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We identify and study a persistent structure characteristic of the post-buckling regime of a thin cylindrical
shell subjected to axial torsion. It consists of a pair of developable cones(d cones) joined by an S-shaped ridge,
having a size of the order of the radius of the cylinder. We study its formation by applying a concentrated load
at the center of the shell, which creates an isolated pair ofd cones, joined by a straight ridge that progressively
tilts when a torsion angle is imposed. We interpret this response as the equilibrium state of a pair of interacting
d cones in the presence of an in-plane shear field, created by axial torsion, which tends to drive them away
from each other. We find that the amplitude of displacement of thed cones for a given torsion angle is
amplified by decreasing the thickness of the sheet, therefore concluding that the equilibrium state is the result
of a balance between bending and stretching energies. We propose a model where the driving effect is the
coupling between the deformation field around thed cones and the imposed shear field, while the stabilizing
effect is the increasing bending energy of the system.
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I. INTRODUCTION

The deformation of elastic thin-walled objects like plates
and shells, subjected to load, have received much attention in
the last century mainly in the context of structural design
[1,2]. Particularly the buckling of thin-walled objects is a
matter of considerable effort. Although the threshold and
buckling modes are now well documented for simple geom-
etries, the post-buckling behavior arising for high strains re-
mains largely unknown. Only recently have some answers to
these questions been given in terms of robust line and point
defects—respectively, ridges[3–5] and developable cones(d
cones) [6–8], which play a central role in the process of the
folding and crumpling of thin sheets[9]. When a sheet of
paper is crumpled and unfolded back, the structure of irre-
versible deformation consists of a network of ridges joined at
d cones. In the framework of nanostructures, the bending and
ripple formation in carbon nanotubes has been described as
well [10]. The dynamics ofd-cone defects is the subject of
growing interest. For instance, a plate that is bent along one
direction into an arch and then forced to bend in the perpen-
dicular direction by applying a concentrated load at its sur-
face exhibits a defect-mediated transition to uniform buck-
ling, in which d-cone singularities follow complex motions
as the load is increased[11].

Here we study experimentally the motion undergone by
d-cone singularities in thin sheets, when subjected to in-
plane shear. This situation arises generically when a thin-
walled cylinder is twisted far above its buckling threshold. In

order to nucleated cones we impose a radial displacement
concentrated in one point on the surface of a cylindrical
shell. For this geometry, inspired by[11], d cones are always
nucleated pairwise. By increasing the radial displacement the
d cones move apart perpendicularly to the cylinder’s axis as
a climbing mode in analogy to defect motion in crystals. In
contrast, when the cylinder is twisted around its axis we
observe thatd cones move parallel to the axis of the cylinder
in a gliding mode. Therefore thed cones show a robust dy-
namical behavior consisting of two pure modes of motion
which can be clearly distinguished separately. This is analo-
gous to the behavior of an edge dislocation in a crystal sub-
jected to an external stress field, in which case the Burgers
vector is a measure of the size of the defect and determines
its dynamics under external fields. Here we show that the
amplitude of gliding motion is not simply a geometrical ef-
fect but instead appears to be thickness dependent and, there-
fore, is a result from a balance between bending and stretch-
ing energies.

The article is structured as follows. We start in Sec. II by
describing the experimental setup and methods. Then, in Sec.
III we describe an experiment characterizing qualitatively the
successive stages of buckling of the cylindrical shell sub-
jected to increasing torsion, up to its complete crumpling,
and show that they all include a robust S-shaped structure
that we study in the rest of the paper. The main part of this
work is found in Sec. IV, where we describe an experiment
which allows us to isolate a single S-shaped structure by
imposing a radial displacement concentrated in one point on
the surface of the shell and study the displacement of thed
cones when torsion is applied. We report measurements of
amplitude of the gliding mode ofd cones for increasing val-
ues of the radial displacement and twisting angle. We also
show measurements of the force and torque corresponding to
these degrees of freedom. Finally, in Sec. V we propose a
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phenomenological model that captures the main features of
the experimental observations.

II. EXPERIMENTAL SETUP

The cylindrical shell is obtained from a flat, reflecting,
PVC sheet that is bent and joined at the meeting edges and
clamped at its ends. It has a heightL=43.5 cm and an inter-
nal radius R=6 cm. The sheet thickness varies fromh
=0.1 to 0.5 mm, which are appropriate for the stiffness of
the setup. Each end of the cylindrical shell is fixed by fitting
it around short rigid cylinders and clamped from outside by a
wedged plastic ring which is sandwiched between the sheet
and another wedged circular metallic ring which compresses
the plastic ring by screwing it[Fig. 1(a)]. This provides a
uniform clamping for the sheet.

