
May 2010

EPL, 90 (2010) 44006 www.epljournal.org
doi: 10.1209/0295-5075/90/44006

Piercing an interface with a brush: Collaborative stiffening
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PACS 45.70.Qj – Pattern formation
PACS 46.70.De – Beams, plates, and shells
PACS 47.61.Fg – Flows in micro-electromechanical systems (MEMS) and nano-electromechanical

systems (NEMS)

Abstract – The hairs of a painting brush withdrawn from a wetting liquid self-assemble into
clumps whose sizes rely on a balance between liquid surface tension and hairs bending rigidity. Here
we study the situation of an immersed carpet in an evaporating liquid bath: the free extremities
of the hairs are forced to pierce the liquid interface. The compressive capillary force on the tip of
flexible hairs leads to buckling and collapse. However we find that the spontaneous association of
hairs into stronger bundles may allow them to resist capillary buckling. We explore in detail the
different structures obtained and compare them with similar patterns observed in micro-structured
surfaces such as carbon nanotubes “forests”.
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Introduction. – Everyday’s life experience teaches us
that wet hairs assemble into bundles. This phenomenon
is however amplified at the scale of Micro-Electro-
Mechanical-Systems (MEMS) since surface forces tend
to dominate over bulk forces when the scale is reduced.
Indeed, if L is the typical size of a structure, surface
forces are proportional to L, while elastic or gravity forces
scale as L2 and L3, respectively. Controlling “stiction” is
a challenging issue in micro-engineering technologies as it
often leads to the fatal collapse of microstructures [1–3].
Nevertheless, the self-assembly of micro-structures
through capillary forces can also be viewed as a useful
tool to build complex shapes [4–8]. Beyond engineering
applications, surface forces may also have a strong effect
on living structures. For instance, filamentous fungi living
in aqueous environment have difficulty in growing their
hypha through the water interface into the air. Indeed
some species have to produce surfactant molecules that
reduce capillary forces in order to develop the aerial
structures necessary for dissemination [9].
In the case of slender structures, the interaction between

elasticity and interfacial forces can be defined by a typi-
cal elastocapillary length scale, LEC =

√
B/γ ∼

√
Eh3/γ,

where E is the Young modulus of the material, h and B are
the thickness and the bending stiffness per unit width of
the structure, respectively, and γ the liquid surface tension
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or the solid adhesion energy [10–14]. The validity of this
macroscopic length scale has recently been confirmed at
the scale of graphene sheets through atomistic simula-
tions [15].
In this paper we study the case of a carpet-like struc-

ture immersed in a drying liquid bath. This situation
is important for practical situations in microtechnologies
since microstructures are often dried out of a solvent and
brought to pierce the liquid interface during the evapora-
tion process. Recent experiments with wet carbon nanu-
tubes [16–20], ZnO [21] or Si [22–24] nanorods “carpets”
and polymeric micro-pilars arrays [25–29] exhibit a large
variety of bundle structures ranging from “tepee” shapes
to cellular patterns. Surprising helicoidal structures have
also recently been observed with soft PDMS carpets [30].
However no attempt has been made to classify the differ-
ent regimes.
Although macroscopic studies have shown that an

isolated structure buckles upon capillary forces if its
length is larger than a critical length on the order of
LEC [14], little is known about the collective piercing
(or collapsing) of an assembly of bristles. May such a
bundle be stiff enough to resist the capillary forces? The
aim of this paper is to present a configuration diagram
that predicts the final equilibrium states as a function
of the length of the bristles, their bending rigidity and
their lattice spacing. We will first extend the results on
the formation of bundles to large deformations, study
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Fig. 1: (Colour on-line) Sketch of the experiment. Lamellae of
length L and thickness h are clamped on an immersed base
with a regular inter-spacing d. As the liquid is progressively
removed from the reservoir, the free tips of the lamellae are
forced to pierce the liquid/air interface.

the piercing of isolated bundles, and finally deduce
the different boundaries of the configuration diagram.
Although our study is limited to macroscopic regular 1D
brushes we expect our results to be qualitatively relevant
at the scale of nanotubes “carpets”.

