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Abstract

The post-buckling response of bilaterally constrained thin plates submitted to a height reduction
is investigated by a joint experimental–theoretical–numerical study. A detailed determination of
the shape of plates is compared to predictions based on modelling the plate as an Elastica and a
phase portrait of the system is worked out. An integral relationship for unloaded plates is derived
and checked experimentally. The variation of the length of 3at contacts with compression is 4rst
identi4ed from measurements and then introduced in a virtual work analysis so as to determine
the plate reaction. The existence of asymmetric solutions is clari4ed and the robustness of the
Elastica to friction is demonstrated. These results improve the predictions of the Euler model in
the fully non-linear regime and validate its relevance beyond the ideal limits of frictionless rod
or of frictionless in4nite plate on which it is established. They should therefore be useful for
addressing buckling in di5erent, albeit close, con4gurations.? 2002 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Buckling of thin structures is a widespread phenomenon of such paramount impor-
tance for mechanical industry that it has been investigated as early as the foundation
times of Solid Mechanics. Its 4rst study dates back to Euler’s determination of the buck-
ling load for a pinned–pinned beam (Euler, 1744). Nowadays, it still remains the object
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of intense investigation owing to its large implications in many industrial, technological,
natural or even biological 4elds. For instance, the rolling or the levelling of metal sheet
in an industrial process or the compliant bearing of journal foils may produce undesir-
able buckling. Also, the quest for light structures in the aircraft industry has pushed de-
signers to use thinner materials which are therefore more prone to buckle. On the tech-
nological side, layered composites may undergo the formation of buckling-induced in-
terlaminar defects, composite steel-concrete constructions may su5er from the buckling
of the steel plate used to reinforce the structure and 4bre composites or 4lms deposited
on a substrate may undergo buckling-induced delamination. More natural manifestations
of buckling are also found in thermal buckling of railway tracks, in the pavement buck-
ling induced by earthquakes or in the upheaval failures of rods and runways. More re-
cently, biological implications of buckling are also investigated, for instance in vesicular
distortion.

The primary goal of buckling studies consists in understanding the forms and the
constraints undergone by thin plates under given external conditions. However, even
in its simplest modelizations, this problem comes up to serious diDculties. For in-
stance, although the folding of rods has been modelled for three centuries by Eu-
ler’s Elastica (Euler, 1744) and despite the fact that its solutions are thoroughly
known in terms of jacobian elliptic integrals since more than a century, many of
its mechanical properties remain unknown or unsatisfactorily understood in the fully
non-linear regime. In particular, the problem of shape and tension displayed by thin
plates compressed within a box—the so-called constrained Elastica—has mostly been
addressed by linear methods (Link, 1954; Timoshenko and Gere, 1961) or non-linear
ansatz (Paap and Kramer, 1987; Pomeau, 1981) but has mainly resisted more accurate
non-linear investigations. Yet, improvements on the understanding of post-buckling
in such a simple con4guration could provide a valuable basis for gaining insights
into more general buckling problems where analytical determinations or detailed com-
parisons between experiment, theory and simulations are more diDcult to
achieve.

The purpose of the present study is to improve the modelling and the analysis
of compressed thin plates by addressing a regime of intermediate complexity: full
non-linearity but simple geometry. For this, thin plates are constrained only bilat-
erally so as to involve only parallel folds. However, they are studied in a regime
extending far from the starting unloaded state and far from the buckling bifurcation.
Their mechanical response will be addressed below by a joint experimental–numerical–
analytical study that is dedicated to the following goals: (i) validating Euler’s model
for quasi-rectangular thin plates, beyond the limits of frictionless rod or of friction-
less in4nite plate on which it is a priori established; (ii) improving the non-linear
analysis of Euler’s model in the fully non-linear regime. In particular, the implica-
tions of friction on plate shape and on plate buckling will be determined and in-
tegral relationships for plates will be derived and checked. The experimental set-up
is described in Section 2 and Euler’s model in Section 3. The analysis of plate
form is reported in Section 4 and that of plate constraint in Section 5. Section 6
analyses the implications of friction and a conclusion about the study is drawn in
Section 7.
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2. Experiment

The experiment aims at achieving compression of bilaterally constrained thin plates,
visualizing their fold geometry and measuring their mechanical response. For this pur-
pose, a rectangular plane plate is forced to 4t within a parallelepipedic box whose
depth Y is varied (Fig. 1). Two kinds of plates will actually be considered throughout
the study: the compressing plates of the set-up box and the thin plates to be com-
pressed. To avoid confusion between them, we shall call from now on the thin plates
to be compressed, sheets, and we shall restrict the designation plate to those used to
generate compression.

The dimensions and the thickness of the sheet are denoted by L; l, and h, respec-
tively: h�l ≺ L. The sheet is clamped along its smaller sides only onto the bottom
plate of the box. The distance between clamped boundaries, X , is smaller than the
length of the sheet, L (Fig. 1a). Therefore, before any load, the sheet is already buck-
led up to a height labelled Y1 (Fig. 1a). The buckled sheet is then compressed by simply
reducing the distance Y between the upper and bottom plate of the compressing box
(Fig. 1c) at 4xed lengths X and L. This di5ers from other con4gurations studied in
the literature where sheet dimensions l; L were kept 4xed whereas box dimension X
was reduced for a free (Boucif et al., 1991) or an imposed height Y (DaubrJee, 1879;
Chateau and Nguyen, 1991; Domokos et al., 1997; Chai, 1998). In addition, boundary
conditions have been applied here on two opposite sides of the sheet only, rather than
on its full perimeter (Boucif et al., 1991), thereby preventing occurrence of folds in the
transverse direction as well as material extension. Finally, the geometry of the sheet is
a rectangle here (L=l ≈ 2) instead of a column (L=l ≈ 10) in the above works. It thus
lies plainly in between rods and in4nite plates.

The set-up allows the measurement of a single component of the elastic reaction force
F of the sheet: the vertical component Q = F:ey along the Y -direction ey (Fig. 1b,c).
This di5ers from other experimental set-ups where the horizontal component P = F:ex
along the X -direction ex was measured instead (Boucif et al., 1991; Chai, 1998;
Domokos et al., 1997). Although measuring both forces would have been especially
interesting, a choice had to be made for practical reasons. It was conditioned by the
following consideration: although component P appears of great practical importance,
component Q will prove here to be more sensitive to the sheet’s shape and thus more
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Fig. 1. Sketch of the experimental set-up: (a) initial buckling induced by clamping boundary conditions,
(b) top view of the compressing device, (c) side view of the compressing device.
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eDcient to investigate the correlation between shape and constraint in this system;
moreover, being the conjugate of the allowed height Y , component Q will enable us
to deal with the work actually transferred to the compressed sheet and thus to address
energetic considerations.

