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Controlling the fracture propagation in a film is an important element in the design of better packaging seals that must resist
handling and yet provide a tearing mechanism for easy opening. Here we show that under simple initial setup conditions a
divergent tear can be obtained that follows the path of a logarithmic spiral over two decades in length scale. We study the general
rules leading to the “spiral growth” of a tear and connect its geometry to the specific material properties of the film.

1 Introduction

Nineteenth century scientists were fascinated by the spiral
growth observed in seashells, snails, or the horns of ani-
mals1,2. It is a clever growth mechanism that preserves the
shape by the simple addition of new material in successive
self-similar steps. The classic book of D’arcy Thompson “On
Growth and Form”2 beautifully explains that this self-similar
or “gnomonic” growth is always outlined by a logarithmic
spiral. Spiral shapes are not unknown in fracture mechan-
ics. Shrinkage of a sol-gel layer producing a stress field that
cracks the film in a complex 3D conical spiral has been re-
ported in the literature3,4. The drying of thin layers of precipi-
tates shows millimeter size spiral paths that move inwardly by
propagation of a desiccation front5,6. However, spiral shapes
obtained by tearing are unexpected since fracture trajectories
usually converge to minimize the energy concentration gener-
ated, for instance, when pulling a flap from a film7–11. Thus,
convergent tears are a natural outcome when trying to open
a sealed package. In contrast, special conditions are needed
to observe divergent growth of a tear. Some recent examples
of divergent propagation are the tearing produced by pushing
a conical tool12 through a thin aluminum foil, the peeling of
coated cylindrical surfaces13, and the concertina tearing pro-
duced by a blunt object that is forced along a thin elasto -
plastic sheet8,9,14.

Here we report two mechanisms for tearing both leading to
a very robust and reproducible divergent path, in brittle mate-
rials, commonly used for packaging. We first study fracture
propagation obtained by pushing with a blunt object, and, sec-
ond by pullling on a flap. The loadings are very different,
but in both cases the crack trajectories asymptotically approx-
imate a logarithmic spiral15 r = r0e

θ cotφ (in polar coordi-
nates r, θ), with a pole located in a position that depends on
the “seed” made to initiate the fracture, and characterized by a
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constant spiral angle φ that is weakly dependent on the mate-
rial properties of the film. We first show experimental results
of spiral crack paths obtained by pushing. We then present
a theoretical model and implement a numerical algorithm al-
lowing us to compare theory to experiments. We then turn to
the spiral obtained by pulling and perform a similar analysis.

2 Experimental “Pushing Spiral”

To experimentally study the formation of a spiraling crack, we
take a brittle thin sheet (bi-oriented polypropylene, thickness
t from 30 to 90µm), clamped at its edges on a frame (77 ×
100cm2), and make a small (5mm) straight incision AB far
from the boundaries (see Fig. 1). A blunt object -the “tool”- is
placed inside the incision, perpendicularly to the sheet. Then
we start manually moving the tool horizontally against one of
the two lips that define the incision. At a certain load, a crack
T eventually starts to propagate from B if the pushing point
is closer to B than A. We then keep moving the tool always
pushing on the same lip of the sheet. We observe that the crack
T describes a curved path that progressively develops into a
spiral shape that reaches up to a meter in diameter in about
2.5 turns of the lip [See ESI where a movie of the process is
presented].

During the first 3π/2 degrees of rotation, we need to care-
fully push the lip in the part closer to the crack to prevent start-
ing a fracture at the other edge of the lip (corner points B orA,
which are subject to stress concentration). But this precaution
is no longer necessary for the subsequent propagation of the
crack, as we will show below. The remarkable reproducibility
of the crack trajectories obtained from this method is shown in
Fig. 2 where strikingly similar spirals are obtained from two
different trajectories of the pushing object. We also checked
that the crack paths are independent of the size and shape of
the frame.

3 Theoretical Description

To understand these striking properties and the generation of
the spiral, we follow the approach developed in the study
of an oscillatory crack path made by a blunt object16,19,20.
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Fig. 1 Illustration of spiral crack propagation by a pushing tool. a)
Initial configuration, b-d) successive stages of propagation. The tool
is always pushing on the same lip (see text).

