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Abstract
Although negligible at macroscopic scales, capillary forces become dominant as the
sub-millimetric scales of micro-electro-mechanical systems (MEMS) are considered. We
review various situations, not limited to micro-technologies, where capillary forces are able to
deform elastic structures. In particular, we define the different length scales that are relevant for
‘elasto-capillary’ problems. We focus on the case of slender structures (lamellae, rods and
sheets) and describe the size of a bundle of wet hair, the condition for a flexible rod to pierce a
liquid interface or the fate of a liquid droplet deposited on a flexible thin sheet. These results
can be generalized to similar situations involving adhesion or fracture energy, which widens the
scope of possible applications from biological systems, to stiction issues in micro-fabrication
processes, the manufacturing of 3D microstructures or the formation of blisters in thin film
coatings.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction: capillary forces at small scales

The effects of a fluid on human-built structures are generally
due to the fluid’s weight or its flow. For example, hydrostatic

pressure limits the size of fuel tanks and may induce the
collapse of immersed pipelines. Similarly the inertia of a fluid
in motion induces drag or lift forces (e.g. the destruction of
the Tacoma Narrows bridge). Flows in a confined environment
also produce viscous stresses that may be strong enough to
deform solid materials (e.g. in bearing systems). However, the
growing interest for micro-devices of the size of an ant has
brought attention to another type of interaction that can have
a strong impact even when the fluid is at rest: surface tension
forces [1, 2].

In terms of scaling laws, if the typical length of a structure
is L, capillary forces are proportional to L, while pressure
forces (such as wind drag) or elastic forces are proportional
to L2 and body forces (such as gravity) to L3. When all the
dimensions of a given structure are scaled down, capillary
forces decrease slower than pressure and body forces and
eventually become dominant. As a consequence, a liquid
droplet smaller than the ‘capillary length’, Lc = √

γ /ρg,
where γ and ρ are respectively the surface tension and the
density of the liquid, adopts a spherical shape when deposited
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Figure 1. (a) A micropattern in photoresist (bottom) fatally collapses after being rinsed by pure water but stands unaffected (top) if a liquid of
low surface tension is used. (b) ‘Tepee’ structures obtained as many lamellae stick together, pictures reprinted from [9], with permission of
Japan Society of Applied Physics. (c) Stiction of micromachined cantilever beams as their lengths exceeds a critical limit, picture reprinted
with permission from reference [4] (©1993 IEEE). (d) and (e) Collapse of carbon nanotubes ‘carpets’ when put in contact with a liquid and
dried: cellular structures or bundles are formed depending on the characteristics of the carpets, pictures reprinted from [18] with permission of
PNAS and from [17] (©2003 American Chemical Society), respectively. (f) Collapse of the walls of soft microfluidics channels as their width
exceeds a critical limit (the liquid in dark flows from left to right; the channels have collapsed in the upper images), image reprinted from [31]
with permission of Elsevier.

on a surface. Beyond prescribing the shape of liquid droplets,
may capillary forces deform a solid structure? The aim of the
present review is to address this question.

Everyday experience teaches us that wet hairs—a flexible
solid structure in contact with a liquid interface—assemble
into bundles. However, beyond cosmetics applications,
the effect of capillary forces is crucial in micro- and
nanotechnologies. Indeed, most of the techniques used to
build micro-electromechanical systems (MEMS) rely on wet
lithography: a layer of photosensitive resin is selectively
etched into a given microstructure and the removed material
is rinsed away in a solvent [3]. As the structure is dried,
capillary bridges may attract, deform, stick or even break
flexible parts (figures 1(a)–(c)). This ‘stiction’ phenomenon
is a strong limiting factor in the design of microstructures
involving cantilever beams [4–8], slender walls [9, 10] or
microcontact printing stamps [11, 12]. More generally, stiction
issues in micro-machining have been widely reviewed in the
literature [13–15]. Similarly, arrays of micro- or nanorods
tend to form bundles in wet conditions. Cellular or ‘tepee’
structures have indeed been observed with ‘carpets’ of carbon
nanotubes [16–20], ZnO or Si nanowires [21–23], polymeric
micro-pillars [24–26] (figures 1(d) and (e)) or even possibly
with hairy plant leaves with debated impact on surface wetting
properties [27–29]. Surface tension may finally induce the
collapse of microchannels (figure 1(f)) covered with thin walls
in soft lab-on-a-chip systems [30–33] or possibly the collapse

of hollow carbon nanotubes partially filled with liquid [34].
Deformations of slender structures by capillary forces are,
however, not limited to engineering issues but are also involved
in biological systems such as the flexible legs of water
striders [35, 36], insect tarsi [37] or the plastron of aquatic
insects [38, 39]. More dramatically, capillarity can cause
the collapse of lung airways of premature infants with fatal
consequences [40–44].

Although the same physical ingredients (surface tension,
elasticity) are present in all these very different fields ranging
from microtechnologies to biological systems, they are usually
studied independently. The aim of this review is to provide
a general framework of the interplay between surface forces
and elasticity through a sequence—non-exhaustive—of model
experiments that have been recently carried out. We first
describe the minute deformation induced by a liquid droplet
on a bulk surface, then focus on large amplitude deformations
of slender objects and define a characteristic length scale,
the elasto-capillary length, present in any problem combining
bending stiffness and surface forces. In section 3 we review
the problem of stiction (as in ‘wet hair’ issues), while section 4
describes how a slender rod forced to pierce an interface
may buckle. In section 5 we expand the interaction between
bending and capillarity to flexible sheets and describe how
a thin membrane may spontaneously wrap around a liquid
droplet. We finally conclude with an opening to more complex
problems where geometrical constraints induce stretching in
addition to bending and surface forces.
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Figure 2. (a) Liquid droplet deposited on a soft substrate: the solid is
deformed in the vicinity of the contact line (sketch adapted
from [49]); (b) elastic sphere in contact with a solid surface, without
any normal load: in the presence of surface forces (adhesion), the
contact is not punctual but presents a disc shape of diameter a
(sketch adapted from [55]).

