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Abstract We review several studies of crack path in
brittle thin sheets where large out of plane bending is
involved. Fracture path are observed to be very repro-
ducible. We present a unifying framework based on an
energetic point of view. A simplified description, where
the sheet is considered to behave as an inextensible fab-
ric, captures important features of experiments: the fact
that fracture path seems to obey geometry. We quantify
the possible effects of additional bending and stretch-
ing terms, and estimate the validity of the model.

Keywords Plate mechanics · Crack path ·
Thin sheets

1 Introduction

We define “tearing” as the situation where fracture
propagation in a thin plate is coupled to large out-
of-plane displacements. These situations are common
in everyday life (when opening a package Monsalve
and Gutierrez 2000 or removing wallpaper Hamm et
al. 2008), and have implication in engineering design
because slender structures are commonly used (for
example the hull of a boat may be torn by a rock Cerup-
Simonsen et al. 2009), but they are also responsible for
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the formation of peculiar ice rafts (Vella and Wettlaufer
2007).

The classical picture of Linear Elastic Fracture
Mechanics (LEFM) usually applies (Bui 1978; Lawn
1993; Leblond 2003) to a crack front propagating in a
thick (or infinite) body. How do cracks propagate in thin
structures such as brittle sheets, where fracture front
may be reduced to a point propagating in a surface?

In this article we review recent academic studies on
the quasistatic1 tearing path in isotropic brittle plates,
with the goal of organizing them in a unifying frame-
work. A global remark is that the crack paths seem to be
unusually reproducible. We will show how this surpris-
ing robustness of tearing paths is related to the central
role of geometry in the mechanics of thin plates (basic
facts on fracture and thin plates mechanics are reviewed
in the remaining of this introduction). We explain this
peculiar behavior by the remarkable geometrical sim-
plicity of a newly formulated first order model (pre-
sented in Sect. 2), the inextensible fabric model, with
consequences on tearing developed in Sect. 3. This first
order model is unusual, because it includes the full
geometrical non-linearities of the problem (which are
essential to non-linear plate mechanics), but neglects
the elasticity of the material. Finally we review attempts
of a more complete treatment of the problem in Sect. 4.

1 See Villermaux and Vandenberghe (2013) for a review of recent
studies on dynamic tearing of brittle thin sheets.
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210 B. Roman

1.1 Crack path in three-dimensional fracture
mechanics

Before turning to cracks path in thin sheets, it is inter-
esting to present briefly the question of crack path
selection in classical three-dimensional LEFM, where
we can define stress intensity factors. Griffith’s crite-
rion states that a pre-existing crack propagates when it
releases enough energy (work of the operator and stored
elastic energy) to compensate for a cost of fracture Gc
per area of the new surfaces.2 In term of stress intensity
factors, the energy release rate for propagation in the
direction of the initial crack is (plane strain)

G = 1 − ν2

E
(K 2

I + K 2
II) + 1 + ν

E
K 2

III

If KII = KIII = 0, fracture therefore propagate for
a critical value K I = K I c, where K I c is the fracture
toughness of the material. The expression for G is also
valid for a crack changing direction through a kink with
a given angle, if the stress intensity factors K s are the
one that the crack tip undergoes after it has turned and
propagated an infinitesimal distance in the new direc-
tion (Amestoy and Leblond 1992).

The selection of the direction of propagation is still
debated, and two criterions are proposed.

• In an isotropic material, the Principle of Local Sym-
metry (Cotterell and Rice 1980; Goldstein and Sal-
ganik 1974; Leblond 2003) assumes that a crack
continues its straight path if the stress field is sym-
metric with respect to this direction. Looking at the
linear elasticity solutions, we see that this is the case
if K I I = 0. In a continuous experiment where the
loading is varied continuously, one expects a crack
to adapt smoothly its path so as to cancel mode II.
If a condition K I I "= 0 is suddenly imposed, then it
is thought that the crack will kink and choose a new
propagation angle such that right after the kink, it
will satisfy K I I = 0.

• Another point of view is to imagine that the magni-
tude of the loading is increased progressively, and
to suppose that cracks propagate as soon as they
can, in the direction which first satisfies Griffith’s
criterion. If the material is isotropic, cracks propa-
gate in the direction θ which maximizes the energy

2 However we should keep in mind that Gc is not a well defined
material property, and may depend on the details of the plastic
flow in the process zone: fracture toughness usually depends on
the nature of the loading (mode mixity).

release rate G(θ) for a fixed loading (Bourdin et
al. 2008).

These two criterions actually coincides if propagation
is smooth: to say “K I I = 0” is equivalent to say
that “G(θ) is maximum in the initial direction of the
crack” (Chambolle et al. 2009; Cotterell and Rice 1980;
Amestoy and Leblond 1992).

But if the crack is loaded with a non zero K I I , it must
abruptly changes direction in a kink. Starting from a
loaded crack, the stress intensity factors experienced
by a kinked extension can be computed (Amestoy and
Leblond 1992), together with the energy release rate
in different directions. It is found that the direction
which maximizes the energy release rate does not sat-
isfy K I I = 0. The two criteria disagree, and although
the difference in angle between the two predicted direc-
tions is very small (and is almost indistinguishable in
experiments) this leads to some uncomfortable issues.

We will adopt a pragmatic conclusion: as long as we
are not interested in kinking points of the crack path,
both criterion give the same result.

1.2 Tearing thin plates

We can think of a crack in a thin plate as a fracture front
propagating in a 3-dimensional object, whose thick-
ness t happens to be smaller than the other lengthscales
(typical size L). But traditional approach to thin plates
mechanics takes advantage of the small parameter t/L
to reduce elasticity in the direction of the thickness, and
obtain 2dimensional description. In this point of view,
the crack tip becomes a point and the crack path is a
2-dimensional curve.

1.2.1 Stress intensity factors in thin plates

A possible approach for the description of a crack sin-
gularity in a thin elastic plate is to define the equivalent
of the stress intensify factors for linear thin plate elastic-
ity equations. Williams found the singular solutions for
Kirchhoff plate equations (Audoly and Pomeau 2010;
Love 1944; Timoshenko and Woinowski-Krieger 1959)
around the crack tip (Bui 1978; Williams 1961; Zehn-
der and Viz 2005). In addition to the usual in-plane
modes KI and KII , there are two other modes, k1 and
k2 which correspond to a symmetric bending mode
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Fracture path in brittle thin sheets 211

and antisymmetric twisting-transverse shearing mode.3

The energy release rate for propagation (again in the
direction of the crack) is Zehnder and Viz (2005)

G = 1
E

(K 2
I + K 2

II ) + π

3E

(
1 + ν

3 + ν

)
(k2

1 + k2
2)

Two difficulties arise if we were to follow this approach.

• First, we are actually interested in situations with
large geometric non-linearites, and the validity of
this approach (based on linear plate equations) is
not easy (Hui et al. 1998), as well as the practical
computation of the stress intensity factors from the
imposed large scale loading.

• A second question is to deduce the direction of
propagation from the values of the stress inten-
sity factor. What is the equivalent of the Princi-
ple of Local Symmetry? The stress field associated
with k1 is symmetric with respect to fracture direc-
tion, whereas that of k2 is antisymmetric (like usual
mode II). But the angular dependence of these two
antisymmetric mode is different. The condition for
a symmetric stress field is k2 = K I I = 0. Should
we consider that these two conditions are necessary
for a crack to propagate straight? But we only need
one condition to determine an angle.

1.2.2 Variational approach

Because of these difficulties, we will adopt an energy
point of view in the remaining of this article: Griffith’s
criterion and the criterion of maximum energy release
rate. The energy release rate will be computed from
variation of the elastic energy of the system (and oper-
ator’s work), and not from an explicit calculation of the
generalized stress intensity factors. This approach has
the advantage of allowing large out-of-plane displace-
ments if one can evaluate bending and stretching ener-
gies. It is not often possible to obtain exact expression
for these energies, but we will present an interesting
approximated simplified model (the inextensible fab-
ric model) which captures some of the essential features
of tearing paths.

This approach assumes that the process zone is small
enough that the crack tip can be treated as a point (the

3 Because of inherent assumption in the kinematics of Kirchhoff
equations the shear stresses diverge like r−3/2 instead of r−1/2,
a feature which can be corrected within a Timoshenko–Reissner
plate theory (Bui 1978; Zehnder and Viz 2005). But these effects
are only relevant at a distance to the tip inferior to the thickness.

details of the local field around it are not important).
Another important assumption is that fracture energy
Gc is independent of the fracture mode.

1.3 Mechanics of slender bodies: bending, stretching
and geometry

For a comprehensive review of the mechanics of slender
bodies, see Audoly and Pomeau (2010), Timoshenko
and Woinowski-Krieger (1959), Pogorelov (1988),
Love (1944), Mansfield (1989). Here we choose to
introduce bending and stretching rigidity, and the role
of geometrical non-linearities on a simple example. In
this article we will consider only a linear elastic behav-
ior of the material (small strains), but non-linearities
due to large displacement (geometric non-linearitites).
In a thin sheet, the in-plane displacement is associated
with in-plane stretching rigidity, whereas curvature of
the surface leads to a restoring torque proportional to
curvature (bending rigidity with a modulus B).

Linear behavior: Bending and Stretching. Consider
the simple example of a cantilever strip (thickness t ,
and width w # t) clamped at one end, submitted on the
other end to a force F small enough that the response
is linear. If the force is applied along the axis of the
beam, stresses σ = F/tw will lead to a displacement
of the end of the beam by δs = F L/twE , where E is
Young’s modulus of the material.

If now the load is applied perpendicularly to the
beam, the applied torque M = F L leads to a curvature
at the clamp κ = F L/B, where B = Et3w/12(1−ν2)

is the bending rigidity (Audoly and Pomeau 2010;
Timoshenko and Woinowski-Krieger 1959; Love 1944;
Landau and Lifshitz 1967; Mansfield 1989) and ν is
Poisson’s ratio. This linear response between curva-
ture and torque is valid as long as kt $ 1. This leads
to a typical deflection given by κ ∼ δB/L2, so that
δB ∼ F L3/E I .

As a result, the ratio of displacement is δs/δB ∼
(t/L)2. For the same force, thin strips will undergo
large out-of-plane deflection (and therefore stresses),
but small change of length. This is a direct conse-
quence of slenderness, independently of the material
properties. It is therefore tempting to consider that rods
and sheets are inextensible in the limit of vanishing
thickness.
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212 B. Roman

Fig. 1 Peeling of an adhesive strip perpendicularly to the sub-
strate. left: a strip with no bending rigidity, with a sharp corner
at the peeling line. Right: a strip with finite bending rigidity. In

fact this second figure can be seen as a zoom of the figure on the
left close to the peeling front

Geometrical inextensibility. But boundary conditions
may prevent the existence of isometric solutions
(shapes compatible with no extension of the neutral
line or surface). In fact this is in general the case for a
good design in engineering, because the rigidity of the
structure is largest. For example the expected load on
a truss should generate stretching of its members, not
pure bending.4

In the case of sheets, the condition of isometric
deformation is very restrictive. Surfaces isometric to a
plane, called developable surfaces have zero Gaussian
curvature everywhere (Struik 1988). They can be seen
as a collection of straight lines with the supplementary
conditions that the tangent plane is constant along each
of these lines. If they are extended far enough, such sur-
faces always include singularities where the curvature
is infinite. Particular examples are cylindrical surfaces
(singularity at infinity) and conical surfaces (one sin-
gular point).