Since resistance to membrane stretching and membrane frac-
ture are linearly proportional to membrane thickness (t), and
membrane bending goes with thickness cubed (t3), the ease
of bending versus stretching or fracture increases for thinner
films. As a result, thin films primarily respond to loads by
bending rather than stretching or fracture, and approximate
geometrical solutions can be obtained by studying isometric
deformations of the initial flat geometry.

Isometric deformations, however, require boundary condi-
tions compatible with large displacement of the film. This is
only possible inside the white in-plane area shown in Fig. 3,
where the film easily deforms out of plane without stretching.
This “soft” region is in geometrical terms the convex hull or
more precisely, the minimum convex domain that contains the
crack path15. When placed inside this soft region, the tool
only bends the film. But the film is stretched if the tool pushes
the borders of the soft region and moves to the dark gray re-
gion shown in Fig. 3b. Outside the soft region the main con-
tribution to the elastic energy is the stretching energy located
along the edges connecting the tool position with pointsA and
T . For simplicity we assume in the following that the tool is
close to the crack tip T (see ESI for more general conditions).
In this case the stretching energy is concentrated around the
line joining tool and crack tip, and must be a function of the
two-dimensional Young’s modulus Y = Et of the film (where
E is the Young’s modulus) the distance L from tool to the
crack tip, and the stretching angle α defined by the vertex at
T of the dark gray region (see Fig. 3). The only combination
for the elastic energy compatible with dimensional analysis is
UE(L,α) = Y L2u(α), where u(.) is a growing function of α
that for α� 1 can be expanded to u(α) ≈ aαn+1, where a is
a dimensionless constant, so that

UE(L,α) = Y L2u(α) = Y L2aαn+1 (1)

10[cm]
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Fig. 2 Scanned crack trajectories for two different experiments.
Open circles (squares) show the position of the tool generating the
fracture path outlined with the continuous (dotted) line. Density of
circles is inversely proportional to the speed of the pushing tool. The
arrows show the directions of the tool path for each experiment.
Inset: close-up showing the initial cut AB made to start the crack.

The value n = 4 is derived by Audoly et al.16 and n = 3
by Vermorel et al.12 in contradiction to measurements pre-
sented by us elsewhere17,18 (n ≈ 2.5, a ≈ 0.0038). However,
the results presented here are fairly insensitive to the precise
value of n and the position of the tool along the segment AT .
Knowing the elastic energy, we can compute the force applied
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Fig. 3 a) Detail of the fracture process after Fig. 2c. b) Geometry of
the fracture process. The white zone defines the convex hull or the
region that is free to move out-of-plane. The dark gray zone is
stretched and the resulting elastic energy feeds the crack
propagation process.

to the film by the blunt object through F = ∂dUE where
d is the normal displacement to the line AT , d = L tanα.
For a fixed position of the crack δd = L sec2 αδα ≈ Lδα,
so that the force in terms of our geometrical parameters is
F (L,α) = ∂αUE/L.

For a fixed position of the tool the stretching energy stored
in the film can be released by fracture. If point T moves a dis-
tance δs (see Fig. 3), Griffith criterion21 gives the equilibrium
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condition δU/δs = 0 (the position of the tool being fixed),
where U = UE + γts is the total energy of the system, s is
the fracture length, and γ is the work of fracture of the film.
The variation of the elastic energy when the crack moves a
distance δs is δUE(L,α) = ∂LUEδL + ∂αUEδα which we
combine with the constitutive relation for the force into

δU/δs = ∂LUEδL/δs+ LFδα/δs+ γt = 0 (2)

A crack moving along the direction of propagation β (de-
fined as in Fig. 3) readily implies the geometrical constrains
δα = − sin(β − α) cosαδs and δL = − cosβδs. Hence, we
obtain an expression for δU/δs as a function of the angles α
and β once the constitutive relations for the energy and the
force in Eq. (1) are replaced in Eq. (2). The maximum energy
release criterion ∂β(δU/δs) = 0 (equivalent to minimizing
the force10) and Eq. (2) give two relations to determine the
angles α and β. We obtain

α =

[
`E

aL(n+ 1)

]1/n
and β = π/2 +

n− 1

n+ 1
α (3)

Here `E = γt/Y is similar to an elastocapillary length22 and
is 4µm for our polymer films. Although this derivation as-
sumed that the tool is much closer to the crack tip than to the
other end of the lip (length W ), in fact these predictions hold
even if the tool is placed as far as 4W/5 from the propagating
fracture tip T (see ESI).