Experimental setup. – 1D model brushes are
build by clamping lamellae of length L (centimetric)
and uniform width (W = 2 cm) cut from bi-oriented
polypropylene sheets (Innovia Films, E " 2GPa) of thick-
ness h (of 15, 30, 50 or 90µm) on a base with a regular
spacing d (ranging from millimeters to centimeters). The
elestocapillary length LEC is measured for each thickness
by bringing in contact the two ends of a long strip cut
from the sheet and coated with the liquid. The width
of the “racket” directly gives an estimate of LEC , as
described by Py et al. [4]. The brushes are first immersed
into a bath of commercial dish-washing solution that
totally wets the lamellae (γ = 26.5mM/m). In order to
mimic evaporation, the liquid is progressively drained
out the reservoir, which brings the free ends of the
lamellae in contact with the liquid/air interface (fig. 1).
Successive images from a typical experiment are displayed
in fig. 2. As the tips reach the interface, lamellae tend
to merge spontaneously into bundles. Depending on the
experimental parameters, bundles pierce the interface
without much damage or instead buckle and eventually
collapse (fig. 3).

Forming bundles. – We first present the adhesion of
wet lamellae by capillary forces, once out of the liquid
bath. When a macroscopic brush with a regular lattice
is withdrawn (tips down) from a liquid bath, pairs of
intermediate bundles successively stick together, leading
to large hierarchical bundles [11,13] (in this situation,
the lamellae do not have to pierce the interface; we
will consider later if these bundles are stable in the
inverted case). A balance between capillary and elastic
bending energy gives the distance from the root Lstick at

(a)

(b)

(c)

(d)

50 mm

Fig. 2: Typical experiment: (a) immersed brush, (the upper
dark line corresponds to the liquid surface); (b) as the liquid
is progessively removed, the interface reaches the tips of the
lamellae, isolated lamellae buckle and eventually collapse but
may also bundle together and pierce the liquid surface; (c) final
bundle (L= 90mm, d= 50mm, LEC = 33.6mm); (d) another
experiment in the same configuration leads to the collapse of
all the lamellae.

which two hairs with an initial spacing d join1. In the
limit of small deformations (d/Lstick# 1), the solution is
analytical [11,12]:

Lstick =

(
9

2

)1/4
(dLEC)

1/2 . (1)

This relation can be extrapolated to intermediate bundles
of sizeN/2 merging into larger bundles of sizeN , by multi-
plying the bending stiffness by factor N/2 (we assume that
the liquid prevents friction between lamellae), and using
an effective distance between these intermediates bundles
Nd/2. This leads to an effective elasto-capillary length of
(N/2)1/2LEC , so that the joining length Lstick of a pair
of intermediate bundles merging into a bundle of size N
is in this case given by [11]:

Lstick(N) =

√
3

2
N3/4 (dLEC)

1/2 . (2)

We see that the formation of large bundles requires long
lamellae (Lstick increases with N). Conversely, for a given

1This argument is similar to the classical relation derived by
Obreimoff in 1930 to estimate the splitting strength of mica [31].
In this case fracture energy replaces capillary (or more generally
adhesion) energy.
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Fig. 3: Final state for decreasing lamellae lengths (d= 5mm,
LEC = 5.5mm). All lamellae collapse for the longest samples,
while an increasing number of bundles pierce the liquid surface
without any damage as the length is reduced.

brush with lamellae of length L, the maximum size of a
bundle Nmax is easily derived from this last equation by
taking Lstick =L:

Nmax = 2

(
2

9

)1/3(
L4

d2L2EC

)1/3
. (3)

However smaller bundles are generally also present when
the sum of the sizes of neighboring bundles exceeds Nmax.
When a brush is withdrawn bundles are randomly formed
and the statistical distribution of their size is found to
follow a self-similar size law [32]. This peculiar distribution
has a maximum size Nmax and also a minimal size, which
is on the order of Nmin " 0.3Nmax.
The condition of small deformations (d/Lstick# 1)

assumed for deriving the previous relations is however
not always verified in practice (e.g. experiment displayed
in fig. 1). The equilibrium shape of the lamellae can
nevertheless be described in the general situation by
solving numerically Euler’s elastica relation [33]:

B
d2θ

ds2
ez+ t×R= 0, (4)

where θ is the angle made by the tangent to the lamella t
with the vertical at the curvilinear coordinate s, ez the
vector perpendicular to the plane and R the constant
vectorial tension of the beam (in the present case, R
only has a horizontal component). Most boundary condi-
tions required to solve the equation are trivial: θ= 0 at
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Fig. 4: (Colour on-line) Sticking length of a pair of hairs
accounting for the finite value of the spacing d. Symbols:
numerical solutions of the elastica equation. Line: linear
correction of the zeroth-order relation (eq. (5)), Lstick =
(9/2)1/4(dLEC)

1/2(1+ 0.043d/LEC).