2. Elasto-capillary length

In this section we define the characteristic length scales that
quantify the relative importance of surface forces with respect
to elastic rigidity. We first consider bulk elastic bodies and then
focus on slender structures.

2.1. Capillarity and bulk elasticity

Consider a liquid droplet with surface tension γ deposited on
an ideally smooth and uniform solid substrate. The liquid
adopts a contact angle of value θ , which is classically set
by a balance between surface forces at the contact line [2].
The balance of the horizontal components provides θ (Young’s
relation). However, the vertical components are usually not
considered, which is not totally correct as pointed out in the
pioneering works from Lester and Rusanov [45, 46]. Indeed
the finite vertical component γ sin θ pulls on the substrate
(figure 2(a)), thus deforming it1. If δ is the typical amplitude
of deformation of the pinched region, the corresponding force
is of the order of Eδ per unit length, where E is the Young’s
modulus of the substrate, which leads to [47]

δ ∼ γ

E
sin θ. (1)

In the typical case of water (γ ∼ 70 mN m−1) on glass (E ∼
70 GPa), the ratio γ /E is of the order of 1 pm (10−12 m) and is
not accessible. However, micron-size rims are observed at the
vicinity of contact lines on rubbery solids (E ∼ 100 kPa) and
have successfully been interpreted as a consequence of surface
tension forces [48–51] (figure 2(b)). These deformations are
found to result in contact angle hysteresis [52], in visco-elastic
dissipation induced by a moving contact line [47, 53] and in
enhanced nucleation density in condensation processes [54].

The deformation of bulk solid induced by surface energy
may nevertheless be amplified by geometry. For instance, if an
elastic sphere is put in contact with a solid surface (figure 2(b)),
a compression of the sphere by a minute quantity δ results in
a contact zone of extension a ∼ √

δR, which corresponds
to an amplification of δ by a quantity

√
R/δ. If the surface

is adhesive, extending the contact area decreases the surface

1 Note that the Laplace pressure inside the droplet results in a vertical
downward force given by πr2 2γ

R , where R is the radius of curvature of the
droplet and r its perimeter (r = R sin θ ). This force exactly compensates
the upwards vertical component of the capillary force at the contact line
2πrγ sin θ : the total force on the substrate is zero.

R
R

Figure 3. An illustration of the elasto-capillary length LEC: a flexible
sheet is put in contact with a cylinder of radius R coated with a
wetting liquid. The sheet spontaneously wraps the cylinder if
R > LEC/2.

energy of the system by a quantity of the order of γ a2, where
γ represents the work of adhesion2. In their milestone work
on adhesion Johnson et al have estimated from an extension of
Hertz theory the corresponding elastic energy Ea3(δ/a)2 [55].
Balancing both terms finally leads to the extension of the
contact zone:

a ∼
( γ

E
R2

)1/3
, (2)

which involves the same length scale γ /E and provides a
benchmark for measuring the adhesive properties of materials.

In conclusion, the ratio γ /E gives the length scale for
deformations of bulk elastic solids induced by surface forces.
This length scale ranges from atomic scale (usual solids) to
microns (elastomers). We focus now on the deformation of
slender structures, which can be much more compliant.

2.2. Slender structures: elasto-capillary length

Consider an elastic plate of length L, width w and thickness
h, coated with a thin layer of liquid of surface tension γ that
is put in contact with a rigid cylinder of radius R also coated
with the same liquid (figure 3). Wrapping the cylinder with
the plate would result in a gain in surface energy of 2γwL,
but in an increase of elastic energy of BwL/2R2, where B is
the bending modulus of the thin plate, B = Eh3/12(1 − ν2),
E and ν being the Young’s modulus and Poisson ratio of the
material, respectively [56, 57]. The plate is thus expected to
spontaneously wrap around the cylinder if R >

√
B/γ /23. We

define as elasto-capillary length the characteristic length scale:

LEC =
√

B

γ
∼

√
Eh3

γ
, (3)

which thus compares bending stiffness and surface tension. As
described in this simple example LEC sets the typical curvature
that capillary forces can induce on a flexible sheet: a structure
is significantly deformed by surface tension if its length is large
in comparison with LEC. Indeed capillary forces produce a
larger torque (larger lever arm) on a larger structure. If a given

2 The work of adhesion is formally equivalent to the surface tension of the
liquid presented in the first example.
3 In practice the sheet develops a finite contact zone even in the case R <√

B/γ /2 and slightly bends over the rod because of the finite thickness of the
liquid coating.
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Figure 4. (a) Racket shape obtained as a strip sticks on itself (white line: calculated profile). LEC sets the length scales of the shape (in
particular d = 0.89LEC), image credit Doppler and Py [58]. (b) Variables used in Euler’s elastica equation (equation (4)). (c) Zoom into the
liquid meniscus to illustrate the boundary conditions in elasto-capillary problems. The initial curvature κ is proportional to LEC.

structure is scaled down uniformly by a factor λ < 1, LEC is
multiplied by a factor λ3/2 (LEC ∝ h3/2) and thus decreases
faster than the length of the structure. Capillary forces are
effectively crucial for smaller structures since the condition
L ∼ LEC may eventually be reached, which is the case in the
different examples reviewed in section 1.

