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2PMMH, CNRS UMR 7636, ESPCI, Paris-Tech, Univ. Paris 6 and Paris 7, 10 Rue Vauquelin, 75231 Paris Cedex 05, France
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We show that thin sheets under boundary confinement spontaneously generate a universal self-similar

hierarchy of wrinkles. From simple geometry arguments and energy scalings, we develop a formalism

based on wrinklons, the localized transition zone in the merging of two wrinkles, as building blocks of the

global pattern. Contrary to the case of crumpled paper where elastic energy is focused, this transition is

described as smooth in agreement with a recent numerical work [R.D. Schroll, E. Katifori, and B.

Davidovitch, Phys. Rev. Lett. 106, 074301 (2011)]. This formalism is validated from hundreds of

nanometers for graphene sheets to meters for ordinary curtains, which shows the universality of our

description. We finally describe the effect of an external tension to the distribution of the wrinkles.
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The drive towards miniaturization in technology is de-
manding for increasingly thinner components, raising new
mechanical challenges [1]. Thin films are, however, un-
stable to boundary or substrate-induced compressive loads:
moderate compression results in regular wrinkling [2–6]
while further confinement can lead to crumpling [7,8].
Regions of stress focusing can be a hindrance, acting as
nucleation points for mechanical failure. Conversely, these
deformations can be exploited constructively for tunable
thin structures. For example, singular points of defo-
rmation dramatically affect the electronic properties of
graphene [9].

Here, we show that thin sheets under boundary confine-
ment spontaneously generate a universal self-similar hier-
archy of wrinkles, from strained suspended graphene to
ordinary hanging curtains. We develop a formalism based
on wrinklons, a localized transition zone in the merging of
two wrinkles, as building blocks to describe these wrinkled
patterns.

To illustrate this hierarchical pattern, in Fig. 1(a), we
show a wrinkled graphene sheet along with an ordinary
hanged curtain. These patterns are also similar to the self-
similar circular patterns first reported by Argon et al. for
the blistering of thin films adhering on a thick substrate
[10]. The diversity and complexity of those systems, char-
acterized by various chemical and physical conditions,
could suggest, a priori, that the underlying mechanisms
governing the formation of these patterns are unrelated.
However, these systems can be depicted, independently
from the details of the experiments, as a thin sheet con-
strained at one edge while the others are free to adapt their
morphology. These constraints can take the form of an

imposed wavelength at one edge or just the requirement
that it should remain flat.
At first sight, as quoted by numerous authors [8,10–16],

these patterns consist of a hierarchy of successive gener-
ations of folds whose typical size gradually increases along
x [Fig. 1(b)]. We propose to rationalize these various
hierarchical patterns by considering the evolution of the
average wavelength � with the distance to the constrained
edge x. This evolution is adequately described by a simple
power law, �� xm, see Fig. 1(c), which confirms the self-
similarity of these patterns as hypothesized in previous
theoretical studies [8,11–13]. Interestingly, curtains made
of various materials with contrasted properties exhibit
similar exponents. We observe values close to 2=3 for
‘‘light’’ sheets and to 1=2 for ‘‘heavy’’ sheets (both cases
defined and discussed in more detail below). Therefore the
exponent m is a robust feature of these folding patterns.
In this work, we describe in terms of simple scaling laws

the theoretical arguments developed in the mathematical
studies of the von Kármán equation [8,12,13,15] and infer
the properties of the hierarchical patterns. We also compare
these results with extensive experimental data. To the best
of our knowledge, the experimental characterization of
these patterns had not been carried out to date.
Assuming inextensibility of the sheet along the y direc-

tion, the imposed undulation along this direction exactly
compensates for an effective lateral compression of the

membrane by a factor (1��) defined as ð1� �Þ �
W=W0 ¼ W=

R
W
0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð@z=@yÞ2p

dy, where W0 and W are

the curvilinear and projected widths of the curtain,
respectively, and zðx; yÞ is the out-of-plane deformation
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of the sheet. At any position along the x axis, the function
zðx; yÞ is typically sinusoidal along y, with an amplitude
AðxÞ and a wavelength �ðxÞ. The inextensibility hypothesis
along the y axis imposes �� ðA=�Þ2 at the lowest order,
where the lateral compression is assumed to be constant
throughout the length of the curtain. The undulations of the
sheet along y are characterized by a curvature � ’ @2z=@y2

whose typical value, varying along x, is of order �ðxÞ �
A=�2. The corresponding energy per unit area, ub, for
bending the membrane is thus of order ub � Eh3�2 �
Eh3�=�2, where E is the Young modulus and h the
thickness of the sheet. Since ub is proportional to 1=�2,
the membrane adopts the largest possible wavelengths, in
order to minimize energy. This tendency to increase the
wavelength, combined with the constraint imposed at the
boundaries, is the source of the observed hierarchical
wrinkling pattern.

