sticking. – We will first study the capil-
lary binding of two rods which constitutes the elementary
mechanism of aggregation within the brush. Two flexi-
ble fibers separated by a distance d are immersed in a
liquid, then withdrawn. Capillarity tends to stick the two
fibers on the largest possible distance, but this costs a
high bending energy near the root, where the fibers are
clamped perpendicularly to the base. A balance between
capillarity and elasticity thus leads the fibers to stick at
a finite distance Lstick from their root as in [16] (fig. 3).
Experimentally, Lstick was found to be proportional to the
square root of the spacing d between roots, for fibers with
different stiffness, see fig. 4. In the following, we show how
to predict this sticking length. On the one hand, bend-
ing the two fibers to join at a distance Lstick requires an
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Fig. 1: Brush of fibers withdrawn from a bath of silicon oil.
The brush is made of 100 optical fibers with 0.4mm diameter,
spaced by 3.1mm.

elastic energy

Ee =
3EId2

L3stick
, (1)

in the case of small deformation (d/Lstick� 1), where E
is Young’s modulus and I = πb4/4 the area moment of
inertia of the fibers with radius b. On the other hand,
binding two fibers reduces the liquid-air interface (fig. 3)
and thus the surface energy. In the 2D case the surface
energy difference is simply proportional to the width of
the lamellae [16]. However, in 3D it depends not only
on the fibers radius but also on the local shape of the
meniscus formed between the two fibers (see fig. 3), and
follows [18,19]

Es = γ

∫ Lwet

0

[

4bθ− 4
(π

2
− θ
)

r
]

dz, (2)

where γ is the surface tension of the fluid, and Lwet the
height of the sticking point above the bath. In the above
expression, the first term represents the suppression of the

liquid-air interface in between the fibers and the second
term the creation of the two menisci between the fibers.
The radius r of the menisci depends on the height z above
the liquid free surface through Laplace’s law and hydro-
statics, γ/r= ρgz, whereas the angle θ is geometrically
defined by cos θ= b/(b+ r) = (1+ γ/ρgzb)−1. If the saddle
shape extremity of the meniscus is neglected, the total
energy may be expressed as

E =Ee+Es =
3EId2

L3stick
− 2γb

∫ (L−Lstick)

0

α(z) dz, (3)

with

α(z) = 2θ− 2
(π

2
− θ
)

(

1

cos θ
− 1
)

. (4)

Minimizing the total energy with respect to Lstick yields
the sticking law,

Lstick
LEC

=

(

9

2α

)1/4√
d

LEC
, (5)

with α calculated at height Lwet, and where LEC is the
elasto-capillary length [16] defined as

LEC =

(

EI

γb

)1/2

.

Therefore in the case of rods, the sticking law depends,
through α, on the height Lwet above the surface of the
liquid. However, in the limit Lwet� 2γ/ρgb (which corre-
sponds to θ� π/2), α is constant and equal to π− 2. This
limit is obviously relevant to micro-structures for which
the radius b is very small. Conversely if Lwet� 2γ/ρgb
(which corresponds to θ� 1), α� 2θ� 2(2γ/ρgbLwet)1/2.
This leads to a weak dependence of Lstick with Lwet,

Lstick ∼L
−1/8
wet , which is beyond the experimental accu-

racy. For practical applications, the limit α= π− 2 is thus
relevant for all values of Lwet, and Lstick may therefore be
regarded as independent of the fibers total length. Within
this limit, eq. (5) describes very well, and over several
decades, the experimental results of the aggregation of two
fibers, see fig. 4.

(1) (2) (3)

Fig. 2: Top view of the aggregation cascade of a 16-fibers brush at successive heights (15, 14 and 13 cm below the brush’s base).
Sticking events of two fibers are circled. (1) Couples of fibers stick together. (2) Clumps of pairs of fibers stick together two by
two. (3) Final aggregation into a single bundle.
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Fig. 3: Sketch of two fibers sticking when withdrawn from a
wetting liquid.
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Fig. 4: Sticking distance of two fibers, Lstick, vs. root spacing d,
for three types of fibers: (◦) glass fibers with LEC = 120mm
(EI = 3.1 10−9Nm2, b= 0.011mm, γ = 20.6 10−3Nm−1),
(�) glass fibers with LEC = 620mm (EI = 5.5 10−7Nm2,
b= 0.07mm), (×) polystyrene fibers with LEC = 820mm
(EI = 2.8 10−6Nm2, b= 0.2mm). (—) Theoretical prediction,
eq. (5), with α= π− 2.

For practical applications [7,13], eq. (5) can be used to
estimate the risk of aggregation of rods due to capillarity:
if the rods length is smaller than the value of Lstick
obtained for the considered spacing, collapse will not
occur.

Multi-fiber aggregation. – Multi-fiber clusters result
from the successive pairing of bundles of increasing size in
a self-similar fashion. Let us consider that the aggregation
of N fibers results from the sticking of two cylindrical close
packed bundles of size N/2 (fig. 5). Under this assump-
tion each sub-cluster has a radius bN/2 = b(N

√
3/π)1/2 and

has a global stiffness N/2 EI provided friction between
adjacent fibers is neglected. The distance d′ between the
centers of the sub-clusters before sticking is less trivial
to estimate; it scales as β

√
Nd, where β is a pre-factor

that depends on lattice geometry. The elastic energy

d’

c c

L

2

N

N

b

Fig. 5: Aggregation of N fibers resulting from the self-similar
clumping of two bundles of size N/2.
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Fig. 6: Sticking length of a 3D brush, LN , as a function of
the number N of fibers involved: optical fibers with LEC =
820mm (EI = 2.8 10−6Nm2, b= 0.2mm, γ = 20.6 10−3Nm−1)
and spacing d= 3.1mm (∗), d= 1.9mm (�). Theoretical predic-
tion, eq. (6), with β = 1/