Crumple a piece of paper in your hands: isomet-
ric solution compatible with these boundary conditions
will in general include singularities (Ben-Amar and
Pomeau 1997; Witten 2007). These crumpling singu-
larities are in practice regularized because they would
lead to infinite bending energy (Audoly and Pomeau
2010; Pogorelov 1988; Witten 2007), at the cost of
some localized stretching (Ben-Amar and Pomeau
1997; Lobkovsky et al. 1995).

4 This argument defined the shape of Eiffel’s tower (Eiffel 1900)
for a maximum rigidity against distributed wind loading.

We see that in the elasticity of thin sheets the inter-
play of two modes of deformation gives a non-trivial
and rich behavior, where the role of geometry is very
strong. Although considering slender bodies as inex-
tensible is tempting (and we will use this model in this
article), this approximation leads to some inconsisten-
cies in some cases: boundary conditions may result in
some in-plane strain (either diffuse of localized) for
non-trivial geometrical reasons.

2 The “inextensible fabric” approximation applied
to peeling

Before entering the subject of tearing, we present
an approximation used in the measurement of adhe-
sion energies (Kendall 1971, 1975). We will then use
this approximation (that we name “inextensible fabric
model”) for tearing configurations.

Consider a thin sheet adhering to a substrate (adhe-
sion energy Γ ), with width w, bending rigidity B =
Et3/12(1 − ν2) due to a Young’s modulus E and
thickness t , pulled perpendicularly to the substrate (see
Fig. 1) with an imposed force F . All the material stuck
on the substrate is in its rest state and has zero elastic
energy.

The work of the operator is converted to elastic and
surface energy (Griffith’s criterion for the propagation
of interfacial fracture):

Fdy = d Eel + Γ wdx, (1)
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Fracture path in brittle thin sheets 213

where Eel is the elastic energy of the flap, and is a
function of the force F , the geometry (width w and
length L of the flap) and material properties.

2.1 Inextensible plate, with zero bending rigidity:
the inextensible fabric model

In this approximation (Fig. 1-left), the main point is that
there is no elastic energy in the system and d Eel = 0.
Geometry also imposes dy = dx because lengths are
conserved (inextensibility). The propagation of a peel-
ing front therefore requires a constant force (Kendall
1971)

F = Γ w.

2.2 Including stretching

We keep bending stiffness B = 0 for now, but con-
sider finite membrane rigidity. Because it is subject to
a pulling force F, the flap is stretched, with a strain
ε = F/Etw. The elastic energy stored in the extensi-
ble flap Eel = EtwLε2/2 = F2L/(2Etw) increases
with flap size L , and may therefore be large if the flap
is long. We will however see that it is possible to ignore
the stretching of the plate in most cases, even if the flap
is extremely long.

In fact the peeling force F is here also constant (and
so is the strain ε). Because the flap is elastic, Eq. (1) now
includes a term d Eel = Etwε2d L . Another difference
with previous case is that the distances are stretched so
that when the front advances, dx = d L = dy/(1 + ε).

Finally Eq. (1) becomes

F
(

1 + F
2Etw

)
= Γ w,

a result first shown by Kendall (1975). It is surpris-
ing that the peeling force F is found lower than if the
flap were inextensible, because of the additional work
needed for the ever increasing stretching energy. But in
fact the extensibility of the strip leads to a larger travel
distance for the same advance of the peeling front, so
that the operator indeed provides a larger energy (than
in the inextensible case) by the work of a lower force.
Because we assumed F/Etw = ε $ 1 for the use of
linear elasticity, we simply find F & Γ w(1 − ε/2) at
linear order. The conclusion is that the peeling force is

only slightly modified by the finite rigidity of the mate-
rial if the flap is not seen to stretch by a large amount
(ε = F/Etw $ 1).

2.3 Bending energy in an inextensible strip

We now consider that the strip is inextensible (infinite
in-plane rigidity) but has a non-zero flexural rigidity.
The shape and elastic energy of the flap is invariant in
the z direction, and can therefore be determined using
an inextensible elastica equation. The solution of this
problem can be written analytically (see Appendix 6.1
with φ = π/2):

Eel = (2 −
√

2)
√

F Bw,

under the assumption that L # √
Bw/F , or in other

terms, that the size of the fold (boundary layer where
curvature is localized) is much smaller than the length
L of the flap.

In this framework, the solution of Griffth’s criterion
involves a constant force F . Indeed, with constant F
and w, the fold shape remains identical. As a result
d Eel = 0 and dy = dx, so that Eq. (1) leads again to

F = Γ w.

When the bending rigidity of the sheet B goes to zero,
the elastic energy of the flap Eel ∼

√
BΓ w does van-

ish, as well as the radius of curvature (and the size)
of the fold5 R ∼ √

B/Γ . At the end we are left with
a straight fold shape having sharp angle on the peel-
ing line, and zero bending energy. This inextensible
model with finite bending rigidity converges towards
the inextensible, infinitely flexible sheet limit, or the
“inextensible fabric model”.

2.4 Conclusion

We have seen in this simple situation that the “inexten-
sible fabric” approximation does a good job at predict-
ing peeling forces and elastic state of the system under
certain conditions:

As we could have expected, stretching of the mate-
rial can be neglected if strains ε ∼ F/Etw $ 1 are

5 We find again the elasto-capillary lengthscale (Bico et al. 2004;
Roman and Bico 2010) over which surface and bending energies
equilibrate.
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214 B. Roman

small. We see that stretching energy F2L/2Etw van-
ishes when rigidity Et becomes infinite, as we can
expect for a spring with increasing rigidity k under
a constant force (the energy F2/2k decreases with
rigidity).

The situation is reversed with bending energy: it
becomes negligible when bending rigidity vanishes in
this strongly non-linear regime. Indeed for low bending
rigidity, the geometry of the system is only modified in
a boundary layer with size R ∼ √

Bw/F, where curva-
ture (on the order or 1/R) and bending energy are local-
ized. The total bending energy in this system

√
B Fw

does vanish with rigidity B (the loading F kept con-
stant). The infinitely bendable approximation describes
well the geometry if the size of system L # √

Bw/F
is large compared to the size of the fold.

We observe that for a given geometry and material,
there is a range of force F

Bw/L2 $ F $ Etw. (2)

for which the strip is close to being inextensible, infi-
nitely bendable, and therefore can be assumed to store
no elastic energy. This regime exists when Bw/L2 $
Etw, which is equivalent to t $ L , or when the sheet
is very thin. A rigorous demonstration of this fact6 can
be found in Marigo and Meunier (2006).

3 Inextensible fabric model: fracture mechanics
obeys geometry

In this section we study how fracture propagates in
an inextensible fabric (i.e. a plate with zero bending
modulus B, but infinite in-plane rigidity). We will see
that this leads to a simple model for crack propaga-
tion, where geometry plays the dominant role. We will
also compare its predictions to experiments in the dif-
ferent configurations described in the literature, which
we classify according to the number of cracks involved
and the type of loading (“pulling” or “pushing”).

An important assumption will be that the number
of crack remains constant in the experiment (it is very
difficult to initiate new cracks in the material used in
experiments). In all this section, the argument will be
developed with imposed force F .

6 As the slenderness ratio e = t/L vanishes, 3D-elasticity con-
verges towards the inextensible, infinitely bendable model if the
normalized loading η = F/Etw follows η ∼ e. This falls in the
conditions (2), which can be rewritten into 1 # η # e2.

3.1 Two cracks configurations (pulling and pushing
are straight)

3.1.1 Pulling on the flap

We consider the case where a flap between two notches
is pulled in a fixed direction φ, as in Fig. 2. In
the assumption of inextensible fabric, if the plate is
clamped on the dashed boundaries, only the flap can be
moved out of its initial position, the rest of the sheet
being rigidly linked to fixed boundaries. Indeed any dis-
placement of other material points would generate an
elongation prohibited by inextensibility. This also true
if the sheet is not clamped on its boundaries, but instead
adheres on a flat substrate from which it is pulled. In this
case a straight peeling front joining the cracks propa-
gates simultaneously with them. We note Γ the adhe-
sion energy (Γ = 0 corresponds to clamped boundary
conditions) and w the width of the fold.

No elastic energy is involved in this inextensible
fabric approximation: as the crack propagates, energy
conservation (Griffith’s criterion) is simply:

Fdu = Γ wdl + 2Gctds

Suppose that fracture propagates in direction given by θ

in Fig. 2. The geometric conditions du = dl(1−cos φ)

and dl = ds cos θ (see Fig. 2), lead to the following
expression for the energy release rate per crack

G(F, θ) = F(1 − cos φ) − Γ w

2t
cos θ . (3)

The geometrical factor (1−cos φ) is well known in the
theory of peeling (Kendall 1971), but applies equally
to the clamped boundaries situation (with no adhesion
energy Γ = 0).

The consequence is that in all these configurations,
the energy release rate for a fixed loading F is maxi-
mum for θ = 0, and we obtain the first rule:

Cracks propagate perpendicularly to a pulled fold.

(4)

The force necessary for crack (and peeling) propa-
gation depends on material properties F = (Γ w +
2Gct)/(1− cos φ). However we note that the direction
of propagation is independent of all material proper-
ties (fracture energy Gc, material rigidity and thick-
ness t , magnitude of adhesion Γ ), and independent of
many loading characteristics: the size of the flap w, the
location of clamped boundary conditions, the angle of
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Fracture path in brittle thin sheets 215

Fig. 2 Pulling on two
cracks. The sheet is
clamped on the dashed
boundaries, with two
notches. The resulting flap
is pulled in a direction with
an angle φ with respect to
the plane. What is the
direction θ of propagation?

pulled fold

pulling φ, and the speed of the experiment (as long as
kinetic energy can be neglected)!

In experiments (Hamm et al. 2008) the crack path are
indeed remarkably reproducible, however the cracks
are observed to converge (θ > 0) and we will see in
Sect. 4.1 how this convergence is related to the finite
bending rigidity of the sheet.