In designing the set-up, great care has been devoted to ensure the homogeneous
conditions necessary for parallel folds to occur. This especially includes parallelism
of the clamping lines and parallelism of the compressing plates of the device. Also,
friction along the guiding axes has been minimized so as to allow good accuracy of the
reaction force measurement. Finally, clamping conditions have been designed so as to
be mostly insensitive to sheet reaction and avoid generation of spurious inhomogeneities
on the sheet.

The sheet is clamped on a rigid lower horizontal plate which is guided along three
vertical axes by ball bearings. Thanks to a pneumatic jack, this plate can be pushed
vertically towards a 4xed upper plate in which a glass window is inserted for visu-
alization (Fig. 1c). The distance between plates is controlled by three stepper motors
against which the bottom plate is forced to rest. It corresponds to the height Y ac-
tually allowed to the sheet. Its accuracy as well as that of the parallelism between
compressing plates is provided by the motor accuracy, typically 0:1 �m here.

In steady states, the vertical force developed by the jack is distributed between the
three motors and the sheet. Four load gauges located in the bottom plate measure the
force exerted by the jack and those received on each of the three motors. The restoring
force produced by the sheet on the plates then simply corresponds to the di5erence
between the jack force and the sum of the motor forces. A computer monitors each
motor, records force measurement and deduces sheet reaction. The pressure applied to
the pneumatic jack is set so that the forces exerted on motors are kept in a reasonable
range. There stands the major interest of that jack: helping motors to set accurate
distance Y by preventing them from supporting a too large charge from the sheet.

Sheets were made of steel or, more simply, of usual transparent materials, i.e. of
polycarbonate. The former were used to perform accurate measurements and the latter
to get illustrative pictures with enhanced visibility. No evidence of elastic anisotropy
was observed on the mechanical behaviour of polycarbonate sheets. Sheet thickness was
h = 100 �m for polycarbonate and either h = 0:1; 0:2, or 0:3 mm for steel, depending
on the desired range for their elastic response. Sheets were enclosed in a box of lateral
size X = 220 mm. Their lengths were l = 101 mm and L = 233 mm, except in Section
4.1. Visualization was obtained by looking at the sheets by the side (Fig. 2).

Control parameters of the experiment are the dimensions X and Y of the compressing
box together with the sheet length L. In particular as, in a given sheet compression,
X and L are kept constant, the crushing history regarding shape and reaction force is
parametrized by the geometric ratio L=X . Thanks to a good homogeneity of clamping
conditions, all sheet forms have been found invariant along the l-axis. Depending on
the control parameters (X; Y; L), they display di5erent kinds of shapes that are shown
in Fig. 2. These include curved shapes (Fig. 2a), possibly “suspended” (Fig. 2c) and
3at shapes (Fig. 2b).

In the sequel, it will be useful to distinguish di5erent parts of compressed sheets.
We shall call a wrinkle a sheet part going from one compressing plate to the other and
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Fig. 2. Transition from one to two wrinkles: side view of polycarbonate sheet, E ≈ 2 GPa, X = 220 mm,
L=233 mm, l=101 mm, h=1 mm. Steady forms: (a) Line contact: Y =Y1, (b) Planar contact: Yp ¿Y ¿Yb,
(c) Post-buckling with free-standing fold: Yb ¿Y ¿Y2, (d) Two wrinkles similar to the one of Fig. 2a:
Y = Y2.
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Fig. 3. Sketch and de4nitions of lengths for a sheet involving: (a) a 3at contact part, (b) a free-standing
fold. Points correspond to sheets in3exion points I .

returning. Sheets thus involve one wrinkle in Figs. 2a, 2b and two in Fig. 2d. Fold will
denote a sheet part just connecting one compressing plate to the other. Sheet wrinkles
of Figs. 2a, b are thus made of two folds. Fold lengths will be denoted (X̂ ; Ŷ ; L̂)
(Fig. 3a). A 3at sheet part in contact with compressing plate (Fig. 2b) will be called
extended 3at contact. We shall label its length Xp (Fig. 3a). Finally, the so-called
free-standing fold will denote a sheet part starting from one compressing plate but
directly returning to it. This corresponds to the suspended sheet part of Fig. 2c. We
shall denote its lengths (Xf ; Yf ; Lf ) (Fig. 3b).

3. Model: The Elastica

Although the Elastica model of Euler (1744) addresses the mechanical equilibrium of
a rod, l�L, undergoing external force only at its ends, it stands as a natural candidate
for modelling quasi-squared thin plates l ≈ L folded in a single direction, in particular
since it can be shown to also apply to in4nite plates, l�L. The governing equation is

EI
d2�
ds2 = −p(s) sin � + q(s) cos �; (1)
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where s is the curvilinear abcissa on the sheet, E Young’s modulus, I(h; l) the moment
of inertia of the sheet cross-section, � the angle of the tangent to the sheet with the
x-axis and (p; q) the components of the sheet tension T. Euler’s equation (1) is submit-
ted here to clamping conditions: �(0)=0; �(L)=0. Interestingly, force equilibrium for a
sheet at rest implies constant tension T= (p; q) along it: p(s) =p; (s) = q. Notice that
this di5erential model hides important conditions to satisfy: the external constraints
actually responsible for sheet curvature. In the present case, they consist in forcing
a sheet of length L to 4t within a box of size X , Y . As they address the whole sheet
geometry, we shall call them global constraints.