Measuring LEC by wrapping cylinders of various radii
is, however, not very practical. It is easier to observe the
equilibrium state obtained when the free ends of an elastic strip
coated with a liquid layer are brought in contact together [58].
If the strip is long enough, the contact zone zips up and forms
a racket shape (figure 4(a)), which can also be found with
carbon nanotubes [59, 60], models for graphene sheets [61]
and in biological filaments [59] sticking onto themselves. The
shape of the racket is given by a balance between the zipping
action of surface tension (in order to decrease the liquid/air
area) and the bending energy which increases as the radius of
the racket is reduced. Since this shape does not depend on the
total length of the strip (provided that the strip is long enough),
all its dimensions are proportional to the single length scale
left in the problem, LEC. We found it convenient to measure
the width of the racket d (figure 4(a)) and use the numerical
relation: d = 0.89LEC

4. We describe in the following section
how the numerical prefactor can be estimated.

2.3. Adhesion boundary conditions in elasto-capillary
problems

The equilibrium shape of the racket is obtained by solving the
classical Euler elastica equation for a beam of bending stiffness
B [57]:

B
d2θ

ds2
ez + t × R = 0, (4)

where θ is the angle made by the tangent to the lamella t with
the horizontal at the curvilinear coordinate s (see figure 4(b)),
ez the vector perpendicular to the plane and R the constant
vectorial tension of the beam (in the present case, R only has
a vertical component). The elastica equation can be solved
numerically once the relevant boundary conditions are defined.
Most of these conditions are trivial (initial and final values
for θ , position of one end). However, within the limit of

4 This result is different from [60] where the linear equation for small
deflection was used beyond its range of validity.

vanishing menisci, the interplay between capillary forces and
elasticity results in an interesting boundary condition for the
curvature of the beam at the contact point: the curvature
κ = dθ/ds = √

2/LEC [62]. Similar boundary conditions
appear in all elasto-capillary problems (though with a prefactor
depending on the actual configuration of the contact), and more
generally in all situations where a flexible strip is in contact
with an adhesive surface (e.g. spontaneous peeling of thin
films [63]), delaminates [64, 65] or is cleaved [66, 67].

A general variational derivation of this curvature jump
is subtle [68, 69] but we give here a simple argument based
on the forces due to the meniscus (for a detailed derivation
of these forces see [70]). If the volume of the meniscus is
small enough, the radius of curvature of the meniscus is given
by r ∼ κ L2

m, where Lm is the length of the meniscus and
κ the average curvature of the strip in the meniscus region
(figure 4(c)). Laplace’s law sets the relative pressure inside the
liquid: P = −γ /r . The total pressure force γ /κ Lm diverges
as the meniscus vanishes. However, the resulting torque per
unit width remains constant, P L2

m ∼ γ κ−1. The resulting
radius of curvature of the lamella with a bending rigidity B
is thus independent of the volume of the meniscus:

κ−1 ∼
√

B

γ
= LEC. (5)

The actual prefactor depends on the configuration: κ−1 =
LEC/

√
2 for the ‘racket’ (a strip sticking on itself) and κ−1 =

LEC/2 for the common case of a strip sticking onto a rigid
substrate (curved or not).

This boundary condition on the curvature is finally
illustrated in figure 5 where a thin strip is bent into a loop
and deposited at the surface of a liquid. As the strip can slide
on the liquid, neither horizontal forces are acting on the strip,
nor vertical forces for symmetry reasons (we neglect here the
weight of the strip). A simple torque is thus only applied
at both ends, and the loop takes a circular shape. In this
simple configuration, equation (5) can be easily inferred from
energy minimization. If the loop is tightened by dx , wet solid
replaces dry solid and some liquid/air interface is suppressed.
This leads to a difference in surface energy (per unit width):
(γSL − γSV − γLV)dx = −γ (1 + cos θ)dx , where θ is the
contact angle of the liquid on the surface. Length conservation
gives dx = −2πd R, which results in a increase in bending

4
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Figure 5. Lamella forming a loop at a liquid interface, the radius R
of the circular loop given by R = LEC/

√
2(1 + cos θ), where θ is the

liquid contact angle on the stripe (scale bar: 3 cm).

energy 1
2

B
R2 dx . At equilibrium the radius of the circle is thus

given by

R = 1√
2(1 + cos θ)

LEC.

Again we find a curvature jump proportional to 1/LEC. In
principle one could measure the elasto-capillary length LEC

from the radius of the circle. But in practice, this method can
only be used if R is larger than the meniscus size (LEC � Lc),
but still smaller than the size above which the structure is
deflected by its own weight.

In the different situations explored in this section LEC was
the sole length scale. We focus in the next section on ‘stiction’
problems where additional geometrical constraints are present.

3. Wet hairs

In most practical applications, slender microstructures are not
free but clamped on a substrate, which leads to additional
geometrical constraints. As presented in the introduction,
many micro-devices involve cantilevers fixed at a narrow
distance from a solid wall or arrays of lamellar or rod-like
structures separated by a short gap (figure 1). Such structures
tend to collapse irreversibly in wet environments under the
action of capillary forces. The aim of the present section is
to describe the conditions leading to the collapse of ‘hairy’
structures.

A nice example of the collapse of arrays of parallel
lamellae can be found in ferns from temperate forests.
Fern spores are stored in specific capsules, sporangia and
are suddenly released as sporangia burst under dry weather
conditions [71, 72]. Botanists have discovered that the shells of
the capsules are covered with parallel platelets reminiscent of
micron-size ribs. The spacing between the platelets is initially
filled with water, which does not lead to any interaction.
However, the evaporation of water induces capillary forces,
which result in local torques on the shell. This principle
has been recently used to produce biomimetic micro-actuators
sensitive to humidity (figure 6(a)) [73]. In this situation,
the lamellae are short and rigid, and clamped on a flexible
base. However, a variety of practical applications involve

the opposite configuration (long lamellae clamped on a rigid
substrate), which we explore now.

