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The tearing path in a thin anisotropic sheet from
two pulling points: Wulff’s view

Alejandro Ibarra,a Benoı̂t Romanb and Francisco Melo*a

We study the crack propagation in a thin notched sheet of a polymeric material when two points in the sheet

are pulled away. For materials of isotropic fracture energy, we show that an effective tearing vector predicting

the direction of fracture propagation can be defined. In the flat sheet state, this vector is the perpendicular

bisector of the vectors joining the pulling points and the fracture tip. The tearing vector is then differently

oriented than the pulling direction. The ‘‘maximum energy released rate’’ criterion predicts a crack path that is

tangential to the instantaneous tearing vector, or equivalently trajectories that are hyperbolas whose focal points

are the pulling points. However, experiments indicate that fracture paths rarely follow this prediction because

any small anisotropy existing in real thin sheets deviates the crack path from being parallel to the tearing vector.

Although these deviations are locally small, as crack progresses a cumulative effect which results in large errors

for long crack paths are observed. We therefore introduce the anisotropy effect through the generalization of

the ‘‘maximum energy released rate’’ criterion and demonstrate that the crack trajectory and the minimum force

to sustain tearing can be found through a Wulff’s type geometrical construction. Systematic experiments show

that the tearing force and fracture path are in good agreement with this prediction.

1 Introduction

Impeding crack nucleation and fracture propagation have been
the main objectives of engineering efforts aimed at the design
of highly resistant structures. Recently it has been suggested
that predicting and controlling the path of a crack also leads to
important applications such as, the design of easily torn
packaging1 or fracture-induced patterning at the micro-2 or
nano-scale.3 Controlling the crack path is also a new approach
to the design of tougher materials.4

The classical approach to fracture mechanics applies to
crack propagation in brittle systems where linear elasticity
applies outside of the process zone: usually bulk material5

and coating films.6 In this linear elasticity approach, stresses
scale linearly with the applied load F, so that energies scale like
F2, and so does the energy release rate. In many engineering
problems, fracture indeed does occur before a large geometric
deformation takes place.

But this is not the case for fracture in free sheets or tearing,
where large deflections often result in very strong non-linearities:
indentation of a plate by a rigid tool (relevant for the fracture of
the hull of a ship by a rock,7 the slicing8 or perforation9 of a

thin film), the simultaneous peeling and cutting of adhesive
plate10 or the spontaneous spiral opening of packaging films.11

Few studies are devoted to such situations where linear fracture
mechanics does not apply (see ref. 12 for a review).

Another difference with traditional problems in fracture
mechanics is that in many applications (such as packaging)
fracture propagation is desirable, and its path trajectory should
be controlled. But achieving suitable control of tearing is usually
hampered by the complex nature of the material itself and the lack
of understanding of laws ruling fracture propagation involving
large sheet deflections. Indeed, the stress distribution and the
shape of fracture head are both determined by the local material
properties, such as plasticity, anisotropy and texture. In turn, our
daily experience indicates that the geometrical properties of the
points over which forces are applied and the corresponding
pulling directions must be the fundamental control parameters
of the fracture path and the mechanical work provided externally
sustain the tearing progression.

A simple approach to resolve such a highly non-linear
fracture problem consists in assuming that the plate is so thin
and brittle that it can be considered as infinitely flexible and
geometrically inextensible. In this limit the elastic energy stored
in the system vanishes, which greatly simplifies the energy
balance during fracture propagation, and there only remains
the geometrical non-linearities which are strongly expressed.
Although this assumption is not common in fracture mechanics,
it is very commonly used in adhesion mechanics. For example, it
underlies the classical calculation of the force F for peeling a strip
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along a peeling angle f. Indeed, for an advance dl of the peeling
front, the work of the operator is given by dW = Fdl(1 + cosf),
where geometrical assumption of inextensibility was used.
Neglecting elastic energy stored, the energy release rate for this
interfacial fracture is therefore G = F(1 + cosf)/w, where w is the
width of the adhesive strip. Peeling occurs when G = g, the
adhesion energy per area, which leads to Rivlin’s formula13

F = gw/(1 + cosf). Note that in contrast to linear elastic fracture
mechanics, the energy release rate here is proportional to the
load F in this example, and is independent of the properties of
the elastic material. We will recover these features for the case
of fracture in thin sheets in the course of this study.