3.1. Model assumption

The main assumptions underlying the Euler model refer to the absence of external
volumetric forces, to linear elasticity, isometric deformations and planar deformations.
The 4rst assumption is equivalent to neglecting gravity compared to elasticity. It is all
the more satis4ed that the sheet is rigid and curved. The second assumption requires
curvature radii to be large compared to thickness h. This condition restricts the allow-
able height Y to values of order h, i.e. about 200 times smaller than the initial height
Y1. The third assumption means neglecting material extension or, for thin sheets, the
Gauss curvature of their mean surface. This is satis4ed for rods l�L due to their small
width but requires for clamped sheets an in4nite width L�l. The fourth assumption
turns out to model the material behaviour by a curve lying in a plane and thus to
neglect or absorb the mechanical implications of the directions normal to that curve.
This can be legitimized for thin sheets h�L, which are either very wide l�L or very
narrow l�L, by analyses of the elasticity equations (Landau and Lifschitz, 1964; Love,
1927) or by invoking regularity of the limits l=L → 0, l=L → ∞ (Barenblatt, 1996).
However, its relevance may be questioned on sheets displaying a geometry in between.

3.2. Contact modelling

To model the entire sheet, extension of Elastica to multi-folds must be achieved by
specifying the mechanical implications of contact points between sheets and plates. We
shall 4rst assume passive contacts, i.e. contacts generating no friction, no moment and
involving no elastic singularity. At the contact points, this implies continuity of angle
(i.e. �=0), of angle derivative and of tension component p. As for tension component
q, notice that, on symmetric wrinkles, right and left folds can be transformed one into
the other by re3ection � → −�. This implies that their components q are opposite
and thus that contact points provide an impulsion −2q to the sheet. In Section 6, the
implications of friction will be addressed by allowing a discontinuity of the constraint
p at contact points.

3.3. Properties of the model and formal solutions

We now state the formal solutions to the Elastica and some exact properties of this
model that will prove to be useful in the following.
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• Formal solutions: Bearing formally the same structure as a pendulum equation (Kirch-
ho5, 1859), Euler’s equation possesses formal solutions in terms of partial elliptical
integrals. De4ne parameters ( R�; !; k; �) by

q = EI !2 sin( R�); p = EI !2 cos( R�);

k = sin

(
�I − R�

2

)
; k sin(�) = −sin( R�=2); (2)

where �I denotes the angle � at the in3exion point of the shape (Fig. 3). Intro-
duce the elliptic integrals of the 4rst kind F(u; k) =

∫ u
0 [1 − k2 sin2(v)]−1=2 dv and of

the second kind E(�; k) =
∫ �

0 [1 − k2sin2(v)]1=2dv. Classical integration of Euler’s
equation (1) then yields, with F= F(�=2; k)−F(�; k) and E= E(�=2; k)−E(�; k):

L̂ = 2
∫ L̂=2

0
ds =

2F
!

;

X̂ = 2
∫ L̂=2

0
cos(�) ds =

2
!

(2E−F) cos( R�) − 4
!

k cos(�) sin( R�);

Ŷ = 2
∫ L̂=2

0
sin(�) ds =

2
!

(2E−F) sin( R�) +
4
!

k cos(�) cos( R�): (3)

• Symmetry: Euler’s equation is invariant by re3exion s → −s: This means that folds
(resp. branches) can satisfy left–right (resp. up–down) symmetry.

• First integrals: Euler’s equation involves two 4rst integrals, H (�; �̇), B(�; �̇), satis-
fying dH=ds = 0, dB=ds = 0 with

H (�; �̇) = EI
�̇

2

2
− p cos(�);−q sin(�); (4)

B(�; �̇) = EI [�̇(s) − �̇(0)] + pY (s) − qX (s); (5)

where [X (s); Y (s)] are the coordinates of the sheet point of curvilinear abcissa s.
Interpreting s as time makes the Euler equation analogous to a pendulum equation
in an inclined gravity 4eld (Kirchho5, 1859). Within this analogy with dynamical
systems, H stands for a hamiltonian and B for a net balance of “impulsion” in
between 0 and s.

These 4rst integrals can be used to express the initial curvature of the sheet, �̇0, as
a function of the tension (p; q) and the constraints (X̂ ; Ŷ ; L̂). Equating their values
at the initial point s=0, (�0 =0; �̇0) and at the in3exion point I , (�I ; �̇I =0) (Fig. 3),
one obtains

EI �̇
2
0 = 4 sin(�I =2)[p sin(�I =2) − q cos(�I =2)]

= 4 sin(�I =2)!2 sin(�I =2 − R�); (6)

EI �̇0 =
pŶ − qX̂

2
: (7)
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• Dynamical similarity: In non-dimensional variable ŝ = s=L̂, Euler’s equation reads

d2�

dŝ2 = −p̂ sin(�) + q̂ cos(�) (8)

with p̂ = pL̂
2
=EI , q̂ = qL̂

2
=EI . It thus remains an Euler equation but with rescaled

forces p̂, q̂.
• Curvature energy: The curvature energy Ec of these fold solutions can be explicitly

expressed in terms of tension T =(p; q) and constraints (X; Y; L) (10). For this, notice

that hamiltonian (4) equals H = EI �̇
2
0=2 − p so that

Ec =
∫ L̂

0
EI

�̇
2

2
ds =

∫ L̂

0
[H + p cos(�) + q sin(�)] ds

= EI L̂
�̇

2
0

2
− p(L̂− X̂ ) + qŶ (9)

or, following relation (7):

Ec =
(pŶ − qX̂ )2

8
L̂
EI

− p(L̂− X̂ ) + qŶ : (10)

The latter expression is especially interesting since it directly links the curvature
energy of folds to the global constraints (X̂ ; Ŷ ; L̂) without explicit determination of
Elastica solutions �(s).

3.4. Non-linearity and non-locality

Beyond its formal analogy with a pendulum equation (Kirchho5, 1859), Euler’s
equation (1) stands for a markedly di5erent problem. In particular, whereas parame-
ters (p; q) are ?xed in pendulum dynamics, they are free to adjust themselves in the
Elastica, so as to provide a solution compatible with global constraints and boundary
conditions. In this sense, (p; q) correspond to non-linear eigenvalues, similar to front
velocity in reaction-di5usion systems for instance.

Solving this kind of problems is usually a hard task, unless there exist integral
relationships capable of connecting initial and 4nal conditions (Barenblatt, 1996). In
particular, here, the formal solution (3) of Eq. (1) proves to be a non-adequate frame-
work for pointing out the relevant properties of the Elastica. The reason is that most
of these properties originate from non-local features of the system which, although
included in these exact formal solutions, are not explicitly exhibited. In other words,
directly solving the di5erential equation makes one keep on a local ground which is un-
suitable for fully addressing the system. Conversely, using integral relationships makes
one rise up to a non-local ground which is more suited to the physics of the system.
In particular, expressing from integral relations the compatibility between initial and
4nal conditions often yields an analytic determination of non-linear eigenvalues and,
4nally, of the solution (Barenblatt, 1996).