Recent experiments have shown how these laws are
modified when a flap is torn from a sheet adhering on
a curved cylindrical substrate (Kruglova et al. 2011).
The geometry of the flap is obtained through a reflection
with respect to a plane P, an operation that conserves
lengths (see Fig. 3a). The fold joining the two cracks
is therefore lying along the intersection of this plane
with the curved substrate, a portion of an ellipse, which
geometry is set in the experiment by the curvature of
the substrate and the pulling angle φ. Unless the peeling
angle is φ = π , this means that the fold is a curved line
in the plane of the sheet. For simplicity we will consider
the case with φ = π/2, so that u = l, and Griffith’s
criterion simply reads Fdl = Γ wdl + 2Gctds. The
energy release rate 2tG = (F − Γ w)ds/dl is maxi-
mum when the ratio ds/dl is maximized, or in other
words, when the cracks advance the least amount for a
given step dl of the front.

The smallest path length for the crack to reach the
displaced (but identical) front is obtained when prop-
agation is perpendicular to the front (as illustrated in
Fig. 3c). We therefore find that rule (4) still holds, if
understood locally. This is a consequence of the fact
that cracks are point singularities in this model: each

crack propagates perpendicularly to the local orienta-
tion of the fold in its neighborhood, and we expect the
rule (4) to be general.

In the case of curved substrate the two cracks will
therefore not keep a constant distance, but will con-
verge, or diverge7 depending on the sign of the curva-
ture of the cylinder. In the case of Fig. 3, the cracks are
diverging.

3.1.2 Pushing on the flap

We now consider the case of a blunt object pushing
between two notches, as in Fig. 4. The sheet is clamped
on all the dashed boundary conditions. Part of the sheet
bends out of the way, until the objects hits the bound-
ary of this bendable zone, which we will call the “active
front”. We note that the bendable zone covers the exact
same geometrical area as the flap in previous config-
uration, for the same geometrical reasons, so that the
“active front” and the “pulled fold” share the same geo-
metrical line.

Because there is no easy experimental realization of
a peeling version of this pushing configuration (where
the plate would not be clamped on the boundaries, but
adheres on a substrate), we only consider the clamped
configuration and take Γ = 0.

7 The experimental flap shapes are more complex because con-
verging effects due to finite bending rigidity (Sect. 4.1) has to be
considered, and may dominate over the diverging terms for weak
substrate curvature, strong adhesion, or thick sheets (Kruglova
et al. 2011).
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216 B. Roman

(a) (b) (c)

Fig. 3 a Inextensibility requires that the peeling front from a
cylindrical substrate lies at the intersection (dotted line) of the
substrate with a plane P (yellow), an allipse. b Indeed, the com-
plete geometry of the peeling flap is obtained by reflection with
respect to plane P . The height above the substrate l is equal to
the length u for a perpendicular peeling angle φ = π/2. c When

the cracks propagate symmetrically by ds, the front will lie on
the same ellipse, but displaced by dl. The ratio dl/ds is there-
fore maximized when the cracks propagate perpendicularly to the
peeling front, leading to a diverging propagation in the situation
presented here

active front

Fig. 4 Pushing on two cracks. The sheet is clamped on the
dashed boundaries, with two notches. The resulting flap is pushed
upon by a blunt object. What is the direction θ of propagation?

Here the energy release rate is again given by the
rate of work of the operator, 2Gtds = Fdx , with the
simple relation ds cos θ = dx , so that we are lead to
the same equation as (3) where φ = π/2.

G(F, θ) = F
2t

cos θ

The maximum energy release rate therefore also pre-
dicts that in the pushing configuration θ = 0, so that
the fracture propagates in the direction perpendicular

to the pushed front, which is also here the direction of
pushing. These two directions do not always coincide,
and we will see in paragraph 3.3.1 (see in particular
Fig. 11) that the general rule is

Cracks propagate perpendicularly to a pushed front.

(5)

In experiments, small negative propagation angle
θ < 0 are observed and cracks slowly separate. This can
be attributed to in-plane strains (see Sect. 4.2.3).

3.1.3 Robustness of tearing path

We see that within this approximation the energy release
rate does not depend on material properties, nor on the
history of the crack, nor on the actual size of the flap
or location of clamped boundary conditions, nor speed of
the experiment (loading speeds are much lower than sound
speed), but only on the direction θ of the crack with respect
to the fold/front, and intensity of the force. This is at the
root of the remarkable reproducibility and robustness of
the tearing crack paths that will be presented in the next
sections.
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Fracture path in brittle thin sheets 217

We have also shown the rationale behind the organiza-
tion of this review: there is a strong analogy between push-
ing and pulling in the inextensible fabric model, although
the two situations sometimes lead to different behaviour
in experiments because of thin sheet elasticity.

In fact if a pushing experiment is performed as in
Fig. 4, an instability takes place (unexplained to our
knowledge), and one of the crack wins over the other
one which stops propagating. Pushing on two cracks is
not generally observed (unless the material is plastically
deformed (Tallinen and Mahadevan 2011; Wierzbicki et
al. 1998)) and leads to single crack configurations, which
are reviewed in the next section.

3.2 Pulling on a single crack (hyperbolae and spirals)

We review here several tearing experiments where only
one crack propagates, and compare the trajectory of the
cut with predictions by the inextensible fabric model.

3.2.1 Trouser test

The “trouser test” is a standard configuration used to mea-
sure the fracture energy in thin plates and elastomeres. In
a strip with a cut, the two flaps are clamped and pulled
away from each other (see Fig. 5). Here the work of the
operator is Fdy, when the crack advances by a surface
tds, with geometry imposing dy = 2ds cos θ . The energy
release rate G = 2(F/t) cos θ is maximum for θ = 0.
The propagation is predicted in the direction parallel to
the boundaries of the strip. In fact if the notch separates
the strip in two flaps with equal width, the crack path
should be straight (θ = 0) for reasons of symmetry, inde-
pendently of the assumption of inextensible fabric. This
straight propagation is observed in experiments where the
flaps are pulled (Takei et al. 2013) or rolled on parallel

Fig. 5 Trouser test
geometry. We note θ the
angle of propagation

θ

F

y

0

Fig. 6 Two points on a flat sheet (left) are pulled away from
each other (right)

cylinders (Bayart et al. 2010), even if the notch is off
centered.

3.2.2 Pulling on two points

An ingenious tearing experiment which somehow gener-
alizes the trouser test configuration is reported in O’keefe
(1994). A notch is cut in a thin sheet, and two points A,B
are selected, one on each side of the notch. These two
points are pulled away from each other, so that only forces
(no torque) are applied, (see Fig. 6). In what direction does
the crack propagate?

A key observation is that for infinitely bendable sheets,
the two red lines (AC, BC) drawn on the sheet that join the
pulling points to the crack tip C become a single straight
line when loading is applied. This is a consequence of
the fact that an infinitely bendable sheet cannot sustain
torques. We note l the total distance between ACB in the
loaded configuration. As the crack advances by a distance
ds, the energy release rate is here Fdl

Because the sheet is inextensible, l can also be found
on the flattened sheet (initial configuration) by adding dis-
tances l1 = AB to l2 = BC measured along the red lines
(Fig. 7). Simple geometry shows that dl1 = cos θ1ds if
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A
C

B
Initial cut

Boundaries of the sheet

A
C

B

Fig. 7 Tearing hyperbolae: the crack in C propagates when the
sheet is pulled by points A and B. The optimal direction bisects
the angles ACB (θ1 = θ2). So that the possible trajectories are
hyperbolae, with focal points in A and B, drawn on the right

θ1 is the angle between the direction of the crack and
the line AC . As a result, the energy release rate becomes
Fdl/tds = F(cos θ1 +cos θ2)/t. Because the sum θ1 +θ2
is constant, the maximum energy release rate is achieved
when θ1 = θ2: the crack propagates in the direction that
bisects the sector ACB.

As a result, the crack path has the property of being at
each point C tangent to the bisector of angle ACB. This
is the definition of a hyperbola with focal points A and
B. All the hyperbola have an asymptote. Indeed when the
crack moves away from A and B, l1 ∼ l2 # AB, so that
the crack almost follows the line (AC) which is the same
as (BC), with a constant angle with respect to the segment
AB. In this asymptotic case we recover the trouser-test
symmetric geometry. Depending on the initial position of
A,B and the crack tip C, one of the hyperbola (and final
asymptote) is selected. If in the initial case l1 < l2, the
crack path turns initially towards A. If l1 = l2, then this
property stays true all along the crack path which follows
a straight line.

Some experiments were performed with paper in
O’keefe (1994) to check this theory, but the agreement

pulled fold

hole
curved cut

crack

T

T

T

(a) (b)

(c) (d)

(e) (f)

Fig. 8 Cutting a brittle sheet along a line leads to a propagation in
a spiraling shape. a The initial seed (a hole plus a curved line) and
b the resulting flap. c–d The crack propagates perpendicularly
to the fold. e–f The crack path evolves into a spiral. Gray region
corresponds to the convex hull of the crack path. In dotted blue
line is the pulled fold

with the theory was obtained with an ad hoc fitting para-
meter introduced to account for anisotropy of the paper
(see Takei et al. 2013 for a study of anisotropy in tear-
ing).

3.2.3 Pulling on a flap, with one crack

We now come back to situations where we pull on a flap,
but this time with only one crack. We start with a sheet
held on its boundaries (or adhering on a flat substrate),
that is cut along a particular path: a circle plus a curved
line (as in Fig. 8a). This defines a flap (Fig. 8b) that can
be pulled perpendicularly to the plane of the sheet. The
crack should therefore propagate perpendicularly to the
pulled fold, as we have seen before. But as the crack prop-
agates, the geometry of the flap evolves in a more com-
plex way: the fold rotates progressively (Fig. 8d), so that
the crack tip follows a spiraling trajectory (Romero et al.
2013) (Fig. 8f).

Spiral patterns are sometimes observed in the fracture
of strained film bonded to a substrate: converging spi-
rals are reported in drying layer (Argon 1959; Dillard
et al. 1994; Leung et al. 2001; Néda et al. 2002; Xiaa
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and Hutchinson 2000) when the material debonds from
the substrate. Diverging fracturing spirals are sometimes
observed (Lebental 2007; Meyer et al. 2004; Sendova and
Willi 2003; Wan et al. 2009) in similar systems, where
stresses are due to the film deposition process. However
in both cases the spirals seem to be archimedian, with the
radius decreasing or increasing by a specific characteristic
distance at each turn. Fracture propagation is due to resid-
ual tensile stresses, so that he loading is also completely
different from the tearing situation studied here.

Following the inextensible fabric model, the evolution
of the fold can be deduced from simple geometry. We first
look for the points which stay fixed in an inextensible sheet
with clamped boundaries when a given continuous line is
cut. All the points of a segment joining two fixed points are
fixed: they cannot be displaced in any direction without
changing the length of the segment. But this argument
does not hold if the segment intersects the crack trajectory
because the material segment is not continuous. The area
swept by all segments joining two points of the boundary
without intersecting the cut line is therefore the region
which is rigidly fixed. The remaining points are not rigidly
linked to the boundary,8 and are free to move out-of plane.
This is the flap region, which can also be defined as the
set of segments joining any two points of the cut line, i.e.
the convex hull of the cut line.