In this article we study the crack path in a strongly deformed
brittle sheet, in the simplest possible tearing configuration. We
model fracture propagation within the inextensible framework,12

where we find (as in the peeling formula) that the energy release
rate is now linear with the applied force F, in contrast to the
linear elastic fracture mechanics (see eqn (3)). The pioneering
work of O’Keefe14 investigated the fracture of paper when it is
pulled from two points as in the common everyday action of
tearing a disregarded document: a notch is cut in a brittle thin
sheet, and two points A, B are selected, one on each side of the
notch. These two points are pulled apart from each other, so that
only forces (no torque) are applied, (see Fig. 1). What is the
magnitude of the force applied during tearing propagation? And
in what direction does the crack propagate?

We performed experiments with bi-oriented polypropylene
sheets which are much more homogeneous than paper, leading
to a perfectly smooth fracture path. In addition, these sheets
have the advantage of presenting a weakly anisotropic fracture
energy with two orthogonal principal axes of symmetry. With
this material we find that the trajectories are very robust, the
direction of propagation only depends on the position of the
crack tip, and not much on past propagation. As a result, all
experimental tearing paths belong to a family of non-intersecting
trajectories (see Fig. 2). We find that these trajectories tend to
deflect and curve away from the pulling point which are farther
away. The trajectories that are closest to a straight line correspond

to those where the fracture tip C is at an equal distance from both
pulling points. We also note that the trajectories are different for
different orientations of the sheets, which expresses the role of the
anisotropy of the sheet (compare Fig. 2a and b).

O’Keefe successfully identified the geometric and energetic
aspects of this problem and pointed out the crucial role of the
material anisotropy14 (due to the orientation of paper fibers in
his case). However, his derivation was not based on fracture
mechanics, but on ad hoc assumptions for crack propagation.

Here we show how to derive rigorously a prediction for the
crack path using clearly stated hypothesis12 and fracture
mechanics. In particular, we find that if the material is isotropic,
the fracture path is a hyperbola. Moreover, we present a general
and systematic manner to introduce the material anisotropy
based on a Wulff’s type diagram. This approach correctly pre-
dicts an experimental crack trajectory in the general case of two
pulling points in an arbitrary direction, and also provides a good
prediction for the force applied by the operator for tearing,
without any adjusting parameter.

2 General fracture criterion
Fracture criterion in anisotropic materials

Following classical Griffith criterion, a crack propagates in a
generic direction y when the energy released per unit of the

Fig. 1 The simplest action of tearing paper by hand (top insets) is systematically
studied by means of pulling clamps that hold the sample at two points and
are pulled apart by means of a translation stage at a constant speed. Pulling
force can be simultaneously registered through a miniature load cell.

Fig. 2 Fracture trajectories for distinct positions of the initial crack as seen in
the flat sheet, for constant pulling speed and two orientations of symmetry
axis 1 with respect to focal axis, compared to theoretical predictions. The line
joining the pulling points (located 100 mm apart and indicated by bullets)
define the focal axis. (a) Symmetry axis 1 oriented parallel to focal point axis,
y0 = 0. (b) Symmetry axis 1 oriented at y0 = p/4 with respect to focal axis.
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fracture surface (the energy release rate G(y)) compensates the
energy cost of fracturing the material Gc(y), so that G(y) = Gc(y).
This criterion only relies on energy conservation and is there-
fore always valid, but it does not predict the direction of
propagation. An additional criterion should be used for that
purpose. In an isotropic material, and for smooth propagation,
a widely accepted criterion is to assume that fracture propagates
in the direction that maximizes the energy release rate. This
‘‘Maximum Energy Release Rate Criterion’’ is equivalent to the
principle of local symmetry for continuous trajectories.15,16

But in the case of an anisotropic material, there is no total
agreement in the literature for the selection of the direction of
propagation. There is however a simple and natural generalization
of the maximum energy release rate criterion: assuming
that the loading is progressively increased, we postulate that
fracture propagates in the first direction which satisfies Griffith’s
criterion:16–20 cracks propagate in the direction y such that