In the following, we shall mostly try to follow this track by determining relevant
integral relationships from the Elastica’s properties. These will follow from the exis-
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tence of hamiltonian (4), of the conserved 3ux (5) along the sheets and of a conserved
energy based on Eq. (10).

4. Sheet forms

In this section, we focus attention on some non-linear geometric properties of sym-
metric wrinkles.

4.1. Unloaded sheets: integral relationship

Consider an unloaded sheet for which q = 0. Applying Eqs. (6) and (7), we obtain

EI �̇
2
0 = 4p sin2

(
�I

2

)
=

p
2
Y �̇0 or sin2

(
�I

2

)
=

Y
8R0

; (11)

where R0 = �̇
−1
0 denotes the curvature radius of the sheet at its top and �I the angle

of the tangent at its in3exion point.
To test the purely geometric relation (11) experimentally, a family of sheets with

ratios L=X ranging from 1.016 to 4.4 have been considered. Values of Y; �I and R0 have
then been deduced by direct measurement, linear 4ts and quadratic 4ts, respectively.
Fig. 4a shows quite a good agreement between data and relation (11) on a range of
angles �I suDciently large to include fully non-linear variations of sin2(�I =2). This
provides an indirect but fully non-linear proof of the relevance of the Euler’s equation
to unloaded sheets.

4.2. Loaded sheets: experimental=numerical agreement

We consider compressed sheets, q �= 0, and compare their forms to those found by
numerical integration of Euler’s equation within global constraints (X; Y; L). The prin-
ciple of numerical integration under constraints is reported in the appendix. We stress
that it involves no adjustable parameter. Comparison between the two kinds of forms
is shown in Fig. 5. It reveals quite a good agreement for line contact sheets. Form
agreement is also satisfactory for planar contact sheets but the exact superposition
of the curves requires translating the experimental curve onto the numerical curve
(Fig. 5). This means that planar contacts preserve form agreement up to a lateral shift.

Form agreement between sheets and Elastica solutions supports the relevance of
Euler’s equation all along the sheets. This suggests that the discrepancy in position
noticed in case of planar contacts should likely result from a di5erence � between the
real experimental boundary conditions �0 = ��1 and the ideal clamping conditions
�0 = 0 assumed in simulation. The mechanical origin of this imperfection probably
stands in the reaction of the sheet on the clamping device. That noticeable implications
only appear in the planar contact regime can be explained by considering the point P
where the ideal clamping condition �=0 would be recovered by prolongating the sheet
for the same tension. We 4nd that this point would be close to the actual boundary
condition O in the case of line contact (PO = O(�)) and comparatively far in the case
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Fig. 4. (a) Experimental measures of sin2(�I =2) versus Y=8R0 where �I is the angle of the tangent at the
in3exion point and R0 is the radius of curvature at the contact point. The ratio L=X varies in between 1.016
and 4.4. (b) Picture of an unloaded fold with a very large length ratio L=X = 4:4.

Fig. 5. Comparison of experimental sheet shapes (points) and numerical solutions of Euler’s equation (1)
(lines). Lengths are L = 233:3 mm, X = 220:5 mm. The di5erent heights scanned are Y = 34:5, 30; 25; 20
and 17:5 mm. A translation of the experimental curve onto the numerical curve is applied in the case of
planar contacts. There is no other adjustable parameter, however.

of planar contact (PO = O(�1=2)). Only in the latter case would the di5erence with
ideal clamping conditions be then noticeable.

4.3. Phase portrait

A re4ned analysis of forms may be achieved by deriving a phase portrait in coordi-
nates (�; �̇) (Holmes et al., 1999). Its interest consists in exhibiting the properties of
the system from the particular forms of its solutions: the observed compressed sheets.
Determination of both angle and angle derivative (�; �̇) is naturally provided in nu-
merical simulations since they proceed by integration of Euler’s equation. On observed
sheets, this requires di5erentiating the parametric curves (X (s); Y (s)) that represent
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Fig. 6. Phase portrait in coordinates (�; �̇) for X = 220:5 mm and L= 231:9 mm. Thin continuous lines corre-
spond to simulations of Euler’s equation (1). Heavy dots are obtained experimentally thanks to polynomial
4ts of the sheet shape. (a) Y = 22 mm: state involving a free-standing fold (Fig. 2c). Ellipses are centered
on (±arctan(q=p); 0) for folds and on (0; 0) for the free-standing fold. (b) Y = 25 mm: state involving a
planar contact (Fig. 2b). Ellipses are centered on (±arctan(q=p); 0).

their forms’ cartesian coordinates. To maintain a good signal-to-noise ratio, we have
4tted cartesian curves by parts with polynomials of degrees 4ve to seven and di5er-
entiated them once (resp. twice) to provide values of �(s) (resp. �̇(s)). Although data
accuracy is weaker than in simulation, it nevertheless enables us to compare the phase
portrait obtained by both methods.

Fig. 6 shows the trajectories in phase space (�; �̇) typically obtained from experi-
ment and from numerical simulation. Only the left part of sheets has been analysed
owing to their left–right symmetry. The agreement between numerical and experimen-
tal trajectories is good, whatever the kind of contacts and irrespective of the exis-
tence of a free-standing fold. This actually provides a relevant test of Euler’s equation
for compressed sheets since no adjustable parameters are used at any stage of the
procedure.

4.4. Growth of Aat domains

In the next section, the evolution of the 3at contact length Xp with compression
will prove to be a key point for determining the reaction force q of the sheet in the
3at contact regime. Measurements of Xp at various height Y are shown in Fig. 7a
for a given sheet. They have been obtained by detecting the end points of 3at con-
tacts from the sudden change of the re3exion angle of an incident laser beam. Up to
measurement accuracy, they show a linear variation over a large range of heights Y .
Denoting 2! the modulus of its slope and Yp the height at which 3at contact occurs, we
get

Xp = 2!(Yp − Y ): (12)
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Fig. 7. Approximations in the 3at contact regime: (a) Measurements of the evolution of 3at contact length
Xp as a function of height Y for the same sheet as in Fig. 8. The line is a linear approximation following
which ! = 6:10 and " = 12:06. (b) Numerical determination of the evolution of fold length X̂ with height
Ŷ , both non-dimensionalized by the constant length (L̂ − X̂ ) : Xa = X̂ =(L̂ − X̂ ), Ya = Ŷ =(L̂ − X̂ ). The line
is a linear approximation in the range 4 ¡Ya ¡ 5 in which the regime of Fig. 7a lies. It corresponds to
! = 6:65, " = 14:87.

