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We report an experimental study on the effect of an external multiplicative noise on a subcritical
bifurcation leading to the parametric amplification of surface waves. We show that the probability density
function of the wave amplitude in the presence of noise has two maxima that do not correspond to any
of the deterministic states. When the deterministic forcing is varied in the presence of noise, these most
probable values give two new branches in the bifurcation diagram that involve a much larger difference
in oscillation amplitude. The bistable region is also strongly enlarged. This noise induced bistability can
be understood in the general framework of noise induced transitions.
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It has been known for a long time that random fluctua-
tions of the control parameters of a dynamical system, or
multiplicative noise, may generate surprising effects, such
as stabilization by noise [1,2], noise induced transitions
[3,4], stochastic resonance [5], etc. Although these effects
have been predicted for a great variety of systems, only a
few quantitative experiments have been performed on the
effect of noise on the threshold of instabilities. Previous
studies involve electronic oscillators [6], spin waves in fer-
rites and antiferromagnets [7,8], and electroconvection in
nematic liquid crystals [9,10], but only the effect of noise
on supercritical bifurcations has been considered thus far.
Although stabilization of a parametric instability by noise
has been reported with electronic oscillators [6], it has been
also shown that noise may generate large amplitude bursts
before the deterministic threshold leading to on-off inter-
mittency dynamics [10].

In this Letter, we study the effect of multiplicative noise
on a subcritical bifurcation. We consider the parametric
amplification of waves on the surface of a vertically
vibrated fluid layer (the Faraday instability [11]). The
study of this system has been motivated by the following
features: First, it is known that, with an appropriate choice
of the vibration frequency, this system undergoes an abrupt
and hysteretic transition from a static state to a finite am-
plitude oscillatory regime when the vibration amplitude is
increased [12]; second, contrary to the case of electronic
parametric oscillators, many damped modes are present at
instability onset. These modes, which can be adiabatically
eliminated for deterministic systems, are continuously
excited by noise and may influence the bifurcation dia-
gram [1].

A schematical diagram of the experimental setup is
shown in Fig. 1. The fluid container is an aluminum vessel
of dimensions 15 3 2 3 1 cm3 filled with distilled water.
The meniscus is avoided by pinning the fluid surface at
the edge of the container [13]. To prevent liquid evapo-
0031-9007�02�88(2)�024502(4)$20.00
ration and contamination of the surface, the fluid con-
tainer is closed with a Plexiglas plate and its temperature
is controlled by circulating water at 12.5 6 0.1 ±C. An
electromagnetic vibration exciter, driven by a frequency
synthesizer, provides a clean vertical acceleration (hori-
zontal acceleration less than 1% of the vertical one). The
vertical acceleration is measured by a piezoelectric ac-
celerometer and a charge amplifier.

Even in the presence of noise, the pattern grows or van-
ishes coherently in space and consists of a single mode, at
half the excitation frequency. We thus use a local optical
detection technique [14] to measure the wave amplitude.
An He-Ne laser beam is focused on the fluid surface, and
its deflection by the surface oscillation is recorded with a
position sensitive detector. The reflected light spot oscil-
lates between two extrema whose distance is proportional
to the amplitude of the surface wave. The photodetector
provides a voltage which is proportional to the position of
the incoming beam, thus to the height of the surface.
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FIG. 1. Schematical diagram of the experimental setup (ph.d.:
photodetector; acc.: accelerometer).
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A two channel function generator provides the sinu-
soidal and the noise signal. The noise is filtered, ampli-
fied, and then summed to the sinusoidal excitation. Using
a spectrum analyzer, we check that the filtered noise is
large band with a cutoff frequency around 1 kHz, so that
it can be considered as a white noise around the typical
frequencies of the sinusoidal signal (�60 Hz). The two
channel spectrum analyzer records the signals of the pho-
todetector and of the accelerometer, so that the amplitude
of the instability and the corresponding acceleration are
monitored at the same time. When noise is added to the si-
nusoidal forcing, the acceleration in the reference frame of
the fluid container is geff � g 1 a cos�Vt� 1 j�t�, where
g is the acceleration of gravity. Thus, both the sinusoidal
forcing and the noise j�t� parametrically force gravity-
capillary waves. The amplitude of each mode obeys a
Mathieu equation in the linear approximation for a fluid
of small viscosity [15].