With n ≈ 2.5 and α � 1, we conclude that β is slightly
greater than a right angle. Moreover, the angle α depends
weakly on the distance L due to the low exponent 1/n ≈ 0.4.
Indeed when L is multiplied by a factor 100 (a L = 2 mm
to L = 200 mm range is typical of experiments, see Fig. 2),
α is divided by a factor of 6. According to Eqs. (3), angle α
varies24 from 25o to 4o and angle β changes from 101o to 92o.
This gives a total of 9o throughout the generation of a spiral in
Fig. 2, with an average value of 96o.

From here on we will therefore assume β to be constant
in our analysis, with a value larger than 90o (96o according
to our estimates). Propagation is then predicted to take place
in an angular direction β, independent of the position of the
pushing tool, thus explaining the reproducibility of the exper-
iments shown in Fig. 2.

We now can put together the elements leading to a loga-
rithmic spiral. We identify three stages in the propagation of
the crack. First, an initial stage (Fig. 4a) where the crack tip
T propagates in a direction with a constant angle β with re-
spect to the radius AT . This is a sufficient condition to have
a logarithmic spiral centered in point A with a pitch due to an
angle φ = π − β. Second, after half a turn the crack reaches
pointC and transforms the morphology of the convex hull (see
Fig. 4a and Fig. 4b). The soft region is delimited by line BT ,
so that the crack follows another logarithmic spiral with the
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Fig. 4 The morphology of the soft zone define three different stages
in the evolution of the spiral, in light gray we show the soft zone for
each stage. (a) First stage: the spiral grows with a center point at A.
(b) Second stage: the pole of the spiral is now point B. (c) Third
stage: the path grows by successive increments applied to the line
ET . (d) The figure shows the geometrical construction to obtain the
asymptotic center of the pole in our experiments (see text).

same angle φ = π−β, but now centered in point B. The crack
trajectory is smooth across point C because the tangent keeps
the same angle β with lines AT and BT . However, the jump
fromA to B in the position of the pole implies a discontinuity
in the radius of curvature R since for a logarithmic spiral15

R = r/ sinφ. Third, after roughly another quarter turn the
convex hull is no longer limited by line BT . At position D
(see Fig. 4c), the construction point E defines the convex hull
and moves tangentially to the trail left by the crack path to
exhaust pure bending deformations. The crack path now de-
velops around itself in a self-similar way while the tear grows
by successive increments applied to the segment25 ET shown
in Fig. 4c.

4 Numerical Model and Experiments

We use a numerical algorithm to generate the spiral path pre-
dicted by Eqs. (3). At each step the model calculates the con-
vex hull and then the direction of the propagation of the frac-
ture. Figure 4c illustrates the procedure to obtain the direction
of propagation once the position of the crack in T is given.
The determination of the convex hull defines point E and the
unitary vector t (dotted arrow vector in Fig. 4) making an an-
gle β with the line ET . The fracture moves a length δs along
t and a new position of point T is computed. The current po-
sition of point T redefines the morphology of the convex hull
and the process must be repeated again. The numerical curve
obtained from the algorithm can be studied locally to know
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how similar the curve is to a logarithmic spiral. We follow
the method suggested in D’arcy Thompson’s book2 based on
local geometrical properties of the curve. To obtain the in-
stantaneous value of the spiral angle2,15 we calculate the rate
dR/ds at which the radius of curvature varies along the crack
path. This quantity has the value cotφ for a perfect logarith-
mic spiral. Once the local value of cotφ is calculated in two
neighboring points, we compute the instantaneous position of
the pole by intersecting the lines making an angle φ with the
respective tangents at those points. Finally, the determination
of the pole position gives the distance r and polar angle θ (see
Fig. 4d). The inset in Fig. 5a shows the instantaneous position
of the pole obtained by this numerical procedure. The pole
is at point A and point B in the first and second stages, re-
spectively, and then moves progressively towards a fixed point
O, an indication that the spiral is asymptotically reaching a
logarithmic spiral.