G(y) � Gc(y) or equivalently
GðyÞ
GcðyÞ

is maximal, together with

Griffith’s criterion G(y) = Gc(y). This can also be formulated as,

G(y) = Gc(y) (1)

dGðyÞ
dy

¼ dGcðyÞ
dy

(2)

Anisotropy therefore results in crack propagation that does not in
general take place in the direction of maximum energy release rate,
but is deflected towards directions with less fracture energy.
The condition (2) is also interpreted as an Eshelby torque (left
hand side) balancing a material torque associated with anisotropy
of the fracture energy.18 This general criterion (eqn (1) and (2)) was
established in the numerical phase field approach,18–20 but experi-
mental evidence is lacking in the literature. This is probably due to
the fact that a precise estimate of the energy release rate in a bulk
anisotropic material is difficult. Recently, the tearing path of a
anisotropic film with a simplified and symmetric configuration
(trousers test),21 was shown to obey this criterion.

A general theory for tearing when pulling from two points

We now turn to the computation of the energy release rate G(y)
in the tearing configuration of Fig. 1. Although we will see that
the trajectory of the fracture will be best described in the planar
(initial) reference state, it is instructive to start with the study of
the actual (deformed) sheet during tearing. A crucial experi-
mental observation is that the two lines (AC, BC) drawn on the
sheet that join the pulling points to the crack tip C become a
single straight line when loading is applied (see insets of Fig. 1
and 3a). This is because the sheet is very thin, and so bendable
that it can hardly sustain any torques.

If in addition, the thin sheet is inextensible (no elastic
energy in this model), the energy release rate corresponds
exactly to the work achieved by the operator per unit area of
the surface created: G(y)hds = FdlT, where h is the sheet
thickness, F is the force applied as the crack advances by ds
and dlT = dl1 + dl2 is the total distance increase between the
pulling points (along the pulling direction).

Instead of using the three dimensional real actual configuration
(Fig. 3a), it is enlightening to follow the crack trajectory in the
flattened sheet configuration (Fig. 3b). Distances are identical in
both configurations, because we have assumed the sheet to be
inextensible, but vectors are defined only in one or the other
configurations. Let us define dimensionless unit vectors T̂1 and
T̂2 which join the fracture head to the pulling points respectively in
the flat state. When the fracture advances by a distance ds in
the direction t̂, we find that dlT = dl1 + dl2, where dl1 = T̂1�t̂ds
and dl2 = T̂2�t̂ds, which leads to the energy release rate,

F(T̂1 + T̂2)t̂ = G(y)h. (3)

In the case of an isotropic material, the energy released rate is
optimized when the fracture direction t̂ is parallel to the tearing
vector, defined as

-

T12 = T̂1 + T̂2. Since the tearing vector is the
perpendicular bisector of the lines joining the pulling points to
the fracture tip, crack trajectories are portions of hyperbolas

Fig. 3 (a) The 3 dimensional diagram of tearing by pulling from two
points. (b) Diagram illustrating geometrical variables and vectors defined
with respect to the flatten sheet. (c) The reference orientation fixed on
the sheet is chosen along the major symmetry axis of the fracture energy,
axis 1. The orientation of axis 1 with respect to the axis joining the pulling
points – the focal axis – is y0.
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whose focal points are the pulling points. This is consistent with
the trajectories observed in Fig. 2, which curve away from the
closest point, and seem to tend to a straight asymptote far away
from the focal points, as expected from a hyperbola. However,
comparison of experiments with theoretical predictions (in dashed
line in Fig. 2) reveal systematic deviations from hyperbolic paths
predicted in an isotropic material. We therefore examine the effect
of material anisotropy in the remaining of the article.