Inspired by previous models based on successive period-
doubling transitions [8,13,17], we consider that the

allometric laws mentioned above can be derived by consid-
ering that the global pattern results from the self-assembly
of building blocks which we denote as wrinklons. A single
wrinklon corresponds to the localized transition zone
needed for merging two wrinkles of wavelength � into a
larger one of width 2�. This transition requires a distortion
of the membrane which relaxes over a distance L. In other
words, each wrinklon is characterized by a size, L, which
depends on thematerial properties and on thewavelength�.
To investigate the properties and behavior of wrinklons, we
have performed model experiments using thin plastic
sheets. The sheets were constrainedwith sinusoidal clamps:
two opposite edges are constrained by a wavelength �
(amplitude A) and 2� (amplitude 2A), respectively; see
Figs. 2(a) and 2(b). The normalized size of the wrinklons,
L=�, is plotted in Fig. 2(c) as a function of the normalized
amplitude, A=h, the data collapse on a single curve defined

by L=�� ffiffiffiffiffiffiffiffiffi
A=h

p
. This relation implies that L / �3=2 since

A� �
ffiffiffiffi
�

p
.

In a further step, the wrinklons can be assembled to
mimic the behavior of a complete hierarchy. Indeed, if L
is the distance over which the wavelength increases from �
to 2�, its variation, d�=dx, is thus of order �=L. Hence, the
evolution of � as a function of the distance from the con-
strained edge x is given by

d�

dx
’ �

L
: (1)

Considering the scaling L / �3=2 deduced from the single
wrinklon experiments, Eq. (1) indicates that the wave-

length along the sheet should evolve like � / x2=3. The
excellent agreement between this power law and the ex-
perimental data measured for light sheets [Fig. 1(c)]
provides strong support to the concept of wrinklons as
building blocks. Equation (1) can now be regarded as a

FIG. 2 (color online). (a) Schematic representation of the
wrinklon experiments. (b) Morphology of the transition � to
2� for a constrained plastic sheet for A ¼ 6 mm and � ¼ 8 mm.
(c) Evolution of the normalized length of a wrinklon, L=�, with
the normalized amplitude, A=h (fixed wavelength, � ¼ 8 mm),
for different thicknesses as indicated.

FIG. 1 (color online). (a) Scanning electron microscopy image
of suspended graphene bilayer (scale bar is 1 �m). (b) Pattern of
folds obtained for a rubber curtain (scale bar is 25 cm).
(c) Evolution of the wavelength � with the distance from the
constrained edge x for various curtains. Power-law fits are added
(the power exponents m are close to 2=3 for the short fabric and
the paper curtains and 1=2 for the long fabric, the rubber
curtains, and the graphene sheet). Inset: Evolution of � with x
for the graphene bilayer. The experimental parameters are de-
tailed in the supplemental information [22].
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tool that connects the properties of single wrinklons to the
features of the full wrinkling-cascade pattern.

We now focus on the description of an elementary
building block. For confined thin sheets, stretching defor-
mations are costly as compared to pure bending. The sheet
tends to adopt an isometric (developable) shape [7].
However, the only developable solutions compatible with
boundary conditions generally include flat domains
surrounded by edge or pointlike singularities. These singu-
larities, which focus the elastic energy into narrow regions,
have been classified as developable cones [18,19], ridges
[7,20], or curved ridges [21]. In our case, the scenario is,
however, significantly different: in contrast to crumpling,
stretching is smoothly distributed in the transition zone
as pointed out recently in numerical simulations of de-
formed membranes [17]. The necessary stretching required
for connecting the periodic patterns can be illustrated by a
simple origami model made with a sheet of paper (see
supplemental material [22]). The stretching energy can
be estimated through the elongation strain of the sheet
along x within a transition domain. The typical value

of the strain along x is of order �2, where ��A=L�
��1=2=L is the average slope of the membrane. The
stretching energy thus reads Us � Ehð�2Þ2L��
Eh�5�2L�3.

As observed in Figs. 1 and 2, wrinklons should also
include a tip singularity (a small region where Gaussian
curvature is large). This singularity can be described as a
semicircular fold of radius � [Fig. 2(b)]. The energy of
these singularities has been derived by Pogorelov [21]
in a study of deformed shells. In our context, the energy

of such curved folds reads Ucf � Eh5=2�5=2�1=2 �
Eh5=2�5=4�7=2L�3, where the radius at the tip of the wrin-
klon is taken as �� �2=L as suggested by the roughly
parabolic shape of the crest of the defect [Fig. 2(b)].
Nevertheless, the ratio of the curved fold energy to the

stretching energy of the wrinklon, Ucf=Us � ðh=AÞ3=2, is
very small in our experiments: the effect of this concen-
trated region can therefore be neglected in the following.