The difficulty to obtain a perfectly cylindrical shell was
overcome by means of a very refined bond method. The
originally flat sheet is cut at a slightly greater length than the
required perimeter. The joining sides of the sheet are then
scraped in such a way that they can be bonded without aug-
menting the local thickness of the sheet. Without this caution
the fixed edge boundary conditions would be severely af-
fected as the compression produced by the outer ring would
not be uniform. To get the desired radius, the sheet is coiled
around an auxiliary solid cylinder with the same radiusR
=6 cm, which is removed after the sheet is glued. The setup
allows the evacuation of air when the cylinder starts to
buckle and the volume enclosed by it diminishes.

The top side of the cylinder can be forced into torsion by
rotation of the upper disk thanks to a micrometer screw[Fig.
1(b)]. For extremely large rotation this system is replaced by
a stepping motor. The rotation of the lower disk is prevented
by two vertical cylindrical bars, which can only glide verti-
cally through ball bearings. This setup imposes on the cylin-

der a constant vertical force that can be adjusted through the
choice of a counterweight. In this experiment we chose to fix
it to zero.

In order to create an isolated pair ofd cones we place in
the middle region of the cylinder a rounded solid finger that
can be moved radially towards the cylinder[Fig. 1(a)]. When
the finger pushes down the surface of the cylinder, a pair of
d cones nucleates symmetrically around the finger. By then
twisting the cylinder around its axis, the positions of thed
cones are modified by the induced in-plane shear. Visualiza-
tion of the deformation experienced by the cylindrical shell
is accomplished by the following procedure. We place, sym-
metrically in front of the observation region, two panels with
a regular pattern of vertical black lines on bright background.
Pictures are taken of the reflection of the lines on the surface
of the cylinder. When the shape of the surface of the cylinder
changes, the reflected pattern of lines deforms(Fig. 2). Typi-

FIG. 1. Side(a) and up(b) views of the experimental setup.(1)
Cylindrical shell. (2) Upper disk (rotation only). (3) Lower disk
(vertical translation only). (4) Attachment system for clamped
boundary conditions.(5) Axis. (6) Upper bearing.(7) Lower bear-
ing. (8) Counterbalance.(9) Finger for concentrated radial displace-
ment. (10) Micrometer screw to apply rotation to upper disk. The
upper disk is fixed to the axis while the lower is not. The system
that prevents the lower disk from rotating is not represented.

FIG. 2. Setup for visualization of deformation by measurement
of the local tangent angle of the deformed cylinder.(1) Cylindrical
shell (solid line, deformed cylinder: dashed line, nondeformed). (2)
Light sources.(3) Light diffusers.(4) Panels with stripe pattern.(5)
Camera/video.

FIG. 3. Initial buckling pattern on the cylinder under torsion
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cal pictures obtained by this method are presented in Figs.
3–6.

III. PURE TORSION OF A CYLINDRICAL SHELL

A. Typical experiment overview

A thin cylindrical shell of elastic material buckles when it
is subject to torsion around its axis. The linear theory for not
too long cylinders[1,2] predicts a critical torsion angle and a
critical torque at which the cylinder buckles with a charac-
teristic helicoidal pattern having an integer number of azi-
muthal wavelengths, superimposed with an integer number

of longitudinal wavelengths and a pitch of the helix(Fig. 3).
The validity of a linear theory is given by the dimensionless
parameterL2/Rh, whereL, R, and h are, respectively, the
length, the radius, and the thickness of the cylindrical shell.
In the range 20–1000 it shows reasonable agreement with
experiments. Beyond this range all linear theories fail and
only qualitative conclusions can be drawn. In our experiment
this quantity is of the order 10 000, excluding any quantita-
tive matching with the available theory. By applying axial
torsion to a long cylindrical shell of thicknessh=0.2 mm, we
obtained the aforementioned helicoidal pattern(Fig. 3). This
deformation is accompanied by a smooth elastic energy dis-
tribution. When the torsion angle is increased, the deforma-
tion of the shell is accompanied by focusing of the energy
along narrow straight regions called ridges[3–5], which are
articulated around pointlike regions calledd cones[6–8]. For
increasing torsion, thed cones start to collapse pairwise with
a characteristic pop noise. This process is such that two ver-
tical wavelengths merge into one, leaving the number of cir-
cumferential wavelengths unchanged(Fig. 4). By means of
this inverse cascade process the number of longitudinal
waves decreases progressively, one at a time. After having
attained a certain torsion angle alld cones have mutually
annihilated, leaving only one longitudinal wavelength, ap-
proximately at the center of the cylinder(Fig. 5). Outside
this region the cylindrical shape of the shell has been re-
stored, indicating that the in-plane shear stress has dropped
below the buckling critical stress. This behavior is similar to
the one observed in a long cylinder subject to axial compres-
sion, where deformation also localizes around its central part
and the buckling critical stress is well below the predicted