For example on Fig. 8, the flap corresponds to the con-
vex hull of the previous cut (in grey on drawings on the
left). The advancing front of this convex hull is the pulled
fold (orange line), a segment which starts on the advanc-
ing crack tip, and ends tangentially to the cut line at point
T (drawn in orange).

Consider the height z of the 3D structure on Fig. 9
obtained when the operator pulls upward on the tip of the
flap. Because the sheet is considered infinitely flexible, z is
simply the distance between the pulling point and the line
along which the flap is fixed (the advancing front, also
denoted pulled fold, in orange) measured along the cut
flap: this is the length of the shortest curve drawn along
the flap that links the tip to the front (in red on Fig. 9).
The distance z is therefore the length of the path from the
pulling point to point T . Under loading by the operator,
this curved line becomes straights, causing the complex
three-dimensional structure bent around it (at no energetic
cost in this model).

Because inextensible fabric have no elasticity, the
energy release rate reduces to the work of the operator
G = Fdz/ds. The direction of propagation therefore
maximizes the geometrical ratio dz/ds. This is the direc-
tion which minimizes the crack advances ds for a fixed dz.

8 Things are more complex if there are several non-connected
cuts.

If the height increases by dz, this leads to an advance by
dz of point T along previously cracked trajectory (Fig. 9-
right). The position of the pulled fold (orange line) is set,
because of the tangency condition. The crack tip must lie
on this line, and the minimal distance from previous posi-
tion is obtained through a jump perpendicular to this fold
line.

As a result, the crack propagates perpendicularly to the
pulled flod: here again, we have recovered the rule (4). In
fact, this is not too surprising because the local loading
configuration near the the crack tip (one side pulled up,
the other side attached to the boundaries) is identical to
that experienced in a double crack geometry (as in Fig. 2).

We now have a construction rule for the the crack trajec-
tory, starting from a seed line: the crack always propagates
perpendicularly to pulled fold (boundary of the convex
hull of the crack path), which always stays tangent to pre-
vious crack trajectory. We note that this construction rule
is based on angles, has no internal length scales, so that
it applies equally at all scales. A famous geometric curve
with this scale-independent shape property is the loga-
rithmic spiral, whose radius grows exponentially with the
number of turn. It is sometimes called equi-angular spiral,
because angular properties are conserved along the spiral.
Indeed, the geometry of the spiral at one point is identical
to that around any other point, only scaled out and rotated.
Amongst those spirals, only one has the pitch that corre-
sponds to the construction rule that we defined: its radius
grows like exp (pψ) (ψ being the polar coordinate angle),
where p ∼ 0.274 (Romero 2010; Romero et al. 2013).

Starting from any geometry of initial seed, we do
observe on a simple numerical integration that the con-
struction leads to a spiral trajectory, which asymptotes
towards this spiral. In the experiments (Romero 2010;
Romero et al. 2013), we observe a behavior compatible
with an exponential growth, but with a slightly different
exponent (see Sect. 4.2.2), and with oscillations which we
interpret as anisotropy effects.

An interesting feature is the robustness of this natural
spiral path (independent of position of boundaries, speed,
pulling angle), and its exponential growth. It may be used
as an easy opening trick for packages. As the user pulls on
the pre-cut tab, the crack spirals and quickly reaches the
boundaries of the package. An entire face of the package
is destroyed, and the product may be removed easily (easy
opening patent Cerda et al. 2012).

3.3 Pushing on a single crack (oscillations and spirals)

In recent years, several quasistatic tearing experiments
have involved the propagation of a single crack by pushing
a blunt tool through a thin sheet.
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T

T

Fig. 9 Pulling on a flap with only one crack leads to a spiral.
(left) The pulling fold is along a straight segment (in orange)
joining the crack tip to a point T where it is tangent to the crack
path. The height of the tip of the flap above the clamped plane z
is given by the length of the crack path from the flap tip to the

tangency point T . (right) During fracture, the tangency point T
advances by dz, so that the crack must lie on the new tangency
line. The maximum energy release rate corresponds to the direc-
tion of shortest step ds for the crack to reach the new orange
line: perpendicular to the fold line

3.3.1 Oscillation

In a typical experiment (Atkins 2007; Audoly et al. 2005;
Ghatak and Mahadevan 2003; Reis et al. 2008; Roman
et al. 2003; Tallinen and Mahadevan 2011), a blunt tool
perpendicular to the plane of the sheet is displaced with
a constant velocity along a straight trajectory. The sheet
is clamped on its boundaries and includes a single notch
in which the tool is inserted. If we use a sharp tool, like
a knife, the material is cut at the tip of the tool and the
crack path follows the trajectory of the tool. But if the tool
is blunt, the crack path quickly takes a regularly oscillat-
ing path (see Fig. 10). We note w the maximum width
section of the tool measured perpendicular to the pushing
direction, as can be seen on Fig. 13.

These oscillating shapes are reminiscent of the oscillat-
ing crack path observed in thermal loading (Adda-Bedia
and Amar 1996; Ronsin et al. 1995; Yang and Ravi-
Chandar 2001; Yuse and Sano 1993) when a hot glass strip
is dipped in cold water. If the dipping speed is high enough
that thermal diffusion does not have time to operate, ther-
mal stresses develop and the plate fractures. Depending
on the speed, a straight crack path may become unsta-
ble and an oscillating path develops. But the mechanism
is clearly very different from the tearing configurations
in this review. A more similar phenomenon is observed
in the wake of a cylinder in a layer of visco-elastic fluid
(Gladden and Belmonte 2007) which may behave like an
oscillating fracture.

Experiments Audoly et al. (2005), Ghatak and Mahade-
van (2003), Reis et al. (2008), Roman et al. (2003) have
revealed striking features of this phenomenon: the crack
path is independent of the the speed of the tool (as long
as it stays much smaller than the typical dynamic fracture
speed), it is independent on the geometry of the clamping
conditions (which may be close or far away from the tool
path). The amplitude and wavelength are observed to be
proportional to the width of the tool, on a large range of
scale. The amplitude to wavelength ratio depends weakly
on the shape of the object. These observations break down
when the tool width becomes comparable to the thickness
of the sheet: for thin enough tools, the oscillations dis-
appear through a discontinuous transition (Roman et al.
2003), or even in the case of relatively large width to thick-
ness ratio when the tool is strongly inclined (Reis et al.
2008).

The inextensible fabric model gives some interesting
predictions for this phenomenon. We first define the con-
vex hull of the crack path, which can be seen as the reunion
of “flaps” (Figs. 10, 11) and is again the zone where out-
of-plane displacements of the plate are possible. The blunt
tool must therefore always entirely lie in this area. When
the object touches (and pushes) the convex hull boundary
front, the crack must therefore propagate so that the con-
vex hull extends and still includes the tool. It is easier to
consider the rather artificial situation in Fig. 11 where the
object is drawn small compared to the amplitude of the
oscillations. The boundary of the convex hull is a line
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Fig. 10 Oscillatory crack
path: the wake in a solid.
Although the out-of-plane
bending is complex, the
crack path is very regular.
Notice the flaps in the wake
of the cylinder

(drawn in yellow) that joins the crack tip to the point
T of tangency. Suppose that the tool is pushed out of
the convex hull by a distance dz as in Fig. 11, leading
to a crack advance by ds. Griffith criterion also writes
Fdz = Gctds, where F is the force imposed by the oper-
ator. The direction for the maximum energy release rate9

is again the one that maximizes dz/ds. We can repeat the
argument seen with Fig. 9: the minimal crack advance ds
compatible with a given advance of the tool by dz takes
place in direction perpendicular to the convex hull front.
Note that the direction of propagation is independent of
the direction of pushing, and of the actual place where the
object pushes on the active front.

We have recovered the propagation rule (5): cracks
propagate perpendicular to a pushed front.

When the crack propagates, simple geometry sets the
new convex hull and therefore the evolution of the active
front. Numerical integration10 of these geometric rules
quickly converges towards a periodic oscillating trajectory

9 An argument based on the same principle was developed
in Atkins (2007) for the case of a cylindrical rigid tool. With
the additional assumption that the crack tip was assumed to be
located on a circle centered on the tip but with larger radius.
Because no elastic energy was attributed to the sheet, the ratio
dz/ds was minimized to obtain the angular velocity of the crack,
and therefore the crack path.
10 Interactive software written by B.Audoly, Institut Jean Le
Rond d’Alembert, CNRS/UPMC, 2003.

(Fig. 12). The oscillation is divided in alternating symmet-
ric phases: when the crack goes to the left, this is because
the object, advancing straight, pushes leftward on a front
(Fig. 12a, d, e). This phase stops when the pushing front
is no more touched by the left side of the object, that is
when the crack has reached a distance equal to w/2 from
the centerline (Fig. 12a, e). At this point the process should
stop, but the object may now push on the other front (the
right front) and a new phase may start, mirror symmetric
from the previous one. We see that the oscillation path is
a way for a single crack to do the job of the two cracks in
Fig 4: open in an inextensible sheet a convex hull chan-
nel wide enough to always enclose the pushing object.
Because the propagation rule (5) is indenpendent of the
size of the front, the crack path for a geometrically simi-
lar larger object should simply be identical but scaled up
from the cut obtained with a smaller object.

More than that, if only the width w of an object is
known, the crack path can be constructed as the curve
which periodically repeats itself when the following geo-
metrical rule is applied: propagate the crack perpendicu-
larly to the convex-hull front line which is then advanced
accordingly, and stop when a distance w/2 from the cen-
terline is reached. The process is periodic if the obtained
curve is the mirror of the first one. The consequence of
this simple argument is that the fracture wake in a thin
sheet is independent of the shape of the object (and only
depends on its width).
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flapflap

T

flapflap

T

Fig. 11 (left) The crack path convex hull defines “flaps” (white
area) which easily bend around the tool. If the tool were to
advance by dz and cross the boundary of the convex hull (in
orange), it would generate stretching in the inextensible film.
Instead the crack tip will propagate (right) by a distance ds so

that the pushed front (orange boundary) advances and the tool
still belongs to the flap region (white). The direction of propa-
gation for the crack that minimize ds/dz is perpendicular to the
pushed front

Fig. 12 Numerical
evolution of geometrical
rules for a triangle tool. In
white, the convex hull of the
crack path, and grey, the
points rigidly linked to the
clamped boundaries. The
triangle always lies in the
white area, and is in contact
with a boundary at a point
circled in red in cases a, d,
e: during this “left” phase,
the crack propagates
towards the left. Soon after
a, the triangle does not
contact the left front, but
hits the cut boundary, so
that the mirror “right” phase
takes place in b, c

(a) (b) (c) (d) (e)

This is shown in Fig. 13, where an experimental path
for a disk tool is compared to that obtained from numerics
with different tool shapes. In the numerics, even if the
object is not left-right symmetric, the crack path will be
the same and the wavelength is λ ∼ 1.32w. Contrary to ad
hoc assumption in Ghatak and Mahadevan (2003) there is
no reason to believe that this shape is composed of arches
of cycloids.