The semilog plot in Fig. 5a gives the numerical function
r = r(θ). It shows how the path crack develops into a loga-
rithmic spiral since the slope of the figure represents the local
value of cotφ. The slope is constant and equal to cot(π−β) in
the interval26 0 < θ < 3π/2, as was expected from our anal-
ysis for the first and second stages. More interestingly, the
slope also approximates a constant number for large values of
θ. We can easily understand the geometry of the asymptotic
path from studying the convex hull defined by a logarithmic
spiral. We show in supplementary information that a perfect
logarithmic spiral of angle φ has an angle β given by the tran-
scendental relation (see ESI for derivation of this property)

sinφ e− cotφ(2π−β) − sin(β + φ) = 0 (4)

A numerical solution yields, for instance, cotφ ≈ 0.27 for
β = π/2.

To test the model, we study the geometrical shapes of the
tears obtained in our experiments. The pole was experimen-
tally fixed in points A and B in the first and second stages, re-
spectively, and a global method was used to obtain the asymp-
totic position of the pole when the logarithmic spiral is fully
developed. Figure 4d shows the experimental procedure to
obtain the pole position. Two parallel tangents to a logarith-
mic spiral define a line where the pole O must lie. The pole
position is obtained by intersecting two of these lines. In the
dimensionless coordinates of Fig. 5(a) inset, we obtain an ap-
proximate position [0.4, 0.2] for the pole in our experiments
which is consistent with our numerical model that gives the
asymptotic value [0.4, 0.1]. Once the position of the pole is
established, it is straightforward to measure from our samples
the distance OT and the angle of rotation θ to obtain the ex-
perimental curve r = r(θ).

The local values of β can also be extracted from post
mortem analysis of experimental crack path. Figure 5b shows
that β has regular oscillations of period π around a constant

value < β >= 92.3o ± 9o (the error range represents the
amplitude of oscillations). The average value is consistent,
but slightly lower than our prediction β = 96o (see section
3). Oscillations represent variations in the work of fracture
due to anisotropy, that are not considered in Eq. (2). They
can be cancelled out in the average by doing a pair of exper-
iments with initial starting cuts at perpendicular directions or
by taking several oscillations along the same experiment (see
Fig. 5b). We note that the amplitude of oscillation (18o peak to
peak) is larger than the overall variation (estimated 9o) given
by Eqs. (3) when L changes in two orders of magnitude.
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Fig. 5 (a) Semilog plot of the curve r = r(θ) in units of the initial
distance r0 = AB. The black line is obtained from our numerical
spiral for β = 92.3o. The circles represent the experimental
measurements of two spirals started with cuts in two perpendicular
orientations. The instantaneous pole in our experiments is chosen as
A for θ < π, B for π < θ < 3π/2, and the asymptotic value of O
for 3π/2 < θ < 6π. Inset: the instantaneous position of the pole
obtained from the numerical model for β = 92.3o. The pole moves
progressively to the asymptotic position O ≈ [0.4, 0.1] in
dimensionless units. The successive jumps in the position of the
pole reflects a discontinuity in the curve r = r(θ) and its curvature.
(b) Fracture angle β measured as a function of the polar angle θ for
the same two spirals shown in (a).

Figure 5a shows in a semilog plot the radius of the spiral
as a function of the angle of rotation in our experiments. The
crack path behaves roughly as a logarithmic spiral with an ex-
perimental slope cotφ = 0.29±0.01 which is consistent with
that given by Eq. (4), cotφ = 0.29, if the value β = 92.3o

is used. We also observe oscillations around the exponential
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growth that are due to material anisotropy, resulting in local
variations of the angle β observed in Fig. 5b.