5. Sheet constraints

Despite the relative simplicity of Euler’s equation, there does not exist, to our knowl-
edge, explicit analytical expression of force q with respect to height Y and lengths
(X; L) on the whole crushing route. In view of this, we 4rst compare below experi-
mental measurements to numerical solutions. We then show that, in the special regime
of planar contacts, an approximated but explicit relationship q(X; Y; L) can neverthe-
less be derived from energy conservation. We 4nally stress the existence of a hys-
teretic behaviour in the vicinity of buckling, of a negative sti5ness of the system
in the free-standing fold regime and of a vanishing of constraint q at the end of
crushing.

5.1. Mechanical response q(Y )

Owing to the dynamical similarity (8) of the Euler equation, constraint q should scale
as EI=L2 with I = lh3=12. This scaling has been tested by comparing reaction q of two
sheets made of the same material, involving the same dimensions except a thickness h
one and a half bigger for one than for the other. The collapse of the rescaled curves
h−3q(Y ) shown in Fig. 8a actually evidences both the dynamical similarity of Euler’s
equation and the scaling law of the moment of inertia I .

Using the above scaling, we now compare the non-dimensionalized reaction force
q̃ = qL2=EI obtained in experiment and simulation. In particular, as experiment in-
volves two folds, only half the measured force refers to fold constraint q. Let us
introduce Ỹ = Y=Y1 as the height Y non-dimensionalized by the unloaded sheet height



B. Roman, A. Pocheau / J. Mech. Phys. Solids 50 (2002) 2379–2401 2391

0

1

2

3

4

15 20 25 30 35
Y mm

0.3
0.2

h mm
h_ 3 q 

(k
N

 m
m

_ 3 )

0

50

100

150

200

0.5 0.6 0.7 0.8 0.9 1.0

q

Y
~

~

(a)(b)

Fig. 8. (a) Collapse of rescaled curves h−3q(Y ) for the same material (steel) but two sheet thicknesses,
h = 0:2 mm and h = 0:3 mm. (b) Tension q̃ in non-dimensional variables versus height Ỹ . E ≈ 200 GPa,
h = 0:3 mm, X = 220 mm, L = 233 mm, l = 101 mm. Scaling used on tension is EI=L2 with I = h3l=12.
Scaling used on height is Y1 = 32:35 mm. Continuous line (resp. dots) corresponds to numerical integration
of Euler’s equation (resp. experimental measurements).

Y1. In non-dimensional variables (Ỹ ; q̃), mechanical response q shows in Fig. 8b a
good agreement between experiment and simulation, except in the vicinity of the cusp
point corresponding to buckling. As no adjustable parameter is used, this provides an
additional support for the relevance of Euler’s equation.

5.2. Derivation of q(X̂ ; Ŷ ; L̂) for Aat contacts

The constraints (X̂ ; Ŷ ; L̂) are related to the triplet of variables (�̇0; p; q) by the formal
solutions (3) to Euler’s equation and by the integral relationships (6) and (7). However,
in the general case, the mixing of variables is so intricate that, to our knowledge,
no explicit expression of tension q as a function of the constraints (X̂ ; Ŷ ; L̂) can be
extracted. Nevertheless, in the special case of 3at contacts, i.e. �̇0 = 0, we show that
integral relationships supplemented by an empirical relation enable the derivation of an
approached, but explicit, relationship.

To this aim, we 4rst notice that, in the 3at contact regime, �̇0 = 0, the integral
relationships (6) and (7) yield with (2) a number of relations

pŶ = qX̂ ; R� = �I =2; k = sin(�I =4); � = −�=2: (13)

On the other hand, we notice that, as L = 2L̂ + Xp and X = 2X̂ + Xp (Fig. 3a), the
length di5erence L̂ − X̂ for each fold keeps the same value (L − X )=2, irrespective
of the length Xp of 3at contacts. In view of this, we shall use this constant length to
non-dimensionalize length X , height Y and constraint q: Xa =X̂ =(L̂−X̂ ), Ya =Ŷ =(L̂−X̂ ),
qa = q(L̂− X̂ )2=EI. Then, denoting E ≡ E(�=2; k) = −E(−�=2; k) and F ≡ F(�=2; k)=
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−F(−�=2; k) the complete elliptic integrals, relation (3) gives, for �̇0 = 0:

L̂ =
4
!

F; X̂ =
4
!

[2E − F](1 − 2k2); Ŷ =
4
!

[2E − F]2k(1 − k2)1=2;

Xa =
X̂

L̂− X̂
= Xa(k); Ya =

Ŷ

L̂− X̂
= Ya(k); ! =

$(k)

L̂− X̂
: (14)

Here Xa(:) Ya(:) and $(:) are de4nite functions of k that can be easily computed.
Relations (2) (13) and (14), show that qa is related to k and thus, implicitly, to

Ya = Ya(k):

qa = !2(L̂− X̂ )22k(1 − k2)1=2; Ya = Ya(k): (15)

We address below the determination of an approached, but explicit, expression of this
implicit, but exact, relationship. It is based on the explicit formulation (10) of the
curvature energy Ec of folds, following which reaction q can be determined as the
gradient of the curvature energy on the Y -direction: q = (9Ec=9Y )(X;L). However, as
p and q vary during height reduction, an additional relation is required to close the
problem. In the case of 3at contacts, we empirically 4nd it as the law of variation of
the contact lengths Xp (12).