As a simple example of ‘wet hair’, we consider the
situation where two vertical parallel plates separated by a
distance d are brought into contact with a bath of wetting liquid
(figure 6(b)). In the classical case of rigid plates, the liquid
rises up to an equilibrium height where capillary forces are
balanced by the weight of the liquid column: hJ = 2γ /ρgd
(Jurin’s law [2]). However, if the plates are flexible and
clamped along their upper edge, the depression within the
rising liquid brings the plates closer, which in turns favors a
higher capillary rise [70]. When the plates are long enough,
a contact zone zips up to a distance Lstick from the clamps
(figure 6(c)). In the zipped part the lamellae are in contact
and the actual thickness of interstitial liquid is of the order
of surface roughness. If the meniscus formed by the liquid is
small enough, gravity can be neglected and the adhesion of the
lamellae by the liquid is only limited by the bending energy,
which increases as the zipping front approaches the clamps. In
this regime, the sticking distance is independent of the total
length of the lamellae and follows the law [74, 70, 75, 76]

L4
stick = 9d2L2

EC/2, (6)

(provided d � Lstick). In practice, a structure length lower
than Lstick avoids stiction issues. Additional ‘tricks’ may
also be used such as vanishing surface tension forces under
supercritical phase transitions [15, 77] or flash release [78], or
as strengthening of the hairs by electric fields [79].

In terms of scaling, the typical curvature of the lamellae is
of the order of κ ∼ d/L2

stick, leading to the bending energy per
unit width B(d/L2

stick)
2 Lstick. The balance between bending

and surface energies γ Lstick finally gives Lstick ∼ d1/2L1/2
EC . In

agreement with the sticking boundary condition (equation (5)),
we find κ ∼ 1/LEC. As already pointed out [80], this
description is similar to the classical cleavage fracture by
Obreimoff [66], where a thin layer of mica is split by pushing
a blade of thickness d towards the crack front (figure 6(d)).
A measurement of the length Lcrack, separating the front from
the blade, provides a measure of the fracture energy of the
material, which plays the role of the liquid surface tension in
this problem [67].

The same scaling finally gives the extension λ of a
blister obtained when a thin layer deposited on a soft
adhesive substrate is uniaxially compressed by a distance 
L
(figure 6(e)). In the case of blisters of small amplitude d , a
geometrical relation gives d2 ∼ λ
L, which combined with
the relation for wet hair λ ∼ d1/2L1/2

EC , leads to [64, 65, 81]

λ ∼ 
L1/3 L2/3
EC . (7)

The blister size, λ does not depend on the mechanical
properties of the uniaxially compressed substrate. However,
the critical compression leading to the formation of blisters
depends on the Young’s modulus of the substrate [65]5.
We expect this simple scaling to be relevant to experiments

5 Note that this relation is not valid for a rigid substrate where the combination
of mixed fracture modes selects the extension of the blisters [82].
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Figure 6. (a) Actuation of rib-like structures as the liquid filling the inter-spacing evaporates (image reprinted from [73], with permission
from IOP). (b) Classical capillary rise between rigid plates separated by a narrow gap d . (c) Sticking length for two long flexible plates
clamped at a fixed distance. (d) Analogy with crack length in cleavage, sketch adapted from [66]. (e) One-dimensional blister formed as a thin
film adhering on a soft substrate is uniaxially compressed.

involving the release and bond back of prestressed thin films
that also lead to regularly spaced blisters [83, 84].

Coming back to the problem of wet hair, bundles are
observed when a brush of long lamellae is progressively
removed from a liquid bath (figure 7(a)). The formation of
these bundles relies on a cascade of adhesion of pairs of sub-
bundles, which leads to a hierarchical pattern. Large bundles
of size N are formed as pairs of smaller ones, of size N/2
on the average, merge at a distance Lstick(N) from the base
of the brush. These bundles are N/2 times more rigid than a
unit lamella (the interstitial liquid promotes the relative sliding
of lamellae) and their effective separating distance is Nd/2.
By extending the adhesion law for a pair, we find the sticking
distance of a bundle composed of N lamellae:

Lstick(N) = (N/2)3/4 L2. (8)

This formula sets the maximum size Nmax for a bundle in a
brush of lamellae with length L. However, smaller bundles
are also present if the sticking distance of neighboring bundles
exceeds L, which leads to a broad size distribution. The range
of this distribution (0.3Nmax < N < Nmax) can finally be
predicted through a statistical description of the aggregation
process [85].

From a practical point of view, most applications do
not involve 1D arrays of lamellae, but rather carpets of
flexible bristles (carbon nanotubes, Si or polymeric nanorods).
Although rod-like structures bring an additional length scale,
the radius r of the rod, the physical description of stiction is
very similar to lamellae. The thickness of the lamellae h is
basically replaced by r , since the bending stiffness Brod =
π Er 4/4 is compared with the capillary force γ r in the formula
for LEC [87]. However, the coalescence into growing bundles
follows a different scaling law Lstick(N) ∼ N3/8 L2 due to the

a b

Figure 7. (a) Bundles formed as a brush of flexible lamellae is
removed from a bath of wetting liquid (brush width 2 cm). Image
reprinted from [74]. (b) Bundling of polymeric arrays of nanorods
initially immersed in a volatile solvent: longer bristles lead to larger
clusters and even tend to form helical structures (scale bars 4 μm,
images reprinted from [86] with permission).

2D lattice for the rods (the number of close neighbors is larger
than in the 1D case) [62]. Finite size effects may also play an
important role in the coalescence process as comprehensively

6
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discussed in a very recent review on the stability of height
aspect ratio micro-pillar arrays [88].

In the case of soft rods (e.g. made of polydimethyl-
siloxane, PDMS) the contact area between adhered pillars
depends on the adhesion energy and can be described with
JKR theory (equation (2)) that can be adapted to cylindrical
geometries [89]. As the rods are in contact the adhesion
energy between a pair of rods of radius r and length L is
of the order of γ (γ /E)1/3r 2/3 L, which leads to a modified
elasto-capillary length, LECJKR ∼ (Er 3/γ )1/2(Er/γ )1/6. The
relevance of this length scale has been experimentally validated
with arrays of PMDS micro-pillars [90]. From a biomimetic
engineering point of view, self-adhesion of micro-rods is also
considered as a limitation to the development of universal
adhesives inspired by gecko feet and based on van der Waals
forces [91]. However actual seta of gecko feet present
hierarchical structures reminiscent of bundles of wet hair [92],
which would promote a strong adhesion to any rough surface,
while avoiding fatal self-adhesion [93].