In experiments (Audoly et al. 2005; Roman et al. 2003),
we observed that as long as the object is much larger than
the thickness of the plate, the amplitude is comparable
to the width of the object (between 0.75 and 0.95 w) for
w varying from 0.3 to 50 mm, and wavelength to width
ratio is found to vary between 1.15 < λ/w < 1.5 for very

different tool shapes and even for asymmetric shapes. The
origin of these small variations are discussed in Sect. 4.2.4.

Although this argument gives an elegant explanation
for the remarkable robustness of the crack path, it should
be used with some care because of a hidden assumption:
that the object always pushes on the active boundary of
the convex hull. This assumption is not satisfied in two
situations.

First, we used the implicit assumption that the left-
right phases alternate after the active pushing front has
become parallel to the pushing direction. In other words
we assumed that the crack has reached one of the boundary
x = ±w/2 before the foremost point of the object hits the
convex hull limit. But this is only true if the blunt tool is
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Fig. 13 Oscillatory crack
path: the wake in a solid.
Left to right: picture of a
sheet cut by a cylinder
(disk). Simulation of
geometrical rules for a
similar cylinder, a triangle
and an inclined plate. In
doted blue line is the active
pushed front, always
perpendicular to the crack
path tangent. All the crack
are pictured in a “right”
phase, propagating towards
the right, with the tool
pushing towards the left of
the pushing front

not too elongated along the pushing direction, for exam-
ple for square or circle geometry (Audoly et al. 2005).
In the opposite case, the crack path may start the mirror
phase before the end of the previous one, and an interesting
dynamics takes place: in general we observe several oscil-
lations on a short wavelength / short amplitude around the
object tip. But this does not open a wide enough channel
for the tool, so that eventually a large scale (comparable
to w) phase takes place again. This phenomenon repeats
in a complex but periodic crack path, see Fig. 14a. This
peculiar behaviour is also qualitatively observed in our
experiments (but was not reported in the literature).

A second, more frequent situation where our assump-
tion always fails (even for non elongated tools) are the
kink points where the system switches from one phase to
the other. We have indeed assumed that the object always
pushes on the active boundary of the convex hull. But
in the case of a tool with disk geometry, we see that the
object hits the convex hull on a curved cut line, not on a
straight boundary originating on the crack tip (Fig. 14b).
As a result, a small advance of the crack will not produce
movement of the object, and therefore extracts no work.
Without energy released, the crack cannot propagate, and
if the crack cannot propagate in an inextensible fabric, the
tool cannot advance, so that the system is locked. Propa-
gation is possible only after the crack is allowed to jump
for a finite distance, so that the pushing tool now touches
the new convex hull active front. Within the inextensible
fabric model, the system would therefore not allow prop-
agation after one phase of the oscillation, even for infinite
pushing force. In practice a dynamic jump of the crack is
observed (see Sect. 4.2.4).

3.3.2 Pushing spiral

The oscillating path alternates left and right phases
because the tool pushes alternatively on the left or
right active front. It is possible to stay in one of these
phases (Romero 2010; Romero et al. 2013), if the tool
is continuously pushed against one of the active front, as
described in Fig. 15: In the experiment, the tool is pushed
against the front, which turns as the crack tip propagates.
The movement of the tool has to be adjusted so that it con-
tinually pushes against the flat portion of the ridge. There
are however many tool trajectories (consisting of pushing
at different distance from the crack tip), but they all lead
to almost identical crack path (Romero 2010). A spiral-
ing path develops (Fig. 15), and within the inextensible
fabric approximation, the spiral is identical to the self-
developing pulled logarithmic spiral described previously
(in experiments the observed pitches are however slightly
different Romero et al. 2013).

3.4 Conclusion on inextensible fabric model

Assuming that the sheet behaves as an inextensible fabric,
the direction of propagation for a crack maximizes the
extraction of the operator’s work. In a variety of examples
which can be divided into pulling (on a flap) or pushing
(with a blunt tool) configurations, we have seen that the
angular distribution of energy release rate can be simply
computed from geometry arguments.

The crack path is therefore independent of the speed of
the experiment (as long as kinetic energy is not important),
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(a) (b)

active front
active front

active front

Locked! Unlocked

Fig. 14 The universal shape model should not hold: a for an
elongated the tool (like this inclined plate—numerical simula-
tion), complex oscillations may arise. b At the kinking point, the
left phase (figure on left) locks. In the center figure, a vanish-
ingly small advance of the crack does not allow any advance of

the tool. This is because the tool does not push (red circle) on
the active front (blue dotted line), but on the crack path. Only a
large advance of the crack allows movement (figure on the right).
Within this model, the system is geometrically locked. In practice
a dynamic jump of the crack is observed

Fig. 15 Two spiraling
cracks obtained by the same
initial conditions
(continuous and dotted
lines), and pushing always
on the same active front of
the convex hull with a blunt
tool (Romero 2010; Romero
et al. 2013). In circles and
squares are represented the
positions of the tool in the
experiments at fixed time
intervals corresponding to
the crack path with the same
color. Although the speed
and trajectory of the tools
are different, the crack path
are close, as predicted by
the zero thickness model

10[cm]

A

B

independent of the material properties and thickness of
the sheet, independent of the location of boundary con-
ditions. All these properties are unusual for a fracture

problem. The crack path is completely determined by
geometrical rules and it seems that mechanics reduces to
geometry.
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These properties of the inextensible fabric model seem
to explain the striking reproducibility of crack path in
experiments. In the following section we study how these
results are modified when thin plate elasticity is included.

4 Including bending and stretching rigidity

Although the inextensible fabric model gives many inter-
esting predictions on the crack paths in quasistatic tearing,
we have seen that it misses some features (locking of the
oscillating crack path, for example).

We would also like to estimate the error on the crack
path when this approximation is used, and quantify the
validity of the model when applied to experiments.

Because the mechanics of thin sheet is non-linear, the
analysis is difficult and we will restrict the study to one
case where an analytical solution can be found (pulling
on a sheet with adhesion) and review simple estimates for
other cases.

4.1 A complete tearing solution: pulling on strongly
adhering sheet

We start with the case of tearing a sheet adhering strongly
on a flat substrate, because the elastic energy of the system
can be computed exactly (Hamm et al. 2008). The shape
is indeed almost invariant along the direction of the fold:
if adhesion dominates (Γ w # Gct), the system is very
close to the case of pure peeling, and we will use the results
of appendix 6.1, which summarizes exact results on the
peeling of an elastic beam.

The argument can be made equally with imposed force
or imposed displacement. It is instructive to choose this
time an imposed displacement u = δ − l cos φ, which
corresponds to peeling with an angle φ (see Fig. 16 for
definitions). When the length of the flap is large compared
to the typical curvature of the fold, the elastic energy is a
function Eel(w, l −δ) of the width of the flap w and of the
geometrical distance l − δ which encodes the curvature of
the fold.

Eel(w, l − δ) = 4Bw

(l − δ)
[1 − cos(φ/2)]2

Although this expression is valid for a rectangular flap,
we will use it for flaps with arbitrary shape where we
take w as the distance between the cracks: the bending
energy is localized in a small region (the fold), so that
we can consider that the distance between cracks alone
defines completely the elastic energy (see Appendix 6.2
for a justification). This is in fact an important property
which explains why the crack path is here independent of

its past trajectory, in contrast with fracture front in a linear
three-dimensional medium.

In absence of work of the operator (the displacement u
is fixed), Griffith’s criterion

d Eel + 2Gctds + Γ wdl = 0

is rewritten in G = Gc with the energy release rate per
crack G given by

2Gt = −d Eel

ds
− Γ w

dl
ds

.

We can compute

d Eel = ∂ Eel

∂(l − δ)

)

w

d(l − δ) + dw
∂ Eel

∂w

)

(l−δ)

where the notation ∂./∂x)y stands for a derivative with
respect to x holding y fixed. Geometry imposes dl =
ds cos θ ; dδ = dl cos φ; dw = −2ds sin θ , so that Grif-
fith’s criterion is

G(u, θ) = cos θ

2t

[
−Γ w − ∂ Eel

∂(l − δ)

)

w

(1 − cos φ)

]

+ sin θ

t
∂ Eel

∂w

)

(l−δ)

= Gc (6)

The direction of propagation is given by the equivalent
characterizations:

• the direction θ that minimizes the displacement u
necessary to satisfy propagation in that direction
(G(u, θ) = Gc).

• the direction θ that maximizes G(u, θ) for a fixed dis-
placement u. This formulation is easy to write, but we
also have to impose in a second step G(u, θ) = Gc.

We therefore obtain a second equation ∂G/∂θ = 0 where
all geometric distances w, l, u (and therefore also δ) are
held constant in the computation of the angular derivative:

2t
∂G(θ)

∂θ

)

l,w,δ

= − sin θ

[
−Γ w − ∂ Eel

∂(l − δ)

)

w

(1 − cos φ)

]

+2 cos θ
∂ Eel

∂w

)

(l−δ)

= 0 (7)

It is useful to use an expression for the derivative at fixedw,
∂ Eel/∂(l − δ) = −Eel/(l−δ) = −F (see Appendix 6.1),
and finally the energy release per unit advance of the crack,
and its angular derivative are

123

Author's personal copy



226 B. Roman

Fig. 16 Tearing and peeling
at imposed displacement
u = δ − l cos φ

G(θ)

= F(1− cos φ)−Γ w

2t
cos θ+1

t
sin θ

∂ Eel

∂w

)

(l−δ)

= Gc

(8)
∂G(θ)

∂θ

= − F(1 − cos φ) − Γ w

2t
sin θ + 1

t
cos θ

∂ Eel

∂w

)

(l−δ)

= 0 (9)

If we inject Eel = 0, only the first terms remain, and
we recover equation (3) of the inextensible fabric model.
Note that in this fixed displacement argument, these “geo-
metric” terms come from some derivatives of the elas-
tic energy, which remains identical even when the elastic
energy vanishes. If we were to use directly the inexten-
sible fabric model and Eel = 0 from the start in Eq. (6),
the “fixed displacement” approach would fail. We always
have to use an “imposed force” approach (as done in
Sect. 3) with such an inextensible model, where these
same terms are computed simply from the work of the
operator.

We now have an extra elastic term due to the variation
of elastic energy with the width of the fold w. We have
two equations, with two unknowns: the force F (or equiv-
alently the displacement u) which determines the energy
and the orientation θ of the crack.