In the general case, the angular dependence of the energy
release rate can be made explicit in eqn (3) and

G(y)h = 2F cos(f/2)cos(y � at)

where y is the propagation angle, f is the angle ACB, and at is
the angle of the tearing vector with respect to a reference axis in
the sheet (see Fig. 3c). Griffith’s criterion (1) now becomes

2F cos
f
2

� �
cos y� atð Þ ¼ GcðyÞh: (4)

The Eshelby condition (2) then reads

�2F cos
f
2

� �
sin y� atð Þ ¼ dGcðyÞ

dy
h: (5)

These two eqn (4) and (5) are very general, but we note that
in the case of interest here, the energy release rate G(y) takes a
very simple form, as seen in eqn (3). In particular G(y) does not
depend on the elastic material properties which are most
certainly anisotropic. This is a key point which greatly simplifies
the problem, as only anisotropy in fracture energy enters the
description. In fact the role of elasticity anisotropy can in some
sense still be hidden in the dependence of the fracture energy
with the crack direction, for materials assumed to have a
constitutive fracture toughness. Indeed the fracture energy of a
material follows Gc = KIc

2/E where the material toughness KIc

reflects the ‘‘strength’’ to failure.
Eqn (4) and (5) then lead to,

tan y� atð Þ ¼ �dGcðyÞ
dy

1

GcðyÞ
; (6)

which, given the fracture energy Gc and the direction of tearing
vector at, allows for the determination of the propagation angle y.
Note that if the material is isotropic, we recover propagation along
the tearing vector since y = at. But in the general case, the implicit
relation (6) is not of easy use. We rather propose a graphical
construction which is often used in the field of crystal growth.

Wulff’s diagram and the c�1-curve

Eqn (4) and (5) accept a simple graphical construction which
gives the direction of propagation for a given tearing orientation
at. In polar coordinates (r,y) we plot r(y) = 1/Gc(y), which we
referred to as g�1-curve,21 and r(y) = [2(F/h)cos(f/2)cos(y � at)]

�1.
The advantage of the inverse polar representation, is that this
last curve is a straight line (oriented along the direction at + p/2),
at a distance h/2F cos(f/2) from the origin as seen in Fig. 4a. As F
increases, this line comes closer to the origin but keeps its initial
orientation. Griffith criterion (eqn (4)) is satisfied at any inter-
section point of the line with the g�1-curve. According to the

minimization criterion (eqn (5)), propagation occurs at the first
point of intersection. The tearing force, and the direction of
propagation y are therefore defined by the point of the g�1-curve
with a tangent along the direction at + p/2. In the case of an
isotropic material, the g�1-curve is a circle and propagation always
follows the direction of tearing y = at, as illustrated in Fig. 4b.

We compute the fracture trajectories from this geometrical
interpretation of eqn (4) and (5), using the measured fracture
energy Gc(y) of our material, as explained in the following section.

3 Experimental methods

For the present experiment we selected bioriented polypropylene
sheets of thickness h = 50 mm of balanced material that exhibits
weak anisotropy (Young’s modulus with less than 20% variation
around 1.8 GPa) due to bi-axial stretching during extrusion. In this
material, although plastic dissipation results in a rather large
fracture energy Gc E 5 kJ m�2, the process zone is much smaller
than the thickness, as can be checked using an optical microscope.

Fracture energy measurement in a simplified geometry

The fracture energy is determined using the trouser-test experi-
ment as described in ref. 21 In the trousers test, the sample is a
strip with a cut, in which the two flaps are clamped and pulled
away from each other (see Fig. 5a and b). In the isotropic case,
the propagation direction is predicted to be parallel to the
boundaries of the strip. In fact if the notch separates the strip in two
flaps with equal width, the crack path should be straight for reasons
of symmetry, independently of the assumption of inextensible
fabric. This straight propagation is observed in experiments where
the flaps are pulled21 or rolled on parallel cylinders22 even if the
notch is off centered. In our calibration experiment, samples were
cut in rectangular shapes 20 mm width and 100 mm long, a pre-cut
defines the initial position of the crack tip. As a result, the tearing
vector is along the orientation at as indicated in Fig. 5a.