the contact point and at the clamped end, the hori-
zontal displacement is equal to d/2. The last bound-
ary condition is less obvious and can be derived from
a balance between elastic and surface energy [4]: the
curvature at the contact point is

√
2/LEC . The non-

dimensional form of eq. (4) was solved numerically for
increasing values of the non-dimensional distance d/LEC .
The corresponding ratio Lstick/(dLEC)1/2 is displayed in
fig. 4 and is found to be fairly well fitted by a linear corre-
lation: Lstick/(dLEC)1/2 " (9/2)1/4(1+0.043d/LEC). We
can finally extrapolate this relation to the case of a pair of
intermediate bundles of size N/2 (which implies an effec-
tive elasto-capillary length of (N/2)1/2LEC , and an effec-
tive distance Nd/2) merging into a bundle of size N :

Lstick(N)"
√
3

2
N3/4 (dLEC)

1/2
(
1+0.030

√
N
d

LEC

)
.

(5)
Solving this relation for Lstick =L then gives the maxi-
mum size Nmax corresponding to the non-dimensional
spacing d/LEC . As we have characterized the size of the
bundles that can spontaneously form on a given brush,
we now wonder if these elastic structures may pierce the
liquid interface, or buckle and eventually collapse.

Piercing an interface with an isolated bundle.
– We first consider the case of an isolated lamella that
pierces the liquid surface (insert in fig. 5). If the liquid
wets the material, the vertical capillary force pushing
the lamella downward at the liquid interface is given by
Fcap = 2wγ, where w is the width of the lamella2. Classical

2We suppose here that the contact angle is zero, otherwise γ
should simply be replaced by γcosθ, where θ is the contact angle of
the liquid on the surface.
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Fig. 5: (Colour on-line) Main figure: minimum size of a
bundle of a given length required to pierce the liquid interface
as a function of the distance between lamellae. Continuous
line: empirical fit Ncrit(d, L)/N0(L) = 1/(1+16d/L). Inset:
compressive capillary force acting on a single lamella or on
a bundle.

Euler buckling criterion predicts a critical length for the
slender lamella above which it buckles:

Lcrit =
π

2

√
Bw

2γw
=
π

2
√
2
LEC , with B =

Eh3

12(1− ν2) ,

(6)
where E and ν are the material Young modulus and
Poisson ratio, respectively, and h the thickness of the
lamellae. Although the actual postbuckling behavior is
more complex [14], we will suppose, for the sake of
simplicity, that lamellae with lengths exceeding Lcrit
eventually collapse towards the base.
In the case of a brush, the buckled lamellae generally hit

their neighbors and merge into larger bundles. May these
more rigid structures resist capillary loading and pierce
the interface? Since the liquid can lubricate the relative
displacement between lamellae, we would expect a bundle
involving N lamellae to be N times stiffer than a single
lamella, leading to an increase of Lcrit by a factor

√
N .

The minimum piercing size N0(L), above which a bundle
of a given length L is strong enough to resist piercing is
given by

N0(L) =
8

π2

(
L

LEC

)2
. (7)

In order to compare this theoretical prediction with the
results obtained with our brushes separated with a spacing
d, we measured the minimum size Ncrit(d, L) above which
a bundle of artificially fixed size resits. Ncrit(d, L) is found
significantly lower than the predicted value N0(L) as the
spacing d is increased (fig. 5). We qualitatively interpret
this result by the larger width of the base of the bundle,
which increases the effective stiffness of the structure.

Table 1: Different cases described in the configuration diagram.

case 1 Nmax <Ncrit the whole
brush collapses

case 2 Nmin <Ncrit <Nmax biggest bundles pierce,
while smaller collapse

case 3 Ncrit <Nmin bundles of any
size pierce

case 4 Nmax < 2; L<Lcrit lamellae do not form
bundles and remain

straight
case 5 Nmax < 2; Lcrit <L lamellae do not form

bundles and collapse

Experimental data obtained with lamellae of different
lengths and thicknesses collapse in a single master curve
when Ncrit/N0 is plotted as a function of d/L. A fair fit
of this master curve is (full line in fig. 5):

Ncrit(d, L) =
N0(L)

1+16d/L
. (8)

As the liquid bath is drained, lamellae tend to merge
into bundles. Bundles containing more than Ncrit lamellae
pierce the interface while the other ones collapse.