We performed the fast Fourier transform of both the
acceleration and the wave amplitude signals on a frequency
span of 400 Hz with a frequency resolution of 1 Hz, thus
over a time interval of 1 s. This time scale corresponds
to about 30 periods of the wave amplitude but is smaller
than the characteristic duration of the wave bursts observed
in the vicinity of the bifurcation in the presence of noise.
Thus, the time dependence of the amplitude of the waves
is well enough resolved in order to compute its probability
density function (PDF) and its mean value.

The spectral power of the acceleration signal at V gives
the rms value of the sinusoidal component arms. Note that,
because of the presence of the noisy component, the mea-
sured value of arms is Gaussian distributed. The average
of the spectral power over a frequency band of 30 Hz just
above V gives a good estimation of the power spectral
density of noise:

k�V� � 2
Z `

0
�j�t�j�t 1 t�� cos�Vt� dt , (1)

since the spectrum is flat around V. Finally, the spectral
power of the photodetector signal at V�2 gives the rms
value Arms of the wave amplitude.

Time recordings of the amplitude of the waves in the
presence of noise are displayed in Fig. 2 as the sinusoidal
forcing is increased. The frequency of the parametric ex-
citation is V�2p � 60.4 Hz, corresponding to a nega-
tive detuning (roughly a tenth of Hz). Consequently, the
f bifurcation without noise is subcritical and the wave
amplitude abruptly jumps to a finite value for a rms acceler-
ation ac � 5.8 6 0.1 m�s2 (see below). The noise inten-
sity is k�V� � 0.10 mV2�Hz, where 1 mV2 corresponds
to the square of one acceleration unit (in m�s2). We can
see (Fig. 2a) that noise triggers the instability onset before
the deterministic threshold. The temporal signal is char-
acterized by long laminar periods interrupted by intermit-
tent bursts of strong oscillation amplitude. The presence
024502-2
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FIG. 2. Temporal evolution of the wave amplitude for a noise
intensity k�V� � 0.10 mV2�Hz. The sinusoidal forcing corre-
sponds to an average acceleration �arms� � 5.7, 5.9, 6.2, and
6.4 m�s2 in (a), (b), (c), and (d), respectively.

of this rare but large event makes the average value of the
wave amplitude different from zero before the determinis-
tic threshold. Note, however, that the most probable value
is zero. When the average acceleration is increased, the
amplitude begins to switch between two values indicated
by the two dotted lines in Figs. 2b and 2c. Both values are
increasing when the amplitude of the sinusoidal forcing is
increased, and the system spends more and more time in
the vicinity of the largest one. The PDFs corresponding to
the time recordings of Fig. 2 are displayed in Fig. 3. At
first sight, one may think that the effect of noise consists
of triggering transitions between the two metastable states
that exist in the vicinity of a subcritical bifurcation. We
emphasize below that this is not the case.

The amplitude of the waves measured in the absence of
noise is shown with open circles in the bifurcation diagram
displayed in Fig. 4. As said above, there is an abrupt jump
from zero to finite amplitude for ac � 5.8 6 0.1 m�s2.
The subcritical nature of the bifurcation is due to negative
detuning, i.e., n � V�2 2 v�kc� , 0, where v�kc� is
the frequency of the wave with the critical wave number
kc. When n , 0, a finite amplitude oscillation can be
parametrically tuned because its frequency is a decreasing
function of its amplitude [12]. The bistable region in the
vicinity of this subcritical bifurcation is rather small but
is strongly enlarged in the presence of noise. The most
probable values of the wave amplitude in the presence
of noise [k�V� � 0.10 mV2�Hz as in Fig. 2] are plotted
in Fig. 4. We observe a lower branch that continuously
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FIG. 3. PDFs of the wave amplitude for a noise intensity
k�V� � 0.10 mV2�Hz and for different values of the determin-
istic forcing: �arms� � 5.7, 5.9, 6.2, and 6.4 m�s2 in (a), (b),
(c), and (d), respectively.

increases from zero and an upper branch which exists for
a rms acceleration above a1 � 5.9 6 0.1 m�s2. Thus, two
branches of solutions, displaying a bistable region, are
created by noise. The two dotted lines mark the beginning
of the bistable region and the point a2 � 6.2 6 0.1 m�s2

above which the probability of visiting the lower branch
has decreased to 10% of the probability of visiting the
upper one.