Because the material is weakly anisotropic, the fracture
propagates for a force F with a deflection angle y � at. The fracture
energy for the selected orientation y is obtained through eqn (4)

Fig. 4 (a) The polar Wulff’s diagram for the anisotropic fracture energy.
The g�1 curve: 1/Gc(y) (gray line) and the straight lines defined by
[2(F/h)cos(f/2)cos(y � at)]

�1 plotted for two particular values of F (black
solid lines). Arrow on the dashed line indicates the sense of increase of
tearing force. (b) The corresponding diagram for the isotropic case. yw

denotes the propagation direction given by Wulff’s construction.
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and Gc(y) = 2F cos(y � at)/h (Fig. 5b). We remind that, y = 0
corresponds to propagation along the Axis 1 which is perpendicular
to the extrusion direction that in this material is parallel to a minor
symmetry axis; Axis 2. We find that the measured fracture energy
indeed can be approximated by Gc(y) = G1 cos2(y) + G2 sin2(y)
(Fig. 5c) and with this a smoothed g�1 plot can be built (Fig. 5d).

Pulling protocol

For the two points pulling experiment, two clamps hold the
sample. These points are subsequently pulled apart by means
of the motorized micro translation stage (Thorlabs Model
MTS50-Z8). At one clamp a sensitive load cell (Futek Model
LSB200, 10 N maximum scale, and USB210 interface) senses the
necessary force for tearing progression (Fig. 1). Samples were cut in
rectangular shapes of 200 mm width and 250 mm length, a pre-cut
defines the initial position of the crack tip as indicated in Fig. 1.

Computation of tearing force

Experimentally, pulling is performed at a constant speed while the
force is simultaneously measured as a function of time. In order to
compare these data with theoretical predictions from eqn (4) and
(6), the tearing and propagation angles must be measured as the
cracks progress at the same corresponding time. Since the sheet is
deflected during tearing the instantaneous measurement of
these angles requires careful and complicated image analysis.
We therefore use an alternative method. Indeed, the crack

trajectory at all times can be obtained from image analysis of
the flat sheet after the fracture has finished its progression.
These trajectories allow finding the crack position at a particular
time as follow: for a given time lT(t) = vpt, through an iterative
procedure, we identify the point belonging to the experimental
trajectory satisfying l1(t) + l2(t) = lT(t). With the help of l1(t) and
l2(t), all geometrical quantities, including the instantaneous
tearing vector and propagation angles, f(t), at(t) and y(t), are
easily found by simple geometrical considerations (see Fig. 3c)
and the predicted force calculated directly from eqn (4).

4 Results

A series of experiments are performed by selecting the initial
position of the crack tip close to the focal axis (i.e. the line
joining both pulling points in the flattened sheet diagram).
This condition was selected because preliminary experiments
showed that crack paths deflected more significantly and pulling
force varied more rapidly when a crack progressed in this area of
the sheet. Pulling is performed at a relatively low pulling speed,
vp = 1 mm s�1 for a distance of about 5 cm.

The tearing trajectories

In Fig. 2a and b the experimental trajectories for two different
orientations, y0, of the symmetry axis with respect to the focal
axis and various initial positions of the crack along this axis are
presented. Trajectories are extracted from image processing of
the flat sheet diagram. For comparisons, we first neglect the
effect of anisotropy of Gc(y), which from eqn (6) implies that
cracks should propagate along the perpendicular bisector
of vectors T̂1 and T̂2 – the pulling vector

-

T12 – or equivalently,
dl1 = dl2. In other words, crack trajectories in isotropic case are
perfect hyperbolas whose focal points are the pulling points.
Experimental trajectories (Fig. 2a and b) systematically deviate
from this prediction because a small anisotropy present in
real thin sheets slightly deviates the crack trajectory from
being parallel to the tearing vector. This results in cumulative
deviations that increase with the crack length. In order to
compare experimental trajectories to the predictions from
Wulff’s construction, we use the analytical form for Gc(y)
obtained through the fit to the experimental fracture energy
measurements (smoothed Gc(y)). To produce the theoretical
trajectories only the initial condition of the notch and the g�1

plot (smoothed diagram Gc
�1(y)) are required. (i) Given the

pulling points and the initial position of the crack, a(t = 0) and
f(t = 0) are easily computed from geometry. (ii) y(t = 0) is then
geometrically obtained from the g�1 plot: a line perpendicular
to the radial axis defined by at(0) is drawn (above the g�1 plot)
and its distance to the g�1 plot is calculated in the neighborhood
of at(0) (see Fig. 5d); the propagation direction predicted by
Wulff’s plot, yw(t = 0), corresponds to the angle that makes this
distance minimal. (iii) A sufficiently small time step dt -or
equivalently a path step, ds = vpdt- is given, which allows for the
prediction of the next crack position. The whole tearing trajectory
is then obtained through this iterative protocol. A satisfactory