These equations are coupled but they can be gathered
graphically in a vectorial balance (Fig. 17), which may
be interpreted as an Eshelby force balance (Hakim and
Karma 2009): equations (8) and (9) correspond to vecto-
rial projection along axis (A, B) on Fig. 17. A projection
of this balance along the horizontal and vertical directions
(a,b) gives the more convenient expressions

F(1 − cos φ) − Γ w = 2Gct cos θ (10)

A

B

a

b

Fig. 17 Equations for Griffith criterion (8) and the maximum
energy release rate (9), can be represented in the form of a force
balance which bears similarity with Young’s law for the wetting
angle of a liquid

∂ Eel

∂w

)

(l−δ)

= Gct sin θ (11)

Because Γ w # Gct (strong adhesion), the first equation
gives F(1 − cos φ) & Γ w, whereas the second one gives

sin θ & 2
√

F B/w[1 − cos(φ/2)]/(Gct)

because the derivative ∂ Eel/∂w = Eel/w = 2
√

F B/w

, as seen in appendix 6.1. We can inject the value of F and
find

sin θ =
√

2Γ B
Gct

f (φ) with f (φ) =
[

1 − cos(φ/2)

sin(φ/2)

]

(12)

To our knowledge this equation has never been
explicited for all values of peeling angle φ. We see that the
tears are always converging (θ > 0), with an angle inde-
pendent of the width w. The shape of the flap is therefore
a triangle. This is in good quantitative agreement with
experiments (Hamm et al. 2008) in the case φ = π with
f (π) = 1 where adhesion, bending rigidity and thickness
were varied. It should be noted however that the folds
were observed to include some plastic deformation and
the measured angles θ were half the predicted ones. A
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good agreement was also observed in the case φ $ 1,
where f (φ) ∼ φ/4 and the triangle angle did vary lin-
early with the peeling angle (Kruglova et al. 2011). In this
last article the “elastic” converging effect was put in com-
petition with the geometric divergence of the cracks when
peeling on a curved substrate.

In the limit of vanishing bending rigidity B → 0, we
see that the sin θ ∼ √

t ∼ B1/6 also vanishes and we
recover the θ = 0 prediction of our inextensible fab-
ric model, although the convergence is rather slow. The
attraction of the cracks towards each other is faster when
the adhesion is high, and the accuracy of the inextensi-
ble fabric model will therefore depend on the strength of
adhesion.

In general, with strong adhesion the converging effect
is significant. This is particularly annoying when we try
to remove adhesive tape and only manage to peel part of
it (then the flap will always end up in a triangular shape).
They are also observed on torn posters in public spaces,
which are considered by artist Jacques Villeglé as a col-
lective anonymous form of art (Duplaix 2008).

4.1.1 Conclusion

In the inextensible fabric model, propagation should take
place perpendicularly to the pulled fold. In fact the elastic
energy stored in the fold leads to converging paths: by
converging towards each other, the cracks reduce the width
w of the fold and are able to release its energy.

4.2 Estimates for other cases

4.2.1 Pulling on two cracks without adhesion

If adhesion is weak, or if the sheet is clamped on its bound-
aries without adhesion, the cracks are also observed to be
attracted towards each other, and annihilate, leading to a
pointy flap. A striking experimental result (Fig. 19) is that
in the case of pulling on a sheet with clamped bound-
ary condition with a pulling angle φ = π , the shape of
the resulting pointy flap is not a triangle, but follows a
power law: the width of the flap w varies like the distance
to the tip l like w ∼ l3/4. However a different exponent
(w ∼ l2/3) is observed in a “three flap” experiment (Bayart
et al. 2011) as can be seen on Fig. 18. These configurations
may seem at first similar (and indeed they are identical in
the inextensible fabric limit), illustrating the fact that we
are interested in fine features of the crack trajectory which
now depends on the details of the loading configuration.

In the framework presented here, the prediction of the
shape of the flaps requires the precise knowledge of the
elastic energy of the system. It is tempting to suppose again

Fig. 18 Different loading conditions lead to different converging
exponents. Single flaps loading (left), and “three flaps” (right)
experimental configurations were studied in Bayart et al. (2011)

that the elastic energy reduces to an energy localized in
the fold, and therefore is a function of its width w and
l − δ, Eel(w, l − δ). This is compatible with the fact that
the crack path is very robust and does not seem to depend
on its previous history. We therefore recover the equations
seen before, with Γ = 0 and φ = π .

2F = 2Gct cos θ

∂ Eel

∂w

)

(l−δ)

= Gct sin θ

The simplest estimate of Eel is to suppose that although
adhesion is zero (and therefore does not dominate) the
elastic energy can be estimated similarly through an elas-
tica equation. In the limit of small angle θ $ 1, which
is reasonable experimentally, F = Gct and using Appen-
dix 6.1,

θ = 4

√
B

wGct
= 4

√
lB

w
(13)

where we have defined

lB = B
Gct

. (14)

lB is a length which characterizes the magnitude of bend-
ing rigidity with respect to fracture property of a sheet.
In experiments (Audoly et al. 2005; Bayart et al. 2011;
Hamm et al. 2008; Roman et al. 2003), lB was between
30 and 80µm, so that the predicted angles are indeed
small. An interesting feature is that the converging angle
increases when the cracks are closer together, as observed
in the experiments (Fig. 19). However the predicted con-
verging shape θ ∼ dw/dl leads to a power law of the
type w ∼ l1/3

b l2/3, with an exponent 2/3 close but differ-
ent from the observed 3/4.

In fact the fold cannot be assumed to be a collection
of identical elastica slices anymore. It may take a non
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Fig. 19 Experimental
measurement of the shape
of a torn flap: the width
w ∼ l3/4 follows a power
law as function of distance
to the tip l over at least 3
decades (the points at a
distance l less than 100 µm
should might not be
relevant, because l becomes
comparable to the thickness
of the sheet, even if they
seem to align with the rest
of the data). Inset: the same
data in a linear plot. Data
courtesy of V. Apablaza

Slope 3/4

developpable shape, therefore including stretching energy
as well as the bending energy considered before Witten
(2007). In Bayart et al. (2011), the authors observe that the
sheet is deformed on a large region ahead of the cracks,
whose geometry gives an idea of stress distribution close
to the crack tip. Although they lead to the correct exponent
of the power law for two different loading configuration
(one and three flaps), it is not clear yet how these geomet-
rical arguments could be translated into the energy frame-
work presented here. Note that this approach leads to pre-
dicted shape which are independent of mechanical proper-
ties (E, Gc) in contradiction with estimate (13). Another
recent theoretical work based on the study of stress singu-
larity (Cohen and Procaccia 2010) for non-linear plates,
and a postulated generalization of the principle of local
symmetry in this configuration predicts converging tears,
but do not predict a power law shape.

4.2.2 Pulling on one crack (pulled spiral)

In the case of the spiraling propagation of a single crack
obtained when a flap is pulled (Fig. 8), the flap is deformed
into a more complex shape (see Fig. 9), and are more
difficult to describe. However we expect similar effect:
bending energy involved in the fold can be released if
the crack converges. Propagation should not take place

perpendicularly to the fold line (as the inextensible fabric
model model predicts) but slightly inwards.

In our experiments (Romero 2010; Romero et al.
2013), the radius of the spiral does grow exponentially
r = r0 exp pθ (with modulations which are due to the
anisotropy of the material) as predicted by the inextensible
fabric model. However the measured average exponential
pitch is p =0.24, a value close but significantly lower
than p =0.27 expected from inextensible fabric theory.
The fact that the growth factor of the spiral is lower than
expected is due to the slight inward propagation. The prop-
agation angle directly measured on the experiment is on
average deflected inward by an angle on the order of 3◦.
This is close to the value of 4◦ predicted by Eq. (13) for a
fold with w = 10 cm.

4.2.3 Pushing on two cracks: diverging tears

We consider a sheet with two cracks, and a blunt tool
pushed on the active front between the cracks. We have
seen that if elastic energy is neglected, the propagation
is perpendicular to the active front, and if one crack is
blocked, an exponential spiral is observed. In fact in the
experiment (Romero 2010; Romero et al. 2013), the pitch
of the spiral is measured to be p = 0.29, larger than the
theoretical prediction p = 0.27. This means that the direc-
tion of propagation is not perpendicular, but has a small
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Fig. 20 Elastic model for
pushing on two cracks. a 3D
view where the strained
zone is presented in light
gray. b Top view, where the
indented triangular zone is
colored in dark gray
(compare with Fig. 22)

(a) (b)

outwards component which is measured in the experi-
ments as θ ∼ 2o for a sheet with 50µm thickness. Can this
deviation from the inextensible fabric model be explained
by including elastic energy?

We see on Fig. 20 that the force F results in an inden-
tation of the front line, by a distance d = δ − l, where l
(resp. δ) corresponds to the position of the cracks (resp. of
the pushing tool). It is reasonable to assume that the elastic
energy is a function of the width w and of the indentation
distance, Eel = Eel(w, l − δ).

The applied force F is computed by the formula Fdδ =
d Eel when the crack (and l) is fixed (energy conservation),
so that

F = ∂ Eel

∂δ

)

(l,w)

= −∂ Eel

∂l

)

(δ,w)

The second equality holds because Eel depends only on
the relative position of the tool and the crack. If the crack
propagates by a distance ds while the tool is held fixed
(δ =cst), then Griffith’s criterion

∂ Eel

∂l

)

(δ,w)

dl + ∂ Eel

∂w

)

(δ,l)
dw + 2Gctds = 0

can be rewritten as

F cos θ + 2
∂ Eel

∂w

)

(δ,l)
sin θ = 2Gct

where we recognize a configuration similar to that of
Eq. (8). We therefore obtain similar results:

F = 2Gct cos θ (15)
∂ Eel

∂w

)

(δ,l)
= Gct sin θ (16)

Note that inward propagation (θ > 0) is predicted as
before if the elastic energy increases with the distance
between the crack.

Because an exact computation of the elastic energy Eel
is difficult, we assume that it is entirely due to unavoid-
able stretching of the plate, which still bends infinitely
easily. If the sheet is infinitely bendable, we can assume as
in “tension field theory” (Davidovitch et al. 2011; Mans-
field 1989; Stein and Hedgepeth 1961) that it cannot sus-
tain compressive stresses, but only tensional stresses. The
elastic response in this case is peculiar and non-linear.
A simple estimate is to consider that an indentation dis-
tance d = l − δ generates extensional strains on the order
of (d/w)2, on an area of size w2 (gray area in Fig. 20),
so that the elastic energy would follow the scaling law
Eel ∼ Etw2(d4/w4). Similar arguments were used in
Vermorel et al. (2010) to predict the number of cracks
observed when an aluminum foil is perforated.