5 The Starting Seed

We discuss the conditions to obtain a spiral growth of a tear.
Our initial seed, line AB, to propagate the crack was dic-
tated by simplicity. However, it has some disadvantages. The
film contains two competing cracks along the first and second
stages and care must be taken to avoid the propagation of the
crack at the position of the pole. In mathematical terms, the
convex hull has a perimeter with two discontinuities for the
tangent in the first two stages. At these discontinuities, the
tangent defines an exterior angle28 χ (= β in Fig. 4c) that
accounts for the change of curvature

∫
dsR−1 = χ at the

discontinuity (here R is the radius of curvature of the convex
hull). Thus, the presence of an exterior angle implies a high
value of the curvature and stress concentration at the position
of the moving crack T and the pole.

The same rules followed by the crack propagation contain
the remedy for the stress concentration at the pole. We ob-
serve that in the beginning of the third stage the second crack
disappears when point T passes point D (see Fig. 4c). The
convex hull perimeter now has a continuous tangent near the
subsequent point E which smoothens the curvature. To pre-
vent the presence of a second crack in the first and second
stages, we can design an initial seed with a convex hull out-
lined by a perimeter with one exterior angle. This angle must
be conveniently chosen to avoid shedding a new crack when
propagating the fracture. The obvious candidate is an initial
cut having a convex hull with the same shape of the spiral (re-
gion CDT E in Fig. 4c). However, this does not exhaust the
possible seeds. We conjecture that any cut with a convex hull
containing only one point of discontinuity in the tangent which
defines an exterior angle χ ≤ β would lead to the same result.

6 Pulling Spirals

Spiral crack paths are not restricted to the situation where a
tool is pushed against the sheet. Instead of pushing the lip
ET in Fig. 4c, the tear can be pulled upwards to propagate
the crack, as shown in Fig. 6. To systematically study spiral
propagation by pulling, we replace the initial straight incision
made for the pushing case by a circle cut with a curved notch
AB that follows the recipe given in last section. The cut AB
is conveniently prepared to have a convex hull with no dis-
continuity at point A and an exterior angle β at point B. By
pulling upwards the flap left by the notch, the crack at B starts
propagating along a spiral path (see ESI where a movie of the
process is presented).

Because of the very low bending rigidity, all the region

a) b)Convex hull Initial
tear
shape

Pulling
Force

Notch

Crack tip,

c) d)

Crack tip,

Crack tip,

Fig. 6 Spiral crack obtained by pulling on a flap of material. a)
Initial stage at which a notch is cut tangent to a circular hole in the
sheet; b) initial pulling leads to a crack path; c) and d), later stages
of crack propagation. Note the way in which the released strip twists
along the pushing direction forming a pine tree structure.

where the sheet can move out of plane does so (see Fig. 6).
We have seen earlier that this region is the convex hull of the
cut. As a result, the operator effectively pulls on a fold which
is a segment starting on the crack tip T and reaching tangen-
tially the previous cut at point E . This fold shares exactly
the same geometry with the lip on which the tool was push-
ing in previous sections. However, the loading is of course
different from the pushing spiral. The fracture is now medi-
ated by a fold connecting the flap with the film where bending
and stretching energy is focused. In the rather similar case
of a torn flap strongly adhering to a substrate10,13, fracture
propagates with an angle β lower than π/2. In the geome-
try studied here, we can only provide a rough estimate of an-
gle β = π/2−4

√
lB/L based on the assumption that the fold

takes a cylindrical shape. Here L is the total length of the fold,
and lB = B/γt is a new length scale in the problem, involv-
ing work of fracture and bending rigidityB. We again notice a
weak dependence of the inward angle π/2− β of propagation
(inverse square root) with the width of the fold L. Moreover,
in our experiments this angle is very small (on the order of 4
degrees for typical value of L = 10 cm) because lB ∼ 30µm.
In fact lB → 0 when t → 0 (compare with `E that remains
constant in this limit), so that propagation tends to be perpen-
dicular to the fold in this infinitely thin sheet limit. We will
therefore again assume that β is a constant in a first approx-
imation. We then expect a self-developing logarithmic spiral
very similar to the previous case.