In the regime of 3at contacts, the curvature energy Ec of the sheet is obtained by
adding the curvature energies (9) of each fold, taking into account that the extended
3at part involves none. This yields : Ec =−p(L−X )+2qY . At 4xed (X; L), its variation
with height Y reads %Ec =−(L−X )%p+ 2Y%q+ 2q%Y . However, this also corresponds
to the work done during height reduction: %Ec =−2q%Y (−q%Y for each fold actually).
Using the empirical relation (12), the length relation X = 2X̂ + Xp (see Fig. 3a) and
the integral relationship pY =qX̂ (7), we then obtain the ordinary di5erential equation

dq
q

=
dqa

qa
= −dY

Y
4Y 2 − X̂ 0(L− X )

2Y 2 − !Y (L− X ) + X̂ 0(L− X )
; (16)

where X̂ 0 = !Y − X̂ = !Yp − X=2. Integration yields

qa = C
Ya

(Y 2
a − !Ya + ")3=2 exp

[
− !

D
arctan

(
2Ya − !

D

)]
; (17)

where C is an integration constant, " = X̂ 0=(L̂− X̂ ) and D = (4"− !2)1=2.
Let us introduce the function  (:) which, following (14), implicitly relates the

non-dimensional lengths Xa, Ya in the 3at contact regime: Xa =  [Ya]. Approxima-
tion (12) reduces to linearizing this function:  (Ya) = !Ya − ". The graph of function
 (:), reported in Fig. 7b, shows that, in the range 4¡Ya ¡ 5 that is relevant to the
measurements of Fig. 7a, the function  (:) is hardly distinguishable from its tangent.
This validates the linear approximation (12) (17) with ! = 6:65, " = 14:87, in good
agreement with the values measured from Fig. 7a: != 6:10; "= 12:06. The value of the
constant C may now be 4xed so as to provide equality between the explicit expression
(17) and the implicit expression (15) that can be computed from (14). One obtains
C = 0:304.
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Fig. 9. Comparison between the exact, but implicit, relation qa(Ya) (15) and the approximate, but explicit,
relation (17).

Fig. 9 shows the graphs of both the exact implicit relation (15) and the approximate
explicit relation (17) supplemented with the values of the constants (!; "; C) determined
above. In the domain where the linear approximation (12) is valid, i.e. 4¡Ya ¡ 10,
the comparison between them reveals quite a good agreement. Interestingly, energy
conservation has thus succeeded in providing here a 4ne approximation (17) of com-
binations of elliptic integrals (14) and (15) which, we guess, should be less intuitive
from a mathematical point of view.

5.3. Hysteretic behaviour of q(Y )

In the 3at contact regime, the 3at parts can be distributed freely on the sheet since
they correspond to rest states (�; �̇) = (0; 0) of the dynamical system (Roman and
Pocheau, 1999). Following this, buckling can occur sooner or later when Y is reduced,
depending on whether Xp is concentrated on a single 3at part or equally distributed
among the di5erent contact regions. In particular, the regimes of 3at contacts and
of free-standing fold may coexist within a given range of Y . The upper (resp. lower)
bound of this range corresponds to the Y -value at which a single 3at part (resp. equally
long contact parts) buckles.

Having decreased the free-standing fold so that it touches the compressing plate, let
us increase depth Y again. A single free-standing fold emerges somewhere at one of
the contact points (Fig. 2d). It then reduces amplitude until merging onto a 3at part
(Fig. 2b). Meanwhile, all other contacts turn to 3at contacts since, from (4), the exist-
ence of one 3at contact, i.e. (�; �̇)=(0; 0), implies H =−p, i.e. EI�̇

2
=p[1−cos(�)]−

q sin(�), and thus �̇= 0 at any other contact point (�= 0). However, as these other 3at
contacts arise from line contacts, they all involve by continuity a zero contact length,
Xp = 0. This means that the free-standing fold ends up on a well de4ned state: the
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largest possible 3at part (Fig. 2b). Following this, all experimental data reported here
were performed by increasing the box height from a compressed state, so as to obtain
well de4ned reproducible con4gurations.

5.3.1. Vanishing constraint and negative stiCness
An interesting feature of the mechanical response q(Y ) is to be non-monotonous

(Fig. 8b). Whereas a force q increasing with compression corresponds to the mechanical
response of usual systems as common springs, a force q decreasing with compression
reveals a loss of resistance of the system. Notice that the latter e5ect occurs within the
linear regime of elasticity. It thus does not refer to plasticity here but to the change
of morphology induced by buckling.

Within this “anti-spring” regime, dq=dY ¿ 0, the sheet is unstable under constant
external force q, and should therefore collapse, possibly exploring a buckling cascade
(Roman and Pocheau, 1999). This is actually what happens when the crushing of
sheets between parallel plates is performed with the hands. It does not do so within
our set-up because height Y is under control. Thanks to this feature, the “anti-spring”
regime could be studied here despite its intrinsic instability.

As shown in Fig. 8b, the “anti-spring” regime goes even up to a vanishing of
the force q when the free-standing fold just touches a compressing plate (Fig. 2d).
This may simply be understood by noticing that the free-standing fold displays no
tension q. Mechanical response on the Y -direction is then only given by the remaining
folds. However, when the free-standing fold just connects compressing plates, it can no
longer be distinguished from the remaining folds (Fig. 2d). By continuity, all folds—
and therefore the sheet itself—then display a vanishing tension q. This, however, is
speci4c to tension q, the tension p showing no vanishing.

6. Robustness to friction

Up to now, we have assumed right–left symmetry for sheets and the absence of
friction at the contact points with the compressing plates. However, friction can actually
be generated between plates and sheets and asymmetric forms might possibly satisfy
constrained Elastica. These possibilities question the agreement obtained so far between
experiment, simulation and theory on a frictionless and symmetric ground. Why friction
does not yield noticeable events? Do asymmetrical solutions actually exist? Why are
they not naturally encountered along the crushing routes?

On a deeper ground, the above questions raise the problem of the robustness of
Euler’s model to inevitable friction. In particular, the fact that the frictionless Euler’s
model works so well in our experiment, despite actual friction, is reminiscent of hy-
drodynamical con4gurations where idealistic potential (i.e. inviscid) 3ows provide an
accurate model despite actual viscous dissipation. In hydrodynamic, the reason for this
has to be sought in boundary layers. This cannot be invoked here since the existence of
integral invariants (e.g. p(s) =p) deny a con4nement of friction e5ects (e.g. a change
of p) to a de4nite region.
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Fig. 10. Graphs showing the existence of couples of solutions involving the same p, the same �̇ and the
same Y : (a) line contacts; (b) planar contacts.

