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Theory of edges of leaves
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Abstract. – We performed experiments in which tearing pieces of plastic produced a fractal
boundary. Similar patterns are commonly observed at the edges of leaves. These patterns can
be reproduced by imposing metrics upon thin sheets. We present an energy functional that
provides a numerical test-bed for this idea, and derive a continuum theory from it. We find
ordinary differential equations that provide minimum energy solutions for long thin strips with
linear gradients in metric, and verify both numerically and experimentally the correctness of
the solutions.

Introduction. – If one takes a thin piece of plastic, such as a garbage bag, and rips
it in half, the edge takes on a complicated rippled form. We recently performed a careful
experimental study of torn sheets and found the edge can have a fractal character, with waves
superimposed upon waves over many generations [1]. Our aim in this letter is to provide some
explanations for the waves appearing in these systems.

We do not believe that details of how plastic tears are important, and we will not discuss
them. All that appears to be essential is that the act of tearing imposes a new metric upon
the thin sheet of plastic, one in which the plastic is uniformly elongated as one moves toward
the newly formed edge. Similar elongation can be created by completely different physical
processes, such as growth laws in plants. Therefore, it is not surprising that the edges of many
leaves and flowers exhibit very similar shapes. We present in fig. 1 a comparison between torn
plastic sheets, leaves, and some numerical experiments that motivated our studies.

Energy of a thin sheet. – The energy of a thin sheet is conventionally given by the Föppl-
von Kármán equations, and is the sum of two terms, one involving bending of the sheet and
the other involving stretching [2,3]. We start instead with a physical model of a sheet that is
based upon a discrete collection of interacting points, and allows us to move easily back and
forth between numerical and analytical approaches. We derive the continuum theory from our
discrete model rather than by discretizing continuum equations. Similar numerical techniques
have been employed frequently in studies of crumpled paper and tethered membranes [4, 5].

Let �ui be a collection of mass points that interact with neighbors, and at rest form a thin
flat sheet. Let �∆ij be equilibrium vector displacements between neighbors i and j. When
c© EDP Sciences



M. Marder et al.: Theory of edges of leaves 499

Fig. 1 – The relation between the buckling cascade and the metric of the sheet. (a) The experimentally
measured metric function gxx(y) in a 0.2mm thick sheet (squares) is compared with three different
metrics used in numerical minimizations of eq. (1): 1) gxx(y) = (1 + exp[−y/2])2 (dotted line),
2) gxx(y) = (1 + 0.7 exp[−y/2] + 0.3 exp[−y/6])2 (thin line) and 3) gxx(y) = (1 + 2/(2 + y))2 (bold
line), where y is in units of sheet thickness. (b) Minimum energy configurations of the energy E in
eq. (1) for the three functional forms in (a): 1 (top), 2 (middle) and 3 (bottom). (c) Side (y-z plane,
right) and front (x-z plane, left) views from simulation (metric as in (a3)), experiment, and beet leaf.

the neighbors are not in equilibrium, the distance between them is uij = |�uj − �ui|. Let gαβ

be a metric tensor that describes permanent deformations of the sheet away from its original
equilibrium. We begin with an energy functional that makes physical sense and leads to a
familiar continuum limit:

E =
K
2a

∑
〈ij〉

[
u2

ij −
∑
αβ

∆α
ijgαβ∆β

ij

]2

, (1)

where K has dimensions of energy per volume, and a has dimensions of length. All that has
happened, in short, is that the equilibrium distance between material points has changed.
Our hypothesis, also adopted in a closely related problem by Nechaev and Voituriez [6], is
that by specifying different metric tensors g, often ones with very simple functional forms, we
can describe all the buckling cascades we have observed in the laboratory. In particular, since
the plastic sheets are torn uniformly in the x-direction, we will assume that the metrics g are
constant in the x-direction, and vary only along y. We take g to be diagonal, with gxx(y) a
smoothly varying function and gyy = 1. Suggestive results from numerical experiments where
we guessed various metrics and minimized eq. (1) appear in fig. 1.

Continuum limit. – Analytical progress depends upon moving to the continuum limit of
eq. (1). Define the Cauchy-Green strain tensor

εαβ ≡ 1
2

[ ∑
γ

∂uγ

∂rα

∂uγ

∂rβ
− gαβ

]
. (2)
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Then in the continuum limit E can be rewritten as

E =
K
a

∑
i

∑
j nbr. of i

[ ∑
αβ

∆α
ijεαβ(�ri)∆

β
ij

]2

. (3)

One has to specify a particular lattice in order to proceed further. If one takes the points
�ui to sit on a two-layer system of triangular lattices, stacked over one another as in the first
stage of forming an hcp lattice of lattice constant a, the energy takes the particular form

E =
Ka3

24

∑
i


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19
[
εxx + εyy

]2 + 38
[
ε2xx + ε2yy + 2ε2xy

]
+ 32ε2zz + 16

[
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]
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[
ε2yz + ε2xz

]
+ 8

√
2
[
εyz(εyy − εxx) + 2εxyεxz

]

 . (4)

Solvable problem at edge of strip. – The full problem at hand is to find the minimum
energy state of eq. (1) or eq. (4) for a very long strip of finite width w and very small thickness
t, subject to a metric gxx(y), where gxx has some value greater than 1 at y = 0 (fig. 1(a)),
and decreases monotonically toward 1 as y approaches the other side of the strip. It seems
very unlikely that this problem has in general an exact analytical solution.