FIG. 4. Three stages of annihilation ofd cones and merging of
ridges for increasing torsion. The arrows represent the sense of
shear induced by torsion. Double arrows indicate the pair ofd cones
that annihilate at the next stage. Note that two annihilatingd cones
are rotated inp, one relative to the other.

FIG. 5. Localized azimuthal pattern and typical S structure.(a)
Nontransparent cylindrical shell withL=44.5 cm,R=6 cm, andh
=0.20 mm.(b) Closer view of an S structure in a transparent shell,
obtained by simple reflection of a light source, having the same
dimensions as(a). Note that the axis of the setup is visible.

FIG. 6. Secondary S structure after locking of the primary pat-
tern. There is a hierarchical cascade of S-structure formation for
increasing torsion.
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values given by linear theories[12]. The remainingd cones
can no longer annihilate and, as the torsion angle increases
further, they become more pronounced leading to plastic de-
formations.

Ultimately the cylinder folds along the ridges obstructing
itself or touching the axis of the setup. The buckling then
reinitiates in the remaining smooth parts of the shell, with the
central region acting as an effective boundary(Fig. 6). This
is the beginning of a buckling and folding cascade which
continues until the whole shell has folded.

At all described stages we observe a characteristic shape
given by a pair ofd cones joined by an S-shaped ridge(Fig.
5). The small deviations from a straight line, particularly
near the core of thed cones, indicate the presence of in-plane
stretching. We call the whole structure the S structure.

This overview shows a very rich behavior when the cy-
lindrical shell is forced into torsion. At every stage of defor-
mation beyond the buckling threshold, as soon as strain be-
comes large, the S structure is the fundamental equilibrium
shape. We focus now in the characterization of this structure.

B. Tridimensional shape

In this section we characterize the tridimensional S struc-
ture using a laser-sheet technique. A He-Ne laser plane, per-
pendicular to the axis of the cylinder, illuminates the points
in the shell that are intersected by the plane of the laser and
a picture is taken in the direction of the axis. This technique
required the design of special transparent disks for the fixed
boundary conditions at the extremes of the cylinder[Fig.
7(a)]. A typical image obtained in this way is shown in Fig.
7(b). Computer treatment of these images taken for various
positions of the laser plane detects the position of the section
and allows reconstruction of the whole three-dimensional
surface[Fig. 8(a)]. Figure 8(b) represents one S structure
taken from three different views. The two lateral views show
that the line joining the points of minimum distance to the
axis is mostly straight, so that the S-shaped ridge is also
mostly included in a plane parallel to the axis. In contrast,
the frontal view indicates nondevelopable regions near the
core of thed cones, which are possible only via in-plane
stretching deformations. See also Fig. 5.

For thin shells, the energy required for stretching is very
large compared to that for bending[13], so that deformations
isometric to the plane are preferred. The only possible
smooth deformations of this kind are those leading to conical

or cylindrical surfaces. However, when externally imposed
restrictions are severe, a situation like this may be impossible
without in-plane stretching. In order to minimize energy, the
regions where stretching is important become very narrow
(stretching ridges) or localized (d cones). In the cores of
these defects, stretching and bending energies are of the
same order, this balance determining the sizes of the respec-
tive cores. Outside these regions the shell is developable—
i.e., has zero Gaussian curvature.

At early stages of buckling the energy distribution is
rather smooth. Thus, the condition for focusing of energy
necessary ford-cone and ridge nucleation can be fulfilled
more easily in a post-buckling regime, where for increas-
ingly large torsion the sheet gradually folds. In this stage the
regions near the core ofd cones become clearly nondevelop-
able (Fig. 5) while the ridges become more pronounced and
do not change their length significantly. Rather they tilt pro-
gressively until they attain a nearly horizontal orientation. In
this process thed cones act as hinges that articulate the
ridges. In addition, the only region where permanent plastic
deformation is visible corresponds to the core of thed cones.
This interpretation is enforced by the experimental observa-
tion that in the post-buckling regime the torque weakly in-
creases for increasing torsion, indicating that in-plane shear
stress is not varying significantly. Note that in regions where
no buckling has occurred, the in-plane shear stress stays rela-
tively constant while most of the deformation is absorbed in
the S structures. At this point an important difference be-
tween the well-knownstretching ridgeand the S structure
reported here comes to mind; an S structure can be seen as a
laterally curved ridge in which most of the stretching is due
to this additional curvature located near thed cones.