Let us address the interplay between asymmetry and friction. As friction generates
a tension di5erence between right and left folds, it forbids their form to be the same:
friction generates asymmetry. Conversely, as symmetry implies the equality of all char-
acteristics of folds, including their tension component p, it means absence of friction:
symmetry denies friction. On the other hand, beyond the fact that asymmetry can be
induced by friction, one may wonder whether asymmetry does require friction to exist.
We give a negative answer below by exhibiting counter-examples of asymmetrical, but
frictionless, solutions.

6.1. Existence of asymmetrical frictionless solutions

We index right (resp. left) fold with r (resp. l). Our goal is to construct asymmetric
frictionless sheet forms. At contact points, they must involve the same �̇ and, being
frictionless, the same p. Being asymmetric, they involve right and left folds referring
to diCerent length constraints: (X̂ r ; Ŷ r ; L̂r) �= (X̂ l; Ŷ l; L̂l). However, being con4ned in
between the same plates, they must involve the same height: Ŷ r = Ŷ l. To satisfy this
requirement, we ?x the parameters (p; �̇) and we scan the corresponding family of
fold solutions of the Elastica by varying another independent variable: q (resp. k) in
the case of line (resp. planar) contacts. Within this family, an asymmetrical sheet form
is obtained by simply associating folds, each time two of them are found to involve
the same height. This gives:

• Line contacts: The scan is achieved numerically by varying tension q. A typical
family is shown in Fig. 10a. Owing to its bell shape, one gets, for some range of
height Y , couples of fold solutions providing asymmetrical, but frictionless, sheets.

• Planar contacts: The scan is achieved analytically by varying parameter k in this
relation deduced from Eqs. (2) and (14):

Ŷ (k; p) = 4
( p
EI

)−1=2
(1 − 2k2)1=2[2E − F]2k(1 − k2)1=2: (18)
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The plot of the function Ŷ (k; 1) = (p=EI)1=2Ŷ (k; p) in Fig. 10b displays a bell-
shaped curve showing couples of solutions referring to the same Y . Asymmetrical
but frictionless solutions may then be built by associating two di5erent folds of a
couple with arbitrarily long 3at contact.

6.2. Line contacts and asymmetry

Following the above study, many asymmetrical solutions exist, at least in the fric-
tionless case, and presumably even more when friction is in order. To understand why
they are not naturally displayed in our experiment, we consider the actual crushing
routes starting from a de?nite initial condition: the unloaded state. In unloaded states,
tension q vanish and p is the same on each fold since absence of plate means no
friction. Moreover, at the point common to right and left folds, curvature and tangent
angle are the same. By determinism of Euler’s equation (1), this implies equality of
fold form : unloaded states can only be symmetric.

As compression is set, the clue for understanding the evolution stands in the motion
of the contact point C between the sheet and the compressing plates, both on the
sheet and on the plates. If C does not move, either on the sheet or on the plates, the
length constraints of each fold, (X̂ ; Ŷ ; L̂), do not change and thus remain the same for
both. However, we have shown that there exists at most one fold of given length L̂
satisfying the Elastica in a given box (X̂ ; Ŷ ) (Pocheau and Roman, 2002). Following
this unicity property, folds thus involve the same form and the same tension (p; q),
so that the sheet remains symmetric. Generating sheet asymmetry therefore requires
shifting contact point C, either by gliding, rolling, or both.

• Gliding motion: Triggering gliding requires fold tensions pr , pl diCerent enough for
getting o5 the Coulomb’s cone: |pr − pl|¿)(qr + ql). However, symmetry itself
implies zero tension di5erence: |pr − pl| = 0. Accordingly, gliding cannot stand
as a natural way for generating asymmetry from symmetric states: friction forbids
asymmetry by spontaneous gliding.

• Rolling motion: Rolling of point C implies that transfer of length on the sheet,
%L = Lr − Ll, and on the plates, %X = Xr − Xl, are the same: %L = %X = %. On the
other hand, following fold uniqueness (Pocheau and Roman, 2002), curvature at the
contact point, �̇C, must be a function of the length constraints of the folds. Then,
compatibility between right and left folds implies �̇C; r(X=2+%; Y; L=2+%)= �̇C; l(X=2−
%; Y; L=2 − %). This requirement shows that a rolling branch of solution (% �= 0) can
be continuously taken from the symmetric branch (% = 0) only at points satisfying
(9�̇C=9X )Y;L + (9�̇C=9L)X;Y = 0. This, at most, can be satis4ed on isolate points of
the crushing routes. Experiment reveals that we did not encounter them or then, did
not follow the rolling branch.

6.3. Flat contact and asymmetry

Following the above analysis, we may assume symmetry at the occurence of the 3at
contact regime. Then, consider the motion of the extremities of the 3at contact part
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Fig. 11. Graph of function Ya(k) in the 3at contact regime. This function is bijective.

by gliding, rolling or both. Their gliding speed, if any, must be the same since the
sheet is inextensible. In particular, 3at contact extremities must glide or roll altogether.
However, as above, gliding is forbidden until a suDciently large di5erence of fold
tension p is accumulated. On the other hand, rolling modi4es each fold length and
lateral extent by the same quantities, dLr = dXr , dLl = dXl, so that their di5erence is
maintained: Lr − Xr = Ll − Xl = (L − X )=2. Then, both folds correspond to the same
value of Ya ≡ Ŷ =(L̂ − X̂ ). However, as this variable is unequivocally linked to k in
the 3at contact regime (Fig. 11), it solely governs the form of folds involving 3at
contacts. Accordingly, the two folds of the sheet must then be the same. Apart from
the distribution of 3at parts (which changes in case of di5erent rolling velocities), sheet
thus remains symmetric.

6.4. Free-standing fold: evidence of friction

At its birth, i.e. at buckling, a free-standing fold involves a length Lf equal to its
lateral extent Xf :Lf − Xf = 0. At its end, i.e. when further compression brings it into
contact with the opposite plate, its length (resp. lateral extent) is half that of the sheet
(resp. box): (Lf − Xf ) = (L − X )=2. Its length di5erence (Lf − Xf ) thus necessarily
increases during compression. This requires gliding and, therefore, friction.