The total energy of a wrinklon, of characteristic area L�,
is thus given by Utot ¼ Us þUb ’ Eh�5�2L�3 þ
Eh3�L��1. The size of a single wrinklon is finally ob-
tained by minimizing Utot with respect to L, yielding

Lð�Þ � �1=4�3=2h�1=2: (2)

This scaling emerges from a balance between bending and
stretching energies and was previously reported for other
situations, such as the decay length of an imposed curva-
ture in a sheet [20] or the extension of a pinch in a pipe
[23]. The scaling for the wavelength describing the whole
hierarchical pattern is obtained by integration of Eq. (1)
with Lð�Þ given by Eq. (2) and is found to be

�ðxÞ�1=6

h
�

�
x

h

�
2=3

: (3)

The scaling law, � / x2=3, is in very good agreement with

the observed power laws for light curtains, e.g., made of
fabric or paper sheets [Fig. 1(c)]. In addition to yielding the
proper exponent, this relation enables the comparison of
the data obtained from seemingly disparate systems, over a
wide range of length scales and independently of material
properties. Figure 3(a) provides a remarkable collapse of
the evolution of the wavelengths measured with light cur-
tains and various thin plastic sheets.
Heavy curtains, made from fabric or rubber, and con-

strained graphene bilayers do not follow this behavior

(instead, they obey � / x1=2). In these experiments, an
additional tensile force is acting on the sheet. This tension
T is given by the longitudinal tensile strain induced by
thermal manipulation in the case of graphene sheets [5]
and by gravity for heavy curtains [T ¼ �cghðH � xÞ�
�cghH, where �c, g, h, and H are the density of the
curtain, the gravity constant, the thickness, and the height
of the curtain]. These systems can also be compared to the
cascade of wrinkles observed for compressed thin polysty-
rene films on an air-water interface [14] since the surface
tension of water at the free edges pulls the thin sheet.
The tension exerted along x per unit width imposes an

additional stretching energy given by Ut � T�2L��
T��3L�1, and becomes dominant when Ut > Us, that is
when T > Eh2�=A. The total energy of the distorted
membrane thus becomes Utot ¼ Ut þUb. The length of
a wrinklon found from the minimization of Utot is

Lð�Þ � �2

h

ffiffiffiffiffiffiffi
T

Eh

s
: (4)

Similar relations, reflecting a balance between tension and
bending energies, were previously proposed for single
wavelength patterns in stretched sheets and heavy curtains
[3,16]. As expected, the tensile force increases the length
of wrinklons for a given wavelength [15]. By integration of
Eq. (1) with Lð�Þ given by Eq. (4), we obtain the corre-
sponding spatial evolution of the wavelength along a heavy
sheet:

�ðxÞ
h

�
�
Eh

T

�
1=4

�
x

h

�
1=2

: (5)

This scaling is in excellent agreement with the power
laws observed for heavy curtains and graphene bilayers
[Fig. 1(c)]. The data of various macroscopic curtains,
graphene bilayers, and nanometric polystyrene indeed col-
lapse onto a single master curve without any fitting
parameters [see Fig. 3(b)]. Our formalism is thus validated
from hundreds of nanometers for graphene sheets to
meters for rubber and fabric curtains, which shows the
universality of our description. The transition between
the stretching and tension regimes can be obtained by
comparing the relations (3) and (5). The critical distance
from the edge at which this transition occurs is given by

x?=h� ðEh=TÞ3=2�. In gravity dominated systems,
the tension T ’ �ghH gives the typical curtain length

Hc � hðE=�ghÞ3=5�2=5 above which tension dominates.
Curtains shorter than Hc (about 1 m for our fabric) were
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used to observe the regimes dominated by stretching
(‘‘light sheets’’), whereas the top part of longer curtains
was used for experiments concerning ‘‘heavy sheets.’’

In summary, we showed that the self-similar patterns
observed in sheets constrained at one edge cannot be
described with d-cone or ridge singularities. In contrast,
they can be built by stitching together building blocks,
which we call wrinklons, characterized by a diffuse
stretching energy. The self-similar structure is then related
to the size of these wrinklons that depends on material
properties and the local wavelength. Interestingly, we also
show that these building blocks can be readily manipulated
through the size and energy cost of a single wrinklon by
applying a tension. For large values of tension, we even
expect a transition towards a purely cylindrical pattern
along the sheet with a single wavelength. Finally, we can

draw a parallel with the fractal buckling of torn plastic
sheets where, in contrast, the different modes are super-
imposed [24].
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FIG. 3 (color online). Master curves gathering all data.
(a) Normalized wavelength, ~� ¼ ��1=6=h, as a function of the
normalized distance, ~x ¼ x=h, from the constrained edge for
short light sheets (fabric curtain, paper curtain, and constrained
plastic sheets). Dashed line: ~� ¼ 2:89~x0:65. (BOPP, biaxially
oriented polypropylene). (b) Normalized wavelength ~� ¼ �=h
as a function of the normalized distance from the constrained
edge ~x ¼ ðx=hÞðEh=TÞ1=2 for sheets under tension: fabric cur-
tains, rubber curtains, suspended bilayer graphene sheet, and
polystyrene thin films deposited on water from Ref. [14]. Dashed
line: ~� ¼ 2:85~x0:52.
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