The average wave amplitude �Arms� is shown with
crosses in Fig. 4. We first observe that �Arms� increases
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FIG. 4. Bifurcation diagram for the amplitude of the surface
waves. The wave amplitude Arms is measured in arbitrary units.
Circles are measured in the absence of noise. Crosses corre-
spond to the average value �Arms� measured for a noise inten-
sity k�V� � 0.10 mV2�Hz. For the same set of measurements,
triangles represent the most probable values of the correspond-
ing PDF. Lines are guides for the eyes.
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continuously from zero when the average acceleration,
�arms�, is increased. However, �Arms� does not interpolate
between the two branches of the deterministic bifurcation
diagram as it would do if the only effect of noise were to
generate random transitions between these two states. It
of course interpolates between the two branches for the
most probable value of the wave amplitude. The same
bifurcation diagram is displayed in Fig. 5 for a larger
noise intensity [k�V� � 0.18 mV2�Hz]. The behavior is
qualitatively the same but, rather surprisingly, the noise
induced bistable region is shifted to higher values of the
average acceleration. The value of the slope of �Arms�
versus the average acceleration decreases.

The effect of multiplicative noise on parametric insta-
bilities has been considered for a long time. Both an
analytical linear stability analysis of the zero solution of
the Mathieu equation with a forcing involving harmonic
and noisy components [16], and an experiment with an
electronic parametric oscillator [6], have been performed.
Our experimental results differ in two important aspects
from the previous studies: First, we consider the effect
of noise on a subcritical bifurcation; second, our system
is spatially extended and thus involves many modes that
may be excited by noise contrary to a parametric oscillator
described by a Mathieu-type equation. We emphasize that
both ingredients are necessary for the observation of noise
induced bistability.

We have studied the effect of noise on a supercritical
Faraday instability by choosing a positive detuning, n �
V�2 2 v�kc� . 0. In that case, the PDFs of the wave
amplitude never display two local maxima.

We have also studied an electronic parametric oscilla-
tor governed by a Mathieu equation with a cubic non-
linearity [17]. In the case of negative detuning, i.e., for
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FIG. 5. Bifurcation diagram (crosses) of the average wave am-
plitude for k�V� � 0.18 mV2�Hz. Triangles represent the most
probable values of the corresponding PDF. Lines are guides for
the eyes.
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a subcritical bifurcation, two maxima of the PDF of the
oscillation amplitude may be observed in the presence of
multiplicative noise. However, these maxima correspond
to the two metastable states of the deterministic system.
For this low-dimensional dynamical system, the effect of
noise is just to generate random transitions between the
two metastable states of the deterministic system. If the
mean value of the oscillation amplitude is taken as an order
parameter, the bifurcation remains first order for a low ex-
ternal noise level, but becomes continuous at high enough
noise. This is analogous in the time domain, to the phe-
nomenon observed in phase transitions, where it has been
shown that microscopic random impurities or other types
of spatial disorder may produce rounding of a first-order
phase transition [18–21].

Besides rounding the transition, the effect of noise on
the mean wave amplitude is twofold. When the system
is below the deterministic threshold, noise triggers ran-
dom bursts of large amplitude oscillations. On the other
hand, when waves are developed above the deterministic
threshold, noise decreases their mean amplitude. This is
due to the decorrelation of the phase that randomly de-
tunes the waves from parametric resonance. This effect in-
creases at high noise intensity and the system visits more
and more the lower branch of the bistable region. This
explains why the slope of the average wave amplitude de-
creases when the noise intensity is increased. This twofold
effect of noise may also explain the enlargement of the bi-
stable region.

In conclusion, we have shown that the bistable region
that exists in the vicinity of a subcritical bifurcation to
parametrically amplified waves may be strongly enlarged
by multiplicative noise. This effect does not exist for a
low-dimensional parametric oscillator and thus requires
several coupled modes. We note that “noise-enhanced mul-
tistability” has been reported in a simple model of coupled
oscillators but also requires additive noise [22]. The struc-
ture of this model being of a very different nature than the
one involved in parametric amplification, we expect that
noise induced bistability can be observed with other sub-
critical pattern-forming instabilities.
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