
SUPPLEMENTAL MATERIAL 
 
Energy Release Rate estimates for the trouser-test tearing geometry 
In our analysis, the energy release-rate G in the trouser test (3) does not depend on the elastic 
properties of the sheet, because we have neglected the contribution of bending and stretching 
energies. We estimate here these contributions, and show that they are negligible. We consider a 
trouser test geometry, loaded in direction ! = 0 for simplicity. 
 
Stretching. As in the case of peeling [1], the flaps are in fact elastically strained in our experiment by 
" = F/Etw ~ 10!4 for a typical force F ~ Gct ~ 0.1N (E ~1GPa is Young’s modulus and t the 
thickness of the sheets). The force required for crack propagation is modified by a factor 
"/2 ~ 0.005%. Following Kendall’s argument [1], we therefore conclude that elastic stretching has a 
negligible contribution to the energy release rate. 
 
Bending. A scaling argument based on a simplified geometry gives an estimate of the effect of non-
zero bending rigidity. We consider an off-centered tearing geometry where the folds have typical 
radii of curvature r1, r2 and width w1 and w2 (see figure below). A simple model is to assume that the 
strips are composed of a straight panel connected to a piece of cylinder with radius r1, r2 (see right 
part of figure), so that the total distance between the clamps is y = S1 - ar1 + S2 - ar2, where S1, S2 are 
the lengths of the strips, and a =!/2-1.  
 
 

 
SUPPLEMENTAL FIGURE 1 : Off-centered tearing geometry (left), and corresponding idealized 

model (right) 
 
We consider the case of an imposed distance between the clamps y, while the crack tip propagates by 
ds in a direction #. Geometry therefore imposes that the effective width of the bent part of the strips 
are modified by dw2 = !dw1 = sin# ds, and (dr1 + dr2) a = dS1 + dS2 =  2 cos# ds. 
The elastic energy stored in the system scales as E = Bw1/r1 + Bw2/r2, where B ~ Et3 is the bending 
rigidity of the sheet [2].  



We obtain 
dE = - B(w1r1
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But if we note F the force applied by the operator, force balance imposes that F ~ Bw1/r1
2  ~ Bw2/r2

2 

and the energy release rate therefore takes the form 
Gt = !dE/ds = " cos# + # sin#  

Where we recognize in the first term the expression used in equation (3) of the main article, because 
" = (2/a) F ~ 2F. The second term # = B(r1

!1 ! r2
!1) ~  F (B/F)1/2(w1

!1/2 ! w2
!1/2) was neglected and 

we can see that there are two reasons to consider that this additional contribution is negligible. 
We first see that in the limit of vanishing thickness (i.e. zero bending rigidity) this second term 
vanishes. But we also note that this term is exactly zero if the crack is at the center (w1 = w2), as 
expected from symmetry argument. Even if the crack is off-centered by a distance $w/w ~ 10%, a 
maximum value in experimental runs, we estimate the second term to be less than 1% of the first 
term because in our experiments B/Fw ~ 5.10!3. It is therefore reasonable to neglect this term and use 
equation (3). 
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