If we use this form of elastic energy

Eel = Etd4/w2, (17)

Equations (16) become for small angle θ, F = 4Etd3/

w2 = Gct , so that (15) and (16) are the crack propagates
in direction

θ & −
(

Gc

Ew

)1/3

= −
(

lE

w

)1/3

(18)

when the angle of penetration α = 2(δ − l)/w reaches

αc &
(

Gc

Ew

)1/3

=
(

lE

w

)1/3

(19)

where we have defined

lE = Gc

E
a material length which characterizes the fracture
process.11 In experiments (Audoly et al. 2005; Bayart et
al. 2011; Hamm et al. 2008; Roman et al. 2003), lE was

11 It can be interpreted as a size around the crack tip where strains
become large.
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between 5 and 10µm, so that the predicted angles are
again small.

Outward propagation (θ < 0) is indeed predicted
because elastic energy decreases with the distance between
the cracks w. The angle of propagation is here independent
of the thickness of the sheet, but decreases with the width
w of the active front. For the materials used in Romero
(2010); Romero et al. (2013), this expression leads to
angle on the order of 3◦ for w = 10 cm, which has the
right order of magnitude when compared to the divergence
angle measured (Romero 2010; Romero et al. 2013) in the
pushed exponential spiral (an average of 2◦).

Experimental measurements of the indentation force
in geometries corresponding to that of Fig. 20 (but where
the crack could not propagate Romero 2010) suggest the
functional form

Eel = AEtw2(d/w)n (20)

for the elastic energy, where A is a dimensionless con-
stant, confirming that stretching energy dominates in this
system. However a surprising (and yet unexplained) frac-
tional exponent n = 3.5 was found instead of 4, leading
to replacing the 1/3 exponent in equations (18) and (19)
by 1/(n − 1) = 0.4.

The diverging angle is therefore expected to depend
weakly on the width w and tends to zero for large w. Using
equation (17) in that limit, the shape of the diverging cut
should be given by the differential equation dw/dl ∼
−θ ∼ (lE/w)1/3, and a power-law shape

w ∼ l3/4l1/4
E (21)

Unfortunately, in experiments with brittle thin sheets,
this diverging solutions is unstable and one of the crack
dies, whereas the other one starts to oscillate as in Fig. 13.
However when the experiment were performed on plastic
material (metal sheets) (Wierzbicki et al. 1998), the insta-
bility is suppressed, and cracks are observed to diverge,
together with an interesting pattern of plastic folds (see
Fig. 21), which was named “concertina tearing” (Atkins
1995; Wierzbicki et al. 1998).

Fig. 21 Concertina tear: diverging tears when a blunt object is
pushing two cracks in a metal sheet, taken from Wierzbicki et al.
(1998)

The transition between the oscillation and the con-
certina solution as plasticity increases is documented in
a numerical study (Tallinen and Mahadevan 2011), but
not yet really understood. Experiments in plastic materi-
als (Wierzbicki et al. 1998) were initially motivated by
the Exxon Valdez accident in 1989: the tanker’s hull was
cut by a blunt rock, and because of the diverging path the
resulting concertina opening was much bigger than the
rock, causing a large oil spill and a major ecologic dis-
aster. The wavelength is predicted through minimization
of plastic dissipation to be λ ∼ w2/3t1/3. The direction
of propagation is estimated by the direction of maximum
stress, leading to a power law w ∼ t1/4l3/4, the same
exponent l3/4 as in Eq. (21), but the crack path is here
independent of material properties. It is surprising that
although the cracks are diverging here, the global shape
of the cut has the same geometry as the converging tears.

In experiments (Wierzbicki et al. 1998) and numerical
simulations (Tallinen and Mahadevan 2011), the shape of
the cut is compatible with such a power law. However the
predicted independence on thickness or material parame-
ter was not clearly tested (only one material tested, and one
thickness), and the power law which gives a good fit of the
torn shape was not tested on a large range of lengthscale.
One may also wonder if the divergence in w ∼ l0.71l0.29

E
predicted by the rules (18) and (19) using the empirical
energy (20) with n = 3.5 could not also be compatible
with the experimental data.

An explanation of the 3/4 exponent was recently
given Tallinen and Mahadevan (2011), using the maxi-
mum energy release rate, completely neglecting plastic
deformation. The wavelength λ ∼ w2/3t1/3 of the con-
certina is found as the minimum of elastic energy which
is then estimated as Eel ∼ B(w/t)1/3. Using the equation
Gct sin θ = ∂ Eel/∂w, the authors conclude that the tears
are diverging with an exponent 3/4, but seem to forget
the sign in the derivative. Because the elastic energy in
this model increases with width w, the tears are in fact
predicted to converge instead of diverging, which makes
the model questionable.

4.2.4 Pushing on one crack

We have noted that if the material behaves elastically, the
diverging paths are not observed and instead only one
crack remains, and oscillates (Fig. 10). In the inextensible
fabric model, leaving aside the locking problem, these
oscillations were found to be universal (tool independent)
up to a scaling factor. How is the predicted crack path
modified if we include elastic stretching energy?

We assume that the loading near the crack is similar
to what it would experience in the double crack symmet-
ric case studied above, and will propagate according to
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(a) (b) (c)

(f)(d) (e)

Fig. 22 Unlocking propagation and dynamic phase: when the
tool leaves the convex hull of the crack path (light gray area) by
pushing on a non-active front (a–b), an indentation zone devel-
ops (dark gray) disconnected from the crack tip, in contrast with
Fig. 20b. Propagation is possible only when indentation angle α

reaches the critical value αc (c, d). But as the crack advances,
because of the curvature of the convex hull limit, the indentation
angle increases (e), leading to a dynamic jump up to configura-
tion (f) where α = αc is recovered

the rules (18) and (19). These rules which take elasticity
into account are still geometric at the end, and numerical
integration lead to oscillations.

But a first remark is that the rules for propagation are
not scale-invariant anymore, they depend on the size of
the active front w. As a result, the crack path created by
a large disk cannot be obtained though a simple zooming
factor from the cut due to a smaller disk. In other words
the wavelength λ and amplitude of the oscillations are not
exactly proportional to the diameter of the object. How-
ever in practice the dependence on w is a weak power,
and this non-linear dependence was not reported in exper-
iments (Audoly et al. 2005; Ghatak and Mahadevan 2003;
Roman et al. 2003). For the sake of simplicity, we will
neglect this weak variation of the angle θ with the object
size so that the shape of the oscillation is independent of
the shape of the object, and only depends on its width.

Another consequence is that the locking problem in
the kinking event between each phase shift can now be
solved by including elastic stretching. Before the kinking
event (see Fig. 14b), the tool hits the curved crack path,
but not the straight active front. Within the inextensible
fabric model, the crack could not propagate and the tool
was therefore locked. In cases where we push on a curved
front, the rules (18, 19) were generalized (Audoly et al.
2005) in the following way: the difference of the convex
hull of (crack path + tool) with the convex hull of the crack
path alone (in light gray in Fig. 22) defines an indented

zone (in dark gray in Fig. 22). This indented zone plays
the same role as the indented active front in Fig. 20b.
But here this zone is not initially connected to the crack
tip because of the curvature of the cut (see Fig. 22b). As
the tool advances, the indented zone also grows, finally
reaching the crack tip, and defining the effective indenta-
tion angle α (Fig. 22c). When α reaches the critical value
computed at (19), propagation may take place, in direc-
tion θ given by (18), with respect to the tangent to the
crack. As the crack propagates, both convex hulls grow,
but the indentation angle α is found to increase instead
of decreasing (Fig. 22e): the condition for propagation is
overshot, and a dynamic phase takes place. These dynamic
jumps are clearly observed in the experiments (Audoly
et al. 2005; Ghatak and Mahadevan 2003; Roman et al.
2003).

During these phases, the quasi-static approach is not
relevant anymore, so that we must make an arbitrary
assumption on the direction of propagation. A first option
is to assume that the crack keeps a constant direction with
respect to the active front of the crack convex hull. In that
case we would recover the property that the path is inde-
pendent of the shape of the tool (only depending on its
width). In Audoly et al. (2005) the direction of propaga-
tion is assumed to follow a constant angle (π/2 − θ −αc)

with respect to the limit of the indented zone (18). This
condition is equivalent to (18) when propagation is quasi-
static, because (19) is satisfied. But because the evolution
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of the indented zone depends on the details of the shape
of the tool, a weak dependence of the crack trajectory on
the shape of the tool is predicted, which can be fitted to
that observed in experiments (Audoly et al. 2005).

4.2.5 Instability of a straight crack path

The inextensible fabric model nicely describes the oscil-
lating propagation of the crack, but another solution exists
(at least when using a symmetric tool) where the crack
propagates on a straight line ahead of the tool. This solu-
tion is never observed in experiments, and therefore must
be unstable, so that the left-right symmetry of the problem
is broken. Only if the tool has a width much smaller than
the thickness of the film, the straight path is stable. The
instability only develops when the tool becomes on the
order of 4–5 times the thickness (Roman et al. 2003).

It is clear that the inextensible fabric model and the
more refined description including stretching energy can-
not predict the instability onset, because they don’t include
any thickness dependence. The nature of the instability can
only be understood when bending and stretching effect
are included. An experimental investigation of this insta-
bility was performed with an inclined tool (Reis et al.
2008), where stretching spreads on a larger zone, with the
result of restabilizing the straight path if the tool is more
inclined, even for a tool much wider than the sheet’s thick-
ness. The influence of material response was also inves-
tigated, as plasticity developing around the crack tip in
experiments conducted at very slow speed favors straight
propagation (Reis et al. 2008).

4.2.6 Perforation experiments

When an object impacts on a clamped plate perpendicu-
larly to its plane, a pattern of cracks may develop with
a characteristic radial geometry. The understanding of
this phenomenon requires the description of the interac-
tion of bending and stretching waves with crack propaga-
tion (Vermorel et al. 2009; Villermaux and Vandenberghe
2013). In a quasistatic version (Vermorel et al. 2010), a
cone is pushed perpendicularly through a plate, and the
evolution of a pattern of radial cracks is observed. Here in
most cases the symmetry imposes radial crack path prop-
agation, and the question is really to predict the number
of cracks. Assuming a number n of cracks, and using esti-
mates of the elastic energy similar to Eq. (20), Griffith’s
criterion was applied to determine the equilibrium posi-
tion of cracks, and therefore the total energy. The optimal
number n which minimizes the total energy of the system
is a function of Gc/Ew, where w is now the local radius
of the cone. In the experiments, the value of this non-
dimensional number is small, and in practice the optimal

number of crack is always close to 4, and hardly reaches 5
for large values of the non dimensional values of Gc/Ew.

It is interesting to compare this prediction with the
inextensible fabric model, where elasticity is neglected.
Geometry shows that for n radial cracks, the length of the
cracks is just w/ cos(π/n) and the energy to minimize is
simply the fracture energy Gctwn/ cos(π/n) which has a
minimum for n = 4. The inextensible fabric model there-
fore gives a good estimate of the optimal crack pattern.