Long and flexible rods may finally develop intriguing
helical bundles (figure 7(b)) that can be used as traps for nano-
objects, as nicely demonstrated in experiments by Pokroy et al
[86]. In this case, we believe that friction plays a crucial
role in the process, forcing the bristles to follow an initial
misalignment.

In this section we focused on lateral capillary forces
between flexible slender structures. Nevertheless if such
structures are initially immersed in a liquid, their extremities
are eventually brought to pierce the liquid interface as the
liquid evaporates, which lead to axial forces. We describe in
the following section the possible buckling induced by this
compressive load.

4. Piercing hairs

Water striders are famous for relying on surface tension to
stand on water. Penetrating the water surface with their
hydrophobic legs indeed requires a force equal to the perimeter
of the leg times the water surface tension [94]. In the opposite
situation of a carbon nanotube ‘forest’ initially immersed in
a volatile solvent and then dried, compressive capillary forces
arise as the end of the tubes start piercing the liquid interface
(figure 8). Upon this compressive load the nanotubes may
buckle and eventually collapse on the substrate [18]. Similarly,
carbon nanotubes trapped in microbubbles or tubulin rods
grown inside vesicles may also buckle if their length exceeds
the diameter of their container [59]. Buckling occurs when the
compressive force exceeds Euler’s critical load (π/2)2 Brod/L2,
where L and Brod ∼ Er 4 are the length and the bending
stiffness of the micro-rods, respectively, r being the radius of
the rod. Since the capillary force is given by 2πrγ , we find that
the rod buckles if it is longer than a critical length proportional
to the elasto-capillary length:

Lcrit = 1

2
√

π

√
Brod

γ r
∼ 0.3 LEC. (9)

As the rod buckles the capillary force is amplified by a factor
1/ cos α, where α is the angle made by the end of the rod

L F

α

Figure 8. Piercing an interface with a flexible rod: if the capillary
force 2πrγ is larger than Euler’s critical load (π/2)2 Brod/L2 the rod
buckles. The phenomenon is highly nonlinear since tilting the free
end of the rod by an angle α results in a force increased by a factor
1/ cos α.

with the vertical (figure 8). This nonlinear behavior leads to
complex post-buckling configurations, involving multistable
states [95]. A similar phenomenon has been observed when a
flexible ribbon is withdrawn from a bath of wetting liquid: the
ribbon spontaneously buckles into high-order folding modes
to reduce its width down to the spatial extension of the
meniscus [96].

In the case of arrays, the rods may not only buckle under
axial forces but also simultaneously form bundles as described
in the previous section. As bundles are effectively stiffer
than single rods, they are less prone to buckle and collapse.
Depending on the lattice spacing, collaborative stiffening can
lead to different final configurations such as ‘tepee’ or cellular
structures [97].

Piercing watery films is also vital for filamentous fungi
growing in moist environments. Indeed some species (such
as Schizophyllum commune) have to produce surfactant
molecules (hydrophobin) in order to grow aerial hyphae
that allow dissemination of their spores [98]. Experimental
evidence suggests these specific surfactants strongly increase
the contact angle θ of water on hyphae wall: γ is replaced by
γ cos θ , in equation (9), which decreases, or even suppresses,
the critical load for buckling. Coming back to the case of
aquatic insects, the maximum load that the leg can support
increases with its length, but reaches a plateau when the length
is of the order of LEC [35, 36]. The measured length of actual
water strider legs is apparently lower than LEC, suggesting that
the elasto-capillary length may play a role in natural selection.

Leaving aquatic insects, it has been suggested that
aerial spiders also use the interaction between elasticity and
capillarity to promote the damping properties of orb-webs [99].
Actual radial threads are longer than their apparent length and
the authors argue that the excess length forms coils inside
regularly spaced water beads observed along the thread. At
a much lower scale, the coiling of a thread around a droplet
is also reminiscent of the bead-on-string structures observed in
nucleosomes, where DNA molecules wrap histone octamers,
compacting the genetic material in our cells [100]. Non-
compact DNA molecules would indeed not fit into nuclei
whereas condensed DNA (like in virus capsids) would not
allow complex gene expression and replication [101]. We
consider now the simplified problem of an elastic filament in
contact with a liquid droplet and derive the condition for the
filament to spontaneously wind around the droplet (top inset

7
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Figure 9. Liquid droplet maintained in levitation in a bath of
matched density. A flexible thread put in contact with the droplet
spontaneously winds around it if the radius R0 of the droplet is large
in comparison with LEC. Depending on the number of loops the
thread makes, the droplet adopts a lens shape characterized by an
equator of radius R. Comparison of experimental measurements of
R/R0 as a function of the non-dimensional length of the thread
(symbols) with the theoretical prediction from equation (10)
(continuous line).

in figure 9). If a filament of length L, radius r and bending
stiffness Brod forms a coil around a liquid droplet of radius
R0, the elastic energy stored in the coil corresponds to 1

2
Brod

R2
0

L,

while the gain in surface energy is 2πrγ L. Spontaneous
winding is then expected when R0 > Lcrit ∼ LEC.

In the case of spider webs, the typical radius of capture
threads is of the order of 1 μm with a Young’s modulus roughly
estimated at 5 GPa (for relatively small deformations) [99],
which leads to a bending stiffness Brod of the order of
5 × 10−18 N m2. The corresponding elasto-capillary length
LEC ∼ 5 μm is therefore smaller than the size of the water
beads observed on spider webs whose typical radius is 10 μm,
allowing coils to spontaneously form.

At a molecular scale, biophysicists have also developed
models for the coiling of DNA around histones where DNA
molecules are approximated by rods of bending rigidity
Brod = �pkBT , where �p ∼ 50 nm is the persistent length
characterizing the thermal fluctuations of the macromolecule,
and where the octamers are simplified as cylinders of radius
R0 ∼ 4 nm [101]. The octamers provide 14 binding sites along
a wrapping length of the order of 43 nm, with an adsorption
energy that can be estimated as 6 kBT per site [101], which
leads to the equivalent elasto-capillary length LEC ∼ 5 nm.
The condition for spontaneous wrapping is thus verified.