Proceeding in the same way as for the spiral obtained by
pushing, we determine the pole of the spiral obtained by
pulling, and thereafter we measure the distanceOT , the angle
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Fig. 7 Experimental pulled spiral (inset: scanned fracture
trajectory). Measurement of the radius of spiral as a function of
rotation angle for two spirals. Here ro corresponds to the minimum
measured radius of the spiral obtained by using our experimental
method explained in section 4. It correspond to the distance from
the spiral pole to point B, typically 0.7 cm. Figure below represents
measurements of propagation angle β exhibiting oscillations due to
anisotropy around an average value slightly lower than π/2.

of rotation θ, and the local angles α and β. In Figure 7a we
plot r = r(θ). Figure 7b shows that β has regular oscillations
of period π around a constant value < β >= 86.9o ± 9.0o.
Here the error includes the amplitude of the observed oscilla-
tions. The fact that β < π/2 does not prevent the spiral to be
divergent though. The semilog plot of Fig. 7a shows that the
crack path behaves in average as a logarithmic spiral with an
experimental slope cotφ = 0.24±0.01 which agrees with the
estimation given by Eq. (4) cotφ = 0.25. This lower pitch of
the spiral is consistent with propagation with a predicted angle
β slightly lower than π/2. Here again anisotropy of the mate-
rial results in a periodic effect on the direction of propagation.

Although there is stress concentration at points T and E , the
softening of the curvature at point E acts as a crack stopping
mechanism that prevents this possibility. Thus, the tear will
grow by adding new increments defined by the characteristic
angle β of the specific configuration. For instance, a film ad-
hered to a substrate and pulled along the line ET will have
an angle β related to the material properties of the film and
substrate as derived in Hamm et al.10. We expect that other
mechanisms of crack propagation may change the value of β,
but keeping the asymptotic spiral shape of the tear. This ro-

bustness is further explained by the fact that for any possible
direction of propagation of the crack, 0 < β < π, equation (4)
gives always a divergent path (0 < φ < π/2).

The authors have presented a patent30 in the context of
the design of efficient opening mechanisms in packaging of
goods. The patent takes advantage of two basic ideas put for-
ward in sections 5 and 6: 1) a seed is required to allow only
one crack to move safely, without shedding more cracks, when
tearing a packaging film, and 2) a spiral propagation is ob-
tained no matter what mechanism of tearing is used (pulling
or pushing). A spiral mode of tearing can be naturally applied
to the opening of a wrapper, in contrast to convergent cracks
that require more than one pushing or pulling operation for
complete unwrapping.

7 Conclusions

We have observed and theoretically described self-developing
logarithmic spiral crack paths in thin elastic and brittle sheets,
for two different loading conditions (pushing and pulling). In
both cases fracture propagation obeys the same geometrical
construction. A soft zone, the convex hull, bends away, and
fracture propagates with a constant angle with respect to the
limiting lip of material connecting the flap with the film. The
crack propagation adds more area to the convex hull in a self-
similar manner producing a spiral tearing. The asymptotic
logarithmic spiral path is independent of the initial shape of
the soft zone. Although, the starting seed must be designed
with a convenient shape in order to allow a single crack to
propagate.

The process is very robust. Indeed when the size L of the
lip satisfies L � `E (pushing) or L � `B (pulling) the pro-
cess does not depend on the material properties and becomes
purely geometrical. Boundary conditions, particularly the size
of the frame that holds the sheet, is not determinant. This is
consistent with our assumption that all elastic energy focuses
in the vicinity of the line T E , which leads to satisfactory pre-
dictions for the values of α and β, either in the pushing or the
pulling case.

The generality of the mechanism can be further illustrated
by applying it to tear thin metal films. Indeed, if the fracture
process zone is small (low work of fracture27), our geomet-
rical description in terms of convex hull still holds. Even if
plasticity also takes place in areas away from the crack but
near the fold, fracture propagation is still strongly oriented by
geometry7–9,14. Thus, we expect spiral crack propagation to
be observed in different materials (brittle or ductile) and con-
figurations when material properties and the initial flap design
avoid the nucleation of a second crack while tearing.
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