However, we have found a particular case where the problem can largely be solved [7].
The motivation for the solvable problem comes by looking at the left panels of fig. 1(c), and
imagining making a new strip by slicing off the material at distance y = w from the left-hand
side. If w is small enough, then the metric gxx within it should have the form of constant plus
a term linear in y. Therefore, we study a thin strip whose metric is√

gxx(y) = (1 − y/R), gyy = 1, (5)

where R is a constant and y ∈ [−w/2, w/2]. We look for solutions �u(x, y, z) subject to the
constraint that there be some strip length L and period λ for which

�u(x + L, y, z) = x̂λ + �u(x, y, z). (6)

Studying thin strips with linear metric gradients does not permit one to analyze all the complex
behavior appearing in fig. 1, but it does allow one to calculate a basic undulating shape that
appears as an ingredient of the buckling cascade. To form a rough correspondence between
the two problems, choose L/λ ≡ √

g0 to be the amount the membrane in fig. 1(c) has been
stretched at the left edge.

If a strip of length L is given metric (5) and no constraint is applied, then the minimum
energy configuration is easy to find. The material can relax completely by forming a ring
of radius R, which curls round and round in a circle. Thus one can obtain some intuition
about the problem by cutting out the paper figure in fig. 2 and pulling the ends apart. Let
r̂1(θ) and r̂2(θ) be two unit vectors attached to the circular strip, where r̂1 points around the
circumference, and r̂2 points along the radius. Then the lowest-energy deformations of the
paper strip are described by two functions ψ̇(θ) and φ̇(θ) that describe the rate of rotation
around axes r̂1 (twisting) and r̂2 (bending), respectively. The directions of the unit vectors
are determined by

∂r̂1

∂θ
= φ̇(θ) r̂3 + r̂2, (7a)

∂r̂2

∂θ
= ψ̇(θ) r̂3 − r̂1, (7b)

r̂3 = r̂1 × r̂2. (7c)
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Fig. 2 – The buckled shapes studied in this paper can be created by cutting out this circular strip,
of radius R, length L = 2πR, and width w. Rotate the two ends around r̂1 × r̂2 so that the two
gray arrows point 180◦ away from one another, and place them over the lower line so that the arrows
coincide. The paper will assume the undulating shape from fig. 3 with

√
g0 = 2. Moving the ends to

other horizontal distances λ along the line, or choosing other points along the strip for arclength L,
allows one to explore a two-parameter family of periodic strip solutions.

It is easy to check that r̂1, r̂2, and r̂3 remain orthonormal unit vectors under the dynamics
described by eqs. (7). One way to derive these equations is to consider the evolution of three
orthonormal vectors where the rotation rate of r̂1 and r̂2 around r̂3 is constrained to be unity;
this constraint comes from the fact that the strip width w is much wider than the thickness
t and any additional rotation of r̂1 and r̂2 around r̂3 would stretch the strip. The center-line
�l(θ) of the strip is given by

�l(θ) ≡ R

∫ θ

0

dθ′r̂1(θ′). (8)

Once the unit vectors r̂1(θ), r̂2(θ), and r̂3(θ) have been determined, then the displacements
of all points in the strip are given by

�u(Rθ, y, z) = �l(θ) + r̂2y + r̂3z +
3∑

i=1

[
q(i)
zz z2 + q(i)

zy zy + q(i)
yy y2

]
r̂i/R. (9)

The quantities q
(i)
αβ are functions of θ, and are needed to allow for Poisson contractions of the

strip along the y and z directions. They can be determined by inserting eq. (9) into eq. (4)
and differentiating to find a local minimum, giving

q(1)
zz =

√
2ψ̇/4, q(1)

zy = −ψ̇, q(1)
yy = 0,

q(2)
zz =

√
2φ̇/6, q(2)

zy = φ̇/3, q(2)
yy = 0,

q(3)
zz = φ̇/12, q(3)

zy = 0, q(3)
yy = −φ̇/6. (10)

Making use of these results, one can finally find the energy E needed to bend a strip into a
shape determined by the bending and twisting rates φ̇ and ψ̇, and it is

E = K 2a3w

3
√

3R

∫ L/R

0

dθ
(
C1φ̇

2 + C2ψ̇
2
)
, with C1 = 2, C2 = 3. (11)
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Fig. 3 – Analytical solutions of eqs. (13) with C1 = C2. The solutions are depicted for constant
wavelength λ, and varying strip length L =

√
g0λ.

Actually, this expression describes the low-energy states of a strip only in a certain limit. The
limit is (

w

R

)2

	 t

R
	 w

R
, (12)

which means that the strip is much wider than it is thick, but not so wide that it becomes
favorable to develop structure across the width of the strip.