However, wound droplets do not remain spherical, but take
lenticular shapes with the elastic filament spinning along the
equator (bottom inset in figure 9). The radius of the equator R
is easily derived from the minimization of the global energy of
the system E = Sγ + 1

2
Brod
R2 L, where S is the surface of the

lens, with a constraint of constant volume, V = 4
3π R3

0 . The

minimum of energy corresponds to

cos α = 1

4π

Brod

γ

L

R4
, (10)

where the angle α of the lens is geometrically related to R/R0

by the volume constraint. This relation is in fairly good
agreement with experiments carried out with centimeter size
droplets suspended in a liquid bath of matched density (main
plot in figure 9).

When the winding criterion is not satisfied, the
rod is nevertheless slightly bent, as observed on micro-
cantilevers [102, 103]. This effect should also allow us to drive
a liquid droplet on a lamella with a gradient of stiffness, which
may enhance the efficiency of biomimetic water-repellent
surfaces [104].

5. Sheets and surface tension

Up to now we have documented the effect of surface tension
on elastic rods (or two-dimensional plates) and shown that
stiction is usually seen as a limiting factor in micro-fabrication.
Conversely, we show in this section how surface tension
provides a useful tool to build 3D microstructures by folding
thin sheets with a liquid droplet. Capillary forces have, for
instance, been used for the self-assembly of rigid micro-objects
floating at a liquid interface [105]. Closer to the scope of this
paper, the surface tension of molten solder droplets deposited
at the hinges drawn on thin metallic sheets is capable of folding
the panels of the templates into 3D microstructures. The
structure is then frozen as the solder cools down [106, 107].
The principle of the folding relies on the minimization of
the surface of the liquid in contact with air. Figure 10(a)
illustrates the example of a micron-size cube obtained with this
technique, but numerous shapes can be obtained with different
templates [108–111], including elegant micro-boxes [112].
Submicron scales have even been recently reached with
promising applications to nanotechnologies [113–115].

This technique is very interesting, since it provides a way
to produce 3D microstructures, which is difficult with the
conventional etching and layer deposition techniques derived
from micro-electronics manufacturing that leads to quasi-
planar objects.

One advantage of using hinges is the possibility to predict
and control the final shape of the structures (in this case,
the description of the folding does not involve elasticity).
However, the micro-fabrication of predefined articulations
remains a technological challenge and constitutes the major
drawback of this technique. We therefore focus on situations
where surface tension acts on plain elastic sheets. As a simple
example, we consider the case of a water droplet deposited on
a flexible triangle of side L, thickness h and bending stiffness
B ∼ Eh3. If the triangle is flexible enough, it spontaneously
wraps the drop (figure 10(b)), reducing the liquid–air area at
the cost of elastic deformation of the sheet [58]. This is only
possible if the gain in surface energy (of the order of γ L2)
overcomes the elastic bending energy (of the order of B , if
the sheet folds over its own size, i.e. if the radius of curvature
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a b c

Figure 10. (a) Capillary ‘origami’. Closing of hinged structures inside a liquid droplet [107] (molten solder on metal templates). Copyright
Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission. (b) and (c) Self-wrapping of a flexible sheet (PDMS and silicon)
around a droplet of water leading to different 3D structures depending on the initial template, images reprinted from [58] and [116],
respectively, with permission.

is of the order of L). In other words spontaneous wrapping
occurs if the sheet is larger than a critical length Lcrit, which
is proportional to the elasto-capillary length LEC. Figure 10(b)
presents a series of pictures of an evaporating droplet of water
deposited on a thin triangle made of polydimethylsiloxane
(PDMS). As the liquid evaporates, a pyramid is progressively
formed. The edges seal almost perfectly except in three
corners, where evaporation still takes place. Below a certain
volume, the structure starts to collapse and eventually reopens,
leading to the same triangular template (see the movie in
Electronic Physics Auxiliary Publication Service (EPAPS)
in [58]). However, the 3D structure can be frozen at any
time of the process if some cross-linking agent is added
to the evaporating liquid, which may open a new way of
producing micro-devices. Indeed the process will be all the
more efficient as capillary forces become dominant when the
sizes are scaled down. At molecular scales, direct numerical
simulations even show that a graphene sheet should wrap a
nanodroplet [117].

Depending on the geometry of the initial template,
a variety of shapes can be obtained by this capillary
origami technique, e.g. a quasi-sphere from a flower shape
(figure 10(b)) or a cube from a cross-template [58]. However,
predicting the final shape is not always straightforward:
starting from a square pattern, the system seems to first
fold all four corners towards the center, but finally selects

a cylindrical solution [118], as illustrated in the last column
in figure 10(c). Although the value of the critical length
for closing the structures is proportional to LEC, the actual
prefactor depends on the initial template: Lcrit � 12LEC

for triangles and Lcrit � 7LEC for squares [58]. The exact
description of capillary origami systems is, however, difficult
since it requires the coupling of nonlinear equations for large
amplitude folding of the sheet to the three-dimensional shape
of the drop. For a given volume of liquid several equilibrium
states may even coexist as shown by the theoretical study of a
2D version of the problem [58]. For instance, if the origami
is formed after the impact of a droplet on an elastic template,
the final shape may depend on the initial kinetic energy, as
nicely demonstrated in [119]. Figure 11(a) illustrates different
final shapes obtained as the velocity of the impacting droplet is
increased.