Configuration diagram. – The fate of a given brush
can be predicted by studying the piercing conditions of
the bundles that it spontaneously develops. This is done
by comparing the critical size Ncrit with the maximum
and minimum bundle sizes Nmax and Nmin. Indeed, if for
a given length L, the size Ncrit (eq. (8)) exceeds Nmax
(eq. (3)), the whole brush is expected to collapse (case 1
in fig. 6). If Ncrit lies between Nmax and Nmin, lamellae
merge into bundles as the liquid is removed; the largest
bundles should pierce the interface while the smaller ones
should collapse (case 2). If Ncrit becomes lower than
Nmin, even the smallest bundles are expected to pierce
the surface of the liquid (case 3). A last situation arises for
small values of Nmax: when Nmax is lower than 2, lamellae
do not form bundles and can either remain straight if
L<Lcrit (case 4) or otherwise collapse (case 5, which joins
case 1). The different cases are summarized in table 1 and
sketched in fig. 6. These predicted regimes are in good
agreement with experiments displayed fig. 2 and fig. 3.
Although our model brushes are one-dimensional, we

expect our results to be qualitatively valid for two-
dimensional “carpets”. The main quantitative difference
should indeed rely on a scaling with N3/8 for the size of
the bundles in eq. (3), instead of N3/4 [13]. The direct
comparison with experiments carried with nanorods is
not precise since LEC was not measured, but provides
some qualitative indication. For instance, cellular patterns
similar to case 2 are observed in the experiments described
by Chakrapani et al. [18]. In these experiments, the radius
of the multi-wall nanotubes b is assumed to be on the
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Fig. 6: (Colour on-line) Configuration diagram and comparison
with experiments. Case 1: bundles of any possible size collapse.
Case 2: the largest bundles resist an pierce the surface, while
smaller one collapse. Case 3: Bundles of all accessible sizes
resist. Case 4: lamellae do not form bundles but are stiff enough
to pierce the surface. Case 5: lamellae do not form bundles
and collapse (this case joins Case 1). Experimental parameters
corresponding to the experiments illustrated in fig. 2 (!) and
fig. 3 (•).

order of 15 nm and the material Young modulus E ∼
1TPa, which gives LEC ∼ 0.2µm (in the case of rods
LEC =

√
πEb3/4γ [13]). The length of the tubes is much

larger than LEC (L∼ 100µm), which favors the collapsed
cases 1 and 2, while the lattice spacing d∼ 0.05µm may
not be small enough to prevent collapse. Conversely,
“tepee” structures reminding case 3 are formed in the
experiments described by Lau et al. [17], with b∼ 25 nm,
giving LEC ∼ 0.4µm of the same order of magnitude as
the length L∼ 4µm and the lattice spacing (d∼ 0.3µm).
Experiments with Si rods exhibit the same structure [22]
with b∼ 20 nm, E ∼ 130GPa leading to LEC ∼ 0.1µm for
a length L∼ 1µm and a spacing d∼ 0.13µm. If these
nanorods were isolated they would not have pierced the
interface but instead buckled and eventually collapsed.
This study suggests that collaborative piercing is possible
for arbitrary flexible structures if they can merge into large
enough bundles.
Note finally that other theoretical approaches have

been proposed in the literature. The formation of bundles
can for instance been interpreted in terms of lateral
interactions [18,20,22,29], which is basically equivalent to
the aggregation described without the piercing problem.
In addition, the finite thickness of the hairs may become
important when the spacing between hairs is small (h∼ d)
and has also been considered [24]. However, to the best of
our knowledge, the combination of the size distribution of
the bundles with possible buckling is original.

Conclusion. – The fate of a brush immersed in a
drying liquid bath is determined by two competitive inter-
facial phenomena: compressive capillary forces may induce
the buckling and eventually the collapse of the bristles,
while lateral attractive capillary forces lead to collabora-
tive stiffening through the formation of bundles. Different
final states have been observed with model experiments
on macroscopic brushes depending on the physical para-
meters of the brush. We showed that these physical
parameters can be condensed into two non-dimensiona
l parameters: L/LEC and d/LEC , where L is the length
of the hairs, d their spacing and LEC an elastocapillary
length comparing bending stiffness to surface forces. Dense
brushes of rigid hairs tend to resist capillary forces while
floppy hairs in scarce brushes collapse. We found that arbi-
trary flexible hairs (that would collapse as individuals),
may develop a collaborative sitffening by sticking to their
close-enough neighbors and manage to pierce the interface.
Although our study is limited to one-dimensional brushes,
we expect our results to be qualitatively valid for two-
dimensional situations and may help designing “hairy”
microstructures.
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