Friction for free-standing fold is evidenced in Fig. 12a by plotting force q over a
cycle obtained by compressing until the free-standing fold touches the opposite plate
and return. The net area of the cycle means that the operator has furnished a net work
to return to the same state. This reveals friction on this route. In Fig. 12b, the same
procedure is applied to the regimes of line contacts and planar contacts. There, the
same points are found on the compression path and return, showing absence of friction
in these regimes.
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Fig. 12. Cycles showing small dissipation in the case of free-standing fold (a) and conservative behaviour
in the case of line contact and 3at contact (b). Experimental data are shown by vertical bar (increasing Y )
and horizontal bars (decreasing Y ).

Fig. 13. Picture of a polycarbonate sheet. The upper compressing plate was covered with a coloured powder.
This powder could be sticked to the sheet in the area involving sliding between the two surfaces. Notice the
absence of sliding in the central region, but the existence of some in the domain where the free-standing
fold was in contact with the upper compressing plate.

Friction is directly evidenced in Fig. 13 by covering compressing plate with a
coloured ink and performing sheet compression. As checked directly, sticking of ink
onto the sheet could not arise by rolling but by gliding. Starting from the unloaded
state, two symmetric bands on the sheet were nevertheless marked with ink. They cor-
responded neither to the location of the contact point in the line contact regime, nor
to those displayed in the 3at contact regime but to those involved in the free-standing
fold regime. This con4rms gliding in this sole last regime.

We nevertheless notice that, as tension q goes back to zero when the free-standing
fold approaches the compressing plate, friction vanishes again at the end of this regime.
This makes the frictionless Euler model recover its validity for further compression, as
shown in a study of buckling cascade (Roman and Pocheau, 1999).
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6.5. Structural stability of Euler’s Elastica with respect to friction

The above results reveal an interesting robustness of Euler’s modelization to friction.
Friction indeed widely opens the set of solutions of constrained Elastica by introducing
an additional degree of freedom: the impulsion induced at contact points. However,
it also generates a threshold, the Coulomb angle, which prevents symmetric states to
experience gliding under compression. Thanks to fold uniqueness (Pocheau and Roman,
2002), this reduces the opportunity of dissymmetrizing sheet forms to at most isolate
points on the line contact regime. In turn, the fact that the sheet remains symmetric
eventually denies friction.

Friction thus surprisingly stabilizes frictionless symmetric routes. Owing to this pos-
itive role, it prevents the natural occurence of the many states that it nevertheless
allows. This is the reason why the frictionless Euler model remains relevant even in
the real frictional world.

7. Conclusion

The response of bilaterally constrained thin plates to height reduction has been in-
vestigated by a joint experimental–theoretical–numerical study. An aspect ratio inter-
mediate between those of a rod and of an in4nite plate has been chosen so as to better
4t with practical applications regarding layered composites or industrial processing of
sheet metal or of journal foil. Euler’s model has been chosen to model the plate re-
sponses despite their 4nite aspect ratio and despite friction. Attention has then been
paid to attest its relevance and to investigate its properties in the non-linear regime.

The shape of plates and their elastical constraints at a given compression as well
as their changes with compression have revealed quite a good agreement between
experiment, numerical simulation and analysis. This extends the practical validity of
the Elastica model from the “degenerate” geometry of rods or in4nite plates to which it
is a priori dedicated, to the intermediate asymptotic regime of plates with ?nite aspect
ratio. On the other hand, the global structure of the Elastica has been revealed by
pointing out its phase portrait experimentally and by showing evidence of its similarity.
The sensitivity of the model to boundary conditions has been analysed and integral
relationships regarding forms and reaction forces have been derived and checked against
experiment. In particular, elastical reactions have been derived in the 3at contact regime
from the integral expression of the curvature energy and from the phenomenological
evolution of 3at contact lengths. At last, Euler’s model has been shown to be robust
with respect to friction, a result that explains its widespread relevance to practical
situations where friction is inevitably involved.

The improvement of the non-linear properties of constrained rectangular thin plates
is interesting not only for the situations where this con4guration is encountered but also
for those where slight modi4cations regarding plate initial curvature, fold axis curva-
ture, thermal gradient or shear prevent using integral relationships. Comparing their
elastical response to those displayed in Euler buckling would then be quite instructive
for extending the detailed understanding of buckling to more natural situations. In this
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spirit, the present study may be viewed as providing a detailed basis for getting valu-
able insights into more complex buckling problems, in addition to its direct usefulness
to situations where 4nite aspect ratio plates show parallel folds (Iseki et al., 1989;
Hesmat et al., 1983; Chou and Rhodes, 1997; Nordstrand and Carlsson, 1997).

Appendix. Numerical method

For simplicity, lengths are scaled so that L ≡ 1. The integration of Euler’s equation
(1) is achieved by the Runge–Kutta method. However, eigenvalues (p; q) and initial
conditions (�0; �̇0) have to be given so as to deduce the form �(s) and 4nally conclude
whether global constraints (X; Y ) are satis4ed for the sheet length L ≡ 1. Agreement
between prescribed variables and global constraints can be sought by applying a shoot-
ing technique, as documented in numerous numerical works (Patricio et al., 1998; Plaut
et al., 1999). Di5erences arise regarding the nature of the contacts between sheet and
plate.

For a line contact, we start with an initial guess on (p; q; �̇0), the initial condition
�0 = 0 being imposed. A program provides the form �(s) from which the cartesian
coordinates [x(s); y(s)] of a point of curvilinear abcissa s are deduced by integration.
Satisfying the global constraints then reduces to 4nding the zero of the function which
links (p; q; �̇0) to [x(1=2)−X=2; y(1=2)−Y; �(1=2)]. Here, the third condition �(1=2)=0
speci4es that the boundary s=1=2 is actually a contact point with the upper plate. This
stands as a classical numerical problem which can be easily solved provided a suitable
initial guess is taken. In particular, to 4nd out a continuous branch of solution, a
relevant method consists in taking the solution for a given height Y as a guess for
determining the solution for a neighbor value Y ′.

For a plane contact, the quest for the solution is slightly modi4ed in the sense that
the initial condition �̇0 is given, �̇0 = 0, but that the length Xp of the 3at contact is
unknown. The guess underlying the integration then involves the variables (p; q; Xp).
Denoting *p=(1−Xp)=2 the length of each fold, the problem then turns out determining
the zero of the function which links (p; q; Xp) to (x(*p)− (X −Xp)=2; y(*p)−Y; �(*p)).
for the initial condition �0 = �̇0 = 0.

Finally, in regimes involving a free-standing fold, a similar procedure enables the
form and tension of the sheet to be found.
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