As a practical example, 3D photovoltaic cells with
enhanced efficiency were engineered through the sponta-
neous wrapping of wet beads by thin silicon films (fig-
ure 10(c)) [116]. The reopening of a closed origami structure
can also be actuated by an electric field with a potential
application to digital displays: the structure opens beyond a
critical voltage Uopen and closes back below a lower voltage
Uclose. Both critical voltages can be estimated from the size
and the bending stiffness of the sheet and the surface tension
of the liquid. These voltages are proportional to

√
γ h/ε, a
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a b d

c

Figure 11. (a) Dynamical origami: different final shapes are obtained with the same template as the velocity of the impacting droplet is
increased (image credit A Antkowiak [119]). (b) Reopening actuated by an electric field: a voltage is applied between the droplet and the
substrate; beyond a critical value the structure reopens [120] (image credit Piñeirua). (c) The corolla of a daisy closes as the flower is
progressively submerged (licensed under the Creative Commons Attribution ShareAlike 3.0 License). (d) Elasto-pipette: a flower-shaped thin
sheet is used to grab and deposit a defined quantity of liquid [121, 122] (image credit Hure).

voltage which compares capillary and electrostatic energies, ε

being the dielectric constant of the sheet [120, 123].
In the botanical world, closing flowers can also be vital

for aquatic plants that rely on wind or aerial insects for
dissemination. The corollas of certain varieties of Nymphoides
flowers, that usually float at the surface of pounds but
are tethered to the ground by their stem, are found to
close hermetically if they sink after a sudden increase of
the water level [124] (figure 11). Trapping an air bubble
inside the flower thus preserves the reproductive organs from
flooding. Although capillary forces are not directly involved
in the closing mechanism (which relies at that scale on a
balance between bending elasticity and hydrostatic pressure),
surface tension plays a crucial role in preventing water from
penetrating into the flower through the spacing between the
petals. Inspired by this botanical example, the opposite
situation has been considered [121], where an elastic template
imitating a corolla is brought in contact with the surface of a
liquid (figure 11(d)): when pulled back, this ‘elasto-pipette’
spontaneously grabs a precise amount of liquid that can be
redeposited on another surface [121, 122].

Interesting effects also occur when a membrane floating
on an infinite bath of liquid is perturbed. Parallel wrinkles,
for instance, are observed as a thin sheet of polymer floating
on water is uniaxially compressed (figure 12(a)). Far from
the edges, the large wavelength of the wrinkles is set by

a balance between the bending stiffness of the sheet and
gravity (liquid weight): λ ∼ (Eh3/ρg)1/4 [125, 126].
However, the wavy edge of the sheet also deforms the
liquid surface and capillary forces tend to decrease the
amplitude and wavelength of the buckling mode. As a
result, a cascade of wrinkles is observed, which goes from
this wavelength to a much shorter one. The resulting
cascade shape results from a balance between bending rigidity,
surface tension and gravity, and therefore involves the elasto-
capillary length LEC as well as the capillary length Lc =√

γ /ρg [126].
A different morphology of wrinkles is observed when a

droplet (smaller than the capillary length Lc) is deposited on
the same thin film floating on water as illustrated in figure 12
[127]. Indeed the surface tension of the droplet generates radial
tension in the film, which leads to an orthoradial compression
and eventually to radial wrinkles. In terms of scalings, the
bending energy per unit width corresponding to wrinkles
of wavelength λ and amplitude A developed over a typical
length L is proportional to B(A/λ2)2, where B ∼ Eh3 is
the bending stiffness of the film, while the tensile energy
scales as σhL(A/L)2, where σ is the applied tensile stress.
Balancing these two ingredients leads to a typical wavelength
λ ∼ (B/σh)1/4 L1/2 [128]. In the axisymmetric case of the
droplet with radius a pulling on the sheet through capillary
forces, the radial stress distribution is expected to follow σrr �
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a

a

b

5mm

246nm

Figure 12. Experiments with thin polystyrene films deposited on
water. (a) Uniaxial compression leading to a cascade of wrinkles
perpendicular to the strain direction. The large wavelength wrinkles
far from the edge result from a balance between gravity and bending
stiffness while short wavelength wrinkles at the edges rely on surface
tension forces [126]. Image credit Huang and Menon. (b) Water
droplet of radius a deposited on a thin polystyrene film of thickness
from 118 nm floating on water. The number of radial ridges then
formed is given by N ∼ √

a/LEC, while the extension of the ridges
(white circle in the first image) is set by � ∼ a

√
Eh/γ as a result of

a balance between surface tension and stretching energies. Picture
reprinted from [127].

σ0(a/r)2 [57], with σ0 ∼ γ /h. The number N of wrinkles is
independent of the radial coordinate r , which leads to a local
wavelength λ ∼ r/N . Taking a typical length scale L ∼ r and
a wavelength λ ∼ r/N finally gives the number of wrinkles
raying around the droplet:

N ∼ (a LEC)1/2. (11)

Counting these wrinkles thus provides a measure of the
bending stiffness of the thin polymeric membrane [127]. Note
that local stresses and deformations have been more rigorously
derived with the aim of determining the apparent contact
angle of the liquid droplet on the plate [129–131]. However,
these studies are limited to minute axisymmetric deformations
without radial wrinkles, as has been experimentally observed
with liquid Pb microdroplets deposited on graphite thin
sheets [132]. In the case of polymeric films, the wrinkles
are also found to damp out at a characteristic distance � from
the droplet as a result of the stretching of the membrane.
Although analytical arguments to define this damping length
have been missing until recently, � has been empirically found
to follow

� ∼ a (γ /Eh)−1/2. (12)

In this expression we recognize the length scale γ /E , which
characterizes bulk elastic. This length scale is expected to
appear whenever surface tension leads to stretching. The non-
dimensional number γ /Eh compares the stretching stiffness
Eh with surface tension, and thus gives an estimate of the
typical in-plane strains produced by the capillary force directly

pulling on a thin sheet. In a more general case of a liquid bath
of surface tension γ ∗ different from the value γ for the droplet,
very recent improvements in the theoretical description of the
damping length scale have shown that the ratio �/a should
be a function of the non-dimensional parameter Eh sin θ0

γ
(

γ

γ ∗ )
3,

in agreement with experimental results where surfactant
molecules have been added to the water bath [133].