Euler-Lagrange equations. – There still remains the task of finding the minimum energy
shape of the strip. This problem was recently solved by Audoly and Boudaoud [8]. They
parameterized the solution with Euler angles, and the expressions are rather lengthy. We
present below an alternative solution that is more compact. One must determine the bending
and twisting rates φ̇ and ψ̇, subject to the boundary conditions implied by eq. (6). We proceed
by rewriting eq. (11) in terms of derivatives of r̂1 and r̂2, using Lagrange multipliers to enforce
the kinematic constraints in eqs. (7). Extremizing the resulting functional with respect to r̂1

and r̂2 and eliminating most of the Lagrange multipliers gives

∂ψ̇

∂θ
= hφ̇/C2 + φ̇, (13a)

∂φ̇

∂θ
=

[
px̂ · r̂3 − hψ̇

]
/C1 − ψ̇, (13b)

∂h

∂θ
= px̂ · r̂2 + [C1 − C2]φ̇ψ̇. (13c)

Here p is a constant that can be varied to try to match boundary conditions. Together with
eqs. (7), eqs. (13) completely specify the problem. A set of equations with the same physical
content is found in [8].

The solutions of eqs. (13) are indexed by four constants: the initial values φ̇(0) and h(0),
the normalized strip length L/R, and p. The initial value ψ̇(0) vanishes because ψ̇(θ) is odd.
By varying φ̇(0) and p, it is possible to ensure that r̂1(L/R) = x̂ and r̂2(L/R) = ŷ. The
remaining constant h(0) can then be employed to vary the wavelength λ. Thus the solutions
can be indexed by λ and L, which can be varied independently within certain ranges. To
observe these solutions, one can cut out the strip in fig. 2, pick various strip lengths L, and
force the strip at these points to lie at distance λ from the origin.

Closed-form solution. – In a special case, eqs. (7) and (13) have a closed-form solution [7].
Set C1 = C2, and take

φ̇ = ω cos αθ, ψ̇ = ω sin αθ. (14)



M. Marder et al.: Theory of edges of leaves 503

Fig. 4 – Theory and experiment for shapes of strips. (a) Comparison of three separate methods to
find the shape of a strip. The first results from solving eqs. (13) by a numerical shooting technique
for L/λ =

√
g0 = 4/3, and L/R = π. The second results from setting C1 = C2, permitting a

solution in terms of elementary functions. The third method is a direct numerical minimization of
eq. (1) for a strip 201 atoms long in the x-direction, and 12 layers wide in the y-direction, given
curvature R = 63.7, constrained to have horizontal period of 150, so that again

√
g0 = 4/3. The true

minimum energy from eqs. (13) and (11) is 1.3557Ka3. The energy predicted by eq. (11) with the
approximate forms for φ̇ and ψ̇ from eq. (14) is 1.3571Ka3. The energy found from direct numerical
minimization of eq. (1) is 1.377Ka3. (b) Strips of polycarbonate are cut out with width w = 0.164 cm,
radius R = 2.662 cm and extending through length L/R = π. Ends of the strip are held such that√

g0 = L/λ = 4/3, and the results are compared with the corresponding solution of eqs. (13). (c) Ends
of the strip are held such that

√
g0 = L/λ = 1.13 and are compared with the corresponding solution

of eqs. (13).

For given L/λ =
√

g0, there is a special wavelength

λ =
4πR(

√
g0 − 1)

g0
(15)

for which �u can be expressed purely in terms of trigonometric functions. Graphs of these
solutions appear in fig. 3. Although they are exact only when C1 = C2, as shown in fig. 4(a),
they lie extremely close to a numerical solution of eqs. (13) with C1 = 2C2/3 for the same
boundary conditions. In addition, these closed-form solutions provide excellent starting points
when one searches numerically for more general solutions. The special wavelength λ in eq. (15)
is only special because it makes analytical solution possible, and not because it provides an
energy minimum.

Numerics and experiments. – We have carried out a direct numerical minimization of
eq. (1), and compared both the shape and energy of the resulting solution with the analytical
predictions. The results are displayed in fig. 4(a). The closed-form solution available when
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C1 = C2 is almost indistinguishable from the numerical solution of eqs. (13) when C1 = 2C2/3.
The direct minimization of eq. (1) deviates slightly from the exact solution, probably because
of incomplete convergence and finite-size effects in the numerics.

As a final check of our understanding, we cut strips similar to those in fig. 2 from sheets of
polycarbonate, pinned their ends as described in the caption, and used a scanning profilometer
to find the shape of their centerlines. In figs. 4(b) and (c) we compare solutions of eqs. (13) to
the measured shapes. Note that once L/R and λ/R are determined, the shape is completely
specified and there are no free parameters. Agreement between predicted and experimental
shapes is satisfactory

It is possible that the lowest-energy state for the simple metric in eq. (5) involves a cascade
of oscillations on many scales, but we have not yet obtained detailed evidence. Many other
problems remain to be addressed, including the application of the ideas obtained here to the
more complex metrics illustrated in fig. 1 for torn sheets and leaves.
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