However in experiments starting from a random dis-
tribution of cracks, the system evolves most of the time
towards a radial crack pattern with 4–11 cracks, because
of energy barriers preventing the evolution of the number
of cracks towards the optimal number. The authors also
report the observation of multiple spiraling branches (Ver-
morel 2010), which are certainly collaborative version of
the pushed spirals reported in Romero (2010). It would
be interesting to compare their pitch to predictions of the
inextensible fabric model including multiple cracks.

4.3 Conclusion on elastic effects

A complete understanding of tearing should include thin
plate elasticity: bending and stretching effects should be
included together with the geometrical non-linearities (the
only ingredient in the inextensible fabric limit). But such
a complete description is difficult from an analytical point
of view, except in some isolated cases.

In the pushing case, stretching energy seems to domi-
nate over bending energy, and deflects the cracks from the
inextensible fabric model trajectory outwards by an angle
θ ∼ (Gc/Ew)1/3. This is because for a given indentation,
the elastic energy decreases with inter-crack distance w,
and therefore can be released when the cracks move away
from each other. The inextensible fabric model predictions
are valid when θ $ 1 or equivalently when

F ∼ Gct $ Etw

and we recover here the condition of (2) which ensures
that stretching energy can be neglected. This condition
can be rewritten

w # lE = Gc/E (22)

using the charateristic lengthscale lE . Large systems com-
pared to this lengthscale lE can be considered almost inex-
tensible.

In the case of tearing by pulling, the cracks (which are
expected to propagate perpendicularly to the pulled fold
in the inextensible fabric model) are deflected inwards by
bending effects. Part of the bending energy of the fold can
indeed be released when its size is reduced. The deflection
angle is on the order of
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θ ∼ B
RGct

∼
√

B F
w

1
Gct

where R is the typical radius of curvature of the fold, due
to the applied force F .

In absence of adhesion, the typical force for tearing is
on the order of F ∼ Gct and the deflection will be small
(θ ∼ √

B/Gctw $ 1) when

F ∼ Gct # B/w

or equivalently when

w # lB = B
Gct

. (23)

Bending effects on the cracks path are negligible only if
the system size is “large enough”, w # lB , compared to
the bending lengthscale lB = B/Gct.

We had written earlier (in Sect. 2) the necessary con-
dition for which we expect the bending state of the sheet
to be close to that of an inextensible fabric : the size R of
the fold had to be small compared to the length of the flap
(2) or F # Bw/L2. This is equivalent to

L #
√

wlB . (24)

This condition ensures that curvature is localized in a small
region (compared to the size of the system), a necessary
hypothesis to apply our infinitely flexible model. We note
that if both conditions are satisfied, then L # lB . A nec-
essary condition for the validity of the inextensible fabric
is therefore that all dimensions (w, L) of the system are
large12 compared to the bending length scale lB . We note
in particular that if the geometry of a system is scaled
up (but keeping the thickness constant), all conditions
(22–24) will be eventually satisfied, and in this sense inex-
tensible fabric model applies to large systems.

In the case of strong adhesion Γ w # Gct , the pulling
force is F ∼ wΓ, and the deviations to the inextensible
fabric model are of the order of

√
Γ B/Gct. We see that

the magnitude of these deviations depend on the strength
of adhesion, but not on the size w of the system. The inex-
tensible fabric model is rarely a very good approximation
in this case.

Apart from the case of peeling with strong adhesion,
current theories are approximate at best, and only par-
tial understanding is achieved, even in simple cases. We
also lack a unified picture which would determine clearly
which effect should be included in the theories: bending
or stretching? or both?

12 But condition (24) is more restrictive, the condition on the
length of the flap depends on its width.

5 Conclusion

In this review we have seen in different experiments the
remarkable features of quasistatic brittle tearing (fracture
propagation in isotropic thin sheets when large out-of-
plane bending is involved). Fracture paths are extremely
reproducible, and follow regular geometric figures.

This is due to the fact that in a first approximation
the sheets can often be considered as inextensible and
infinitely flexible (the inextensible fabric model). In such
simplified systems, there is no elasticity, and only the geo-
metrical non-linearities are left, so that fracture mechanics
obeys geometry. Although these configurations are highly
non-linear, they might be an interesting example to teach
in an introduction to fracture mechanics, because they
convey essential non-trivial features of Griffith’s criterion
without the mathematical difficulties of three-dimensional
elasticity. We note that these geometrical rules are modi-
fied when the material is anisotropic (Takei et al. 2013), the
crack path remaining highly reproducible, but depending
on the variation of fracture energy Gc with orientation.

A better description of the system should include non-
linear thin sheet elasticity, but this leads to great difficul-
ties, and only one case is really accessible to the analysis.
Nevertheless rough estimates suggest that the geometrical
rules obtained in the inextensible fabric model should be
a good guide for analysis if the system is large compared
to two lengthscales:

lE = Gc/E,

which characterizes the effect of membrane stresses and

lB = B/Gct,

which quantifies the effect of bending stiffness,13 where
Gc is the fracture energy, E the Young’s modulus, B the
bending rigidity, and t the thickness of the plate.

Acknowledgments I thank K. Ravichandar for his suggestions
and comments. I also thank José Bico and Basile Audoly for
invaluable help.

6 Appendix

6.1 Peeling an elastica

We consider an inextensible rod, with a tangent having an
angle θ at the point of curvilinear abscissa s, subject to a
horizontal force F (see Fig. 23). The torque balance on an
element with size ds reads d M/ds + F sin θ = 0, where

13 An additional condition ensures that curvature in folds is local-
ized on an area much smaller than the system size.
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Fig. 23 A portion of the
shape of a peeled elastica
with an angle φ = π (left)
leads to an angle φ when
rotated (right)

the constitutive relation M = Bdθ/ds can be used. Here
the bending rigidity is B = Et3/12(1 − ν2), where t is
the thickness of the sheet, E its Young modulus, and ν

Poisson’s ratio.
Finally, the elastica equation is Landau and Lifshitz

(1967), Love (1944)

Bθ̈ + F
w

sin θ = 0

with the boundary conditions θ(0) = 0, and a force F ,
but no torque applied at s = L , θ̇(L) = 0. We can expect
the flap to be curved only on a localized region near the
clamped condition s = 0. What is the size of this region?
Dimensional analysis directly shows that the only length-
scale left in the problem is

√
Bw/F, so that the flap shapes

for different loading and rigidity will all be similar, up to
a simple scaling factor, as long as they are long compared
to this radius of curvature, L # √

Bw/F . The elastic
energy per unit width which only depends on B and F/w

can only be written as Eel/w = a
√

F B/w.
These results are also found by estimating the radius of

curvature of the fold R from a torque balance. The torque
Bw/R ∼ F R is produced by force F with a lever arm of
the order of R. Because 1/R ∼ √

F/Bw, we also find that
Eel ∼ Bw/R ∼

√
B Fw. We also note that the bending

energy density scales like F/w.

In fact these quick arguments can be made exactly
because an explicit solution is available in the case where
L = ∞: we first normalize all distances by the typical
length

√
Bw/F and find θ̈ + sin θ = 0. Here we look for

the solution where with the condition θ(0) = 0, θ(∞) =
π, θ̇(∞) = 0. These solutions are the same as the 2D
meniscus of a liquid under gravity and surface tension
(Roman et al.).

A first integral of this equation gives θ̇2/2 = 1+cos θ ,
using the boundary conditions at s = ∞. If we keep θ̇ > 0,
this can be rewritten into θ̇ = 2 cos θ/2, which can be
integrated into

sin(θ/2) = tanh(s).

This implicit solution with s ∈ [0,∞] corresponds to a
peeling angle φ = π . But for a different peeling angle

φ, the solution is simply a rotated portion of the same
solution s ∈ [s0,∞], where tanh(s0) = sin(π/2−φ/2) =
cos(φ/2), as seen in Fig. 23.

We compute the nondimensional elastic energy using
these solutions:

Eel/
√

F Bw =
∞∫

s0

θ̇2/2ds = 2

∞∫

s0

cos2(θ/2)

ds = 2[tanh(s)]∞s0
= 2[1 − cos(φ/2)].

Finally we obtain

Eel = 2
√

F Bw[1 − cos(φ/2)] (25)

Another estimate gives in
∫

θ̇2/2ds =
∫
(1 + cos θ)

ds = l − δ, where l and δ are the distances on Fig. 23. In
dimensional terms, we find

Eel = F(l − δ), (26)

which shows that

l − δ = 2
√

Bw/F[1 − cos(φ/2)] (27)

and

Eel = 4Bw

(l − δ)
[1 − cos(φ/2)]2 (28)

Yet another interesting quantity is based on direct inte-
gration, which shows that h =

∫
sin θ = −[θ̇ ]∞s0

=
2 cos(θ(0)) = 2 sin(φ/2). In dimensional form, this
means that

h = 2
√

Bw/F sin(φ/2) = (l − δ)
sin(φ/2)

1 − cos(φ/2)
(29)

and to the elastic energy

Eel = 4Bw

h
[1 − cos(φ/2)] sin(φ/2) (30)

6.2 Why does the crack loose memory (almost)
instantaneously?

In the pulling configuration of pulling on an adhering sheet
(Fig. 16), the past history of the crack only enters the
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problem through the shape of the flap. We consider that
the flap continues to have a cylindrical shape invariant in
the z direction. The elastic energy reads

Eel = B
2

∞∫

0

w(u)κ2(u)du

where u is the curvilinear abscissa along the fold, and the
function κ(.) is the curvature of the fold, an universal func-
tion that depends on (l − δ)−1. As the cracks propagate
by δs, this energy varies for two reasons: the profile w(l)
is modified because the origin of the fold has advanced by
δl, and the curvature profile is modified (because l −δ has
changed).

δEel = B
2

∞∫

0

[w(u + δl) − w(u)]κ2(u)du

+ B
2

∞∫

0

w(u)δ[κ2(u)]du

The key point is that the curvature profile is localized on a
small region with size r comparable to l −δ. If we assume
that on this small lengthscale, w(u + δl) − w(u) can be
replaced by δl(dw/du)u=0 and w(u) ∼ w(0), we get

δEel = dw

du

)

u=0
δl

B
2

∞∫

0

κ2(u)du

+w(0)
B
2

δ




∞∫

0

κ2(u)du





In the first term we recognize the elastic energy of a slice
of fold with unit width, multiplied by the the variation δw.
Because of the invariance of the fold in direction z, this is
exactly

dw
∂ Eel

∂w

)

(l−δ)

whereas the second term is in fact a derivative where the
width w = w(0) is held constant:

∂ Eel

∂(l − δ)

)

w

d(l − δ)

so that we recover the equations of Sect. 4.1

d Eel = ∂ Eel

∂(l − δ)

)

w

d(l − δ) + dw
∂ Eel

∂w

)

(l−δ)

.

When inserted in Griffith’s criterion, all the quantities
depend on w and dw/ds, so that finally the equation of
evolution of the width can only be a first order equation of
the type dw/ds = F(w): the evolution of the inter-crack
distance w only depends on its actual value, not on the
past.
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