More generally, surface tension forces may stretch a thin
sheet without obviously pulling on it if the sheet is bent
into a non-developable shape. For the same reason that it is
impossible to draw a flat map of the Earth without distorting
distances, folding a sheet in 3D requires, in most cases,
some stretching. In geometrical terms, Gauss demonstrated
in his theorema egregium that isometric transformations are
only possible when the Gaussian curvature (product of the
main curvatures) is preserved [134]. Smooth developable
surfaces obtained by simply folding an initially flat sheet
are therefore limited to generalized cones and cylinders.
Producing shapes with non-zero Gaussian curvature thus
relies on stretching energy as demonstrated by Alben and
Brenner [135] in the context of ‘origami’ structures maintained
by magnetic forces [136]. Similarly, fixing an initially flat
sticker on a spherical shape requires stretching. The non-
dimensional number Eh/γ thus controls the maximum size
above which blisters are formed on the adhesive tape [137].
Adding stretching energy in addition to bending and surface
tension energies opens a new axis (a new characteristic
length scale γ /E) in the description of elasto-capillary
problems.

6. Conclusion and prospectives

Surface tension forces play in general a negligible role at
large scales, but they may induce dramatic effects when
sub-millimetric sizes or very flexible objects are considered.
We have reviewed many examples which are all described
by the elasto-capillary length LEC = √

B/γ ∼ √
Eh3/γ

characterizing the balance between bending and capillary
forces: a structure with a size L larger than LEC will be
strongly deflected by surface tension forces. We see that, for a
fixed thickness, large structures will eventually be deformed by
capillary forces. At human scales this is not usually observed
because gravity becomes dominant for scales above a few
millimeters. However, elasto-capillary effects can be observed
at macroscopic scales if the liquid weight is suppressed: an
origami structure (a few centimeters wide) is created when a
soap bubble is laid on a wet film (figure 13).

When all the dimensions of a structure (including
thickness) are scaled down, we see that LEC ∼ L3/2 decreases
faster than the size of the structure, so that surface forces will
eventually overcome elasticity. As recent years have witnessed
a rapidly growing interest in micro- and nanostructures, we
expect the study of the capillary effect on solids to take a more
important part in engineering, and therefore in fundamental
science. We finally observe that two types of problems have
hardly been considered and should bear attention in the near
future: dynamics and crumpling.
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Figure 13. Capillary origami with soap bubbles: the shape of the bubble remains unaffected by gravity, which allows large scale experiments.
Left image, triangular template; right image flower template (scale bar: 2 cm).

Except in a few cases, studies on elasto-capillary systems
have been restricted to equilibrium situations. However,
some capillary effects are essentially dynamical, such as spore
ejection in basidiomycete fungi [138]. In the case of capillary
origami, dynamics may affect the selection of the final rest
configuration in the case of multiple equilibrium [119]. The
determination of the time to reach equilibrium in elasto-
capillary systems is of fundamental and practical interest.
The dynamics of imbibition of strongly deformable media
is currently studied through model experiments [139–141] in
connection with industrial processes [142] or physiological
issues (lung collapse).

Another interesting area for research is the case of
very thin sheets more prone to crumpling than to smooth
deformations. Indeed since the stretching modulus is
proportional to the film thickness h while the bending modulus
scales as h3, stretching a sheet becomes comparatively more
difficult as thinner sheets are considered. Nevertheless, most
boundary conditions are not, in general, compatible with a
smooth developable surface and they induce the formation
of singularities. In actual materials these singularities are
regularized by some localized extension [143–145]. As
a common example, crumpling a piece of paper induces
concentrated marks along lines where the stretching energy
is focused. These singular regions are usually deformed
plastically and the marks do not vanish as the crumpled sheet is
unfolded. We believe that surface tension forces may also lead
to some energy focusing and crumpling. In such cases, we
expect the length scale γ /E to play a role in the determination
of the stability of very slender microstructures.
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Appendix

We summarize in this appendix the characteristic length scales
that can be relevant as additional forces may also interact with
elasticity and surface energy. Comparing the size of an actual
system with these different length scales should help to sort
out the relevant physical ingredients presented in table A.1. In
table A.2 the two competing effects are displayed in the first
columns. If the size of the system is large in comparison with
the corresponding length scale, the effect of the first column
dominates the second one.

Table A.1. Symbols for the different physical parameters.

γ Surface energy
E Elastic Young’s modulus
ν Poisson ratio
L Length of the structure
h Thickness, for planar structures
r Radius, for rod structures
B = Eh3/12(1 − ν2) Bending stiffness, for planar structures
Brod = π Er 4/4 Bending stiffness, for rod structures

g Gravity constant
ρl Liquid density
ρs Solid density

ω Oscillation frequency (for flagella)

kBT Thermal energy
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Table A.2. Characteristic length scales comparing pairs of competing effects: if the size of the system is large in comparison with the
corresponding length scale, the effect of the first column dominates the second one. h and r correspond to the thickness and the radius of the
structures for lamella or rod structures, respectively.

Effect 1 Effect 2 Length scale Reference

Stretching rigidity Surface energy γ /E [47, 55]
Surface energy Bending rigidity

√
Eh3/γ or

√
Er 3/γ [59]

Gravity Surface tension
√

γ /ρlg [1, 2]
Gravity Bending rigidity (Eh2/ρs g)1/3 or (Er 2/ρs g)1/3 [146, 147]
Fluid inertial drag Bending rigidity (Eh3/ρlU 2)1/3 [148]
Fluid viscous drag Bending rigidity (Er 3/ηω)1/4 [148]
Bending rigidity Thermal fluctuations Er 4/kBT [101]
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[47] Shanahan M E R and Carré A 1995 Viscoelastic dissipation in
wetting and adhesion phenomena Langmuir 11 1396–402
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