Fig. 5 (a) The sample dimensions and its orientation with respect to the
material axis and machine direction. (b) Trouser test configuration for
the assessment fracture energy Gc(y) as function of fracture direction y.
(c) The polar plot of the fracture energy as a function of y. Major axis and
minor axis (axis 1 and axis 2, respectively) are indicated. Minor axis resulted
parallel to the ‘‘Machine Direction’’ The solid line is the best fit to the
experimental data with, Gc(y) = G1 cos2(y) + G2 cos2(y). Values of G1 =
6.04 kJ m�2 and G2 = 5.29 kJ m�2. (d) Wulff’s type diagram construction
lead to graphically find the propagation direction yw, as the first intersection
point (indicated by a circle) and the force required F, for a given tearing
direction at. Alternatively, yw can be found by the minimization of the
distance d(y0) with y0.
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agreement is obtained using this procedure as seen in Fig. 2a
and b.

The force of tearing

The corresponding measured tearing forces are compared to
our predictions (Fig. 6a and b). A satisfactory agreement is
obtained through the use of the adjusted form of the fracture
energy. However, a strong sensitivity of the calculated force to

errors in the precise location of pulling points was observed
when the initial crack is located close to the focal axis.

5 Conclusions

In this article we have studied fracture propagation in brittle thin
sheets undergoing very large out-of-plane deformations (‘‘tearing’’
phenomenon). We have focused on the simplest tearing configu-
ration where two arbitrary material points of the plate are pulled
apart from the crack tip. Despite this elementary geometry, classical
linear fracture mechanics cannot apply, because of geometrical
non-linearity in plate response and the difficulty of computing
stress intensity factors. We have rather used an energy approach,
and assumed that the sheet is inextensible and infinitely bendable
to compute energy release rate G(y) for any direction y of propaga-
tion. This is done through the identification of the effective pulling
vector, which is easily computed for any geometrical configuration.
We found that if the material were isotropic, fracture trajectories
should be perfect hyperbolas whose focal points are defined by the
pulling points.

In the presence of anisotropy, however, we observed that
fracture does not take place in the direction of maximum energy
release rate. Instead, fracture is deflected towards directions with
less fracture energy, which is consistent with the tangency
condition for the G(y) and Gc(y) curves, or in different words
maximizes the ratio G(y)/Gc(y). This criterion for the direction of
propagation was postulated in the 70’s17 but was only tested
recently experimentally in a very particular geometry.21

We also have shown that this tangency condition together
with the Griffith criterion lead to a generalized form of Wulff’s
construction,21 which allows for the prediction of the trajectories
and pulling forces, with the sole input of the fracture energy Gc

as function of propagation angle. Our experimental results are in
good agreement with these predictions and generalize the
results obtained in a simpler geometry.21

Finally, we note that the variation of the Young’s modulus of
the thin sheet with direction plays no role in selecting the
fracture direction or the operator force, as supported by experi-
mental results. This can be understood from the fact that the
elastic energy stored in the thin film is small, remains relatively
constant during the process and therefore can be neglected in
the calculation of the energy release rate. This is an interesting
simplification in the framework of tearing fracture, as elastic
anisotropy complicates greatly the computation of the singular
stress field, and of the energy release rate in linear fracture
mechanics.
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Fig. 6 Tearing force as the fracture progresses for a given pulling speed
for two orientations of the symmetry axis 1. The corresponding trajectories
are presented in Fig. 2. (a) Symmetry axis 1 is oriented at y0 = 0. (b) Axis 1 is
oriented at y0 = p/4. The corresponding trajectories are presented in Fig. 2.
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