√
2 (. . . ), β = 1/2 (−−), β = 0.572

(numerical simulation) (—).

is derived from expression (1) using effective stiffness
and spacing of the bundles. The surface energy differ-
ence 2πγLwet(2bN/2− bN ) is slightly different from expres-
sion (2) as the bundles rearrange into a bigger cylindrical
cluster (fig. 5). Minimizing the total energy with respect
to the multi-fiber sticking distance, noted LN , leads to the
following dependence of LN with N :

LN
L2
=

(

β2(π− 2)
2
√
π 31/4(2−

√
2)

)1/4

N3/8, (6)

where L2 is the corresponding two-fiber sticking distance
given by eq. (5) (with α= π− 2).
The scaling of the sticking length with N3/8 compares
well with the experimental results obtained with a large
number of brushes of various sizes, and for two differ-
ent lattice spacings (fig. 6). In practice, the sticking
length is difficult to detect by simple imaging when the
brush contains many fibers. It was thus measured by
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Fig. 7: (a) Rhombus is the repeatable pattern of a triangular lattice. (b) Self-similar sticking scenarios inside a regular lattice
with associated β spacing pre-factor at each step. (c) Distribution of the values of β obtained by numerical simulation, and
comparison with the three ideal modes shown in (b).

re-immersing slowly the aggregated brush into the liquid
until it splits into sub-bundles. The fact that the experi-
mental data seem to follow a slightly smaller slope than
the 3/8 theoretical prediction might be due to finite-size
effects1.
To estimate the spacing pre-factor β we now identify

ideal sticking scenarios which preserve the lattice, and
thus can be repeated in a self-similar fashion. In such
a triangular lattice, the elementary translational pattern
is the rhombus, which should be conserved by an ideal
cascading process (fig. 7(a)). Two scenarios allow four
fibers at the corner of the rhombus to aggregate at its
center, see fig. 7(b). For each pairing step, the associated
spacing pre-factor β may be identified as β = d′/d

√
N ,

with N the total number of rods sticking together at the
considered step. This ideal cascade thus involves several
values of beta : β: 1/2, 1/

√
3 and 1/

√
2, see fig. 7(b).

To check the relevance of these three ideal modes,
we performed a numerical simulation. Some noise was
introduced in the location of 6000 points initially set on a
regular triangular lattice. Each point is assigned a number
N (initially N = 1) which represents the cluster size. At
each step the couple of points with the smallest sticking
length (according to the scaling of eq. (6)) is removed and
replaced by a summed-up cluster located at the center
of mass of the two parents. The spacing between the
objects prior to sticking and the associated parameter β
is then calculated. The simulation is continued until final

1The lack of possible sticking combinations as N increases due to
the finite size of our sample leads to an apparent smaller slope for
large N . Moreover eq. (6) is correct when the bundles are circular,
i.e. for large N ; for small N the sticking law should involve a larger
prefactor.

aggregation of all the elements into one unique clump.
We obtain the distribution of β shown fig. 7(c), where
three main peaks are found close to the three theoretical
values. The 1/2 and 1/

√
2 sticking modes are shown to be

of larger importance, which is consistent with the fact that
they appear in both sticking scenarios. The estimations
of the multi-fiber sticking law (eq. (6)) using these two
modes compare well with the experimental results, see
fig. 6. An additional comparison is made in fig. 6 using
the averaged value of β derived from the simulation
(β = 0.572), showing also a good agreement.
The multi-fiber sticking law (eq. (6)) also allows to
predict, for a given length L of rods, the maximum number
of rods that can coalesce due to capillarity. Although a
statistical study of the spatial correlations of the bundles
sizes would be necessary to describe the size distribution
within the brush [20], this maximum number gives the
typical size of the clusters. The diameter ξ ∼ bN1/2 of a
bundle thus scales as

ξ ∼ b(L/L2)4/3. (7)

Very similar experiments were performed at nano-scale
with carbon nanotube carpets on which a drop of wetting
liquid is deposited and evaporates, generating clusters [8].
The average size of these clusters was found proportional
to the length of the tube to a power 1.2± 0.1, which is in
good agreement with (eq. (7)). Three different theoretical
descriptions [8,9,12] have been proposed, leading to the
overshooting values 3/2 and 2 for the exponent2.

2We believe that in [8], the surface energy does not have the right
scaling (gravity should not be relevant in this problem), in [12] the
capillary rise in between the sticking fibers is not considered and
in [9] the spacing between the roots is not taken into account.
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Conclusion. – The aggregation of wet fibers clamped
on a surface was found to result from a cascade of pairing
of smaller bundles into bigger ones. In the case of a
single pair of fibers, a balance between capillary forces
and elasticity provides a sticking length which scales as√
dLEC , where d is the distance between the roots and
LEC the elasto-capillary length, the lengthscale at which
elasticity and capillarity have comparable magnitudes.
This relation can be generalized to bigger bundles and
leads to a bundle size proportional to L4/3, where L is the
length of the fibers, which is in good agreement with both
macroscopic and microscopic experiments. Although our
study focused on a regular triangular lattice, we expect
our description to be robust. Different lattices would
just result in minor corrections of the pre-factors. The
interesting problem of cellular patterns [13–15] remains
to be explored. In this case sticking to the ground seems
to be important.
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