IV. ISOLATED S STRUCTURE

We focus now on the S structure, isolated by the method
described in Sec. II, which allows the nucleation of a pair of
d cones symmetrically around the finger in such a way that
the ridge joining them is perpendicular to the axis of the
cylinder [Fig. 9(b)]. Our setup is similar to that of[11], the
difference being that in our case the cylinder is closed and

FIG. 7. (a) Experimental setup for the laser-sheet technique.(b)
Typical picture obtained by this method, allowing the reconstruction
of the surface of the cylinder.

FIG. 8. (a) Superposition of successive laser planes in the cen-
tral region of the cylinder.(b) Top, lateral, and front views of the
reconstructed S structure. The lines connect the minimum local dis-
tances measured from the surface to the axis.
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fixed at its ends. When axial torsion is imposed thed cones
move to a new position[Fig. 9(c)]. The position of the finger,
z, measured inwards from the surface of the nondeformed
cylinder, and the angle of rotation,u, imposed on the upper
end of the cylinder, are the two main control parameters. The
highest value ofu is determined by the onset of buckling.
For largez the buckling transition is retarded. Therefore to
increase the range of experimental data we prefer to fix a
distancez and then apply a rotation angleu. Whenz is com-
parable to the sheet thickness[11] we can observe twod
cones, whose positions are a function ofz andu. We measure
the vector that joins them and denotesx,yd its coordinates in
a plane perpendicular to the pushing finger. By definition this
plane contains the S structure. Coordinatex is parallel to the
cylinder’s axis andy perpendicular.

We note that by adding a second finger it is possible to
study the mutual annihilation ofd cones. By pushing the two
fingers or by twisting the cylinder, two S structures are
forced to approach mutually and eventually merge into one S
structure by annihilation of a pair ofd cones(see Sec. III A
and Fig. 4).

A. Kinematics of d cones

1. Detection of singularities

In order to track the positions of thed cones we use the
same visualization method described in Sec. II, for a sheet of
thicknessh=0.2 mm. The position along the axis or vertical
position of the singularities is easy to determine as it is the
place of maximum lateral deflection of the lines. The lateral
position y is less easy to measure as it requires a criterium
for the definition of the center of thed cone. Thed cone is
not symmetric in they direction. A computer code computes,
according to geometrical optics, the angle of the tangent
plane to the surface. This is possible with a precise knowl-
edge of the position of each black line on the initial pattern
with respect to the camera and to the cylinder. Knowledge of
the angle gives then a measure of the horizontal curvature by
differentiation, and the singularity is then located at the point
where curvature is a maximum. As the same image obtained
by reflection can be obtained from a variety of different de-

formations, the inward deformation of the surface in the
computation for the angle of reflection is assumed to be close
to that imposed by the finger.

2. Climbing mode atu=0

By imposing a radial displacement of the finger without
applied torsion[Fig. 9(b)], the d cones move in a climbing
mode atx=0. The position of thed cones, as a function of
the imposed radial distancez, is represented in Fig. 10 and
follows very well the lawy=2Î2Rz [11]. This comes from
the simple fact that bothd cones are joined by an inward
ridge which is essentially straight and has a depthz at its
center, measured from the originally cylindrical surface. A
first approximation is that thed cones are at the intersection
of the line along ridge with the originally nondeformed cy-
lindrical surface. We checked this law for our setup obtaining
good agreement.

We found also that this result extends when torsion is
applied since the singularities move mainly in a direction
along the axis of the cylinder while the displacement in the
perpendicular direction is negligible[Fig. 9(c)]. This is ex-
plained by the fact that the picture of the intersection of a
line with the cylinder remains unchanged if we consider the
projection of the line onto thesy,zd plane. Note that the
lateral positiony of the singularities can thus be deduced by
geometrical arguments, independent on the thickness of the
sheet.

3. Gliding mode under applied torsion

When torsion is imposed, we observe that thed cones
move mainly parallel to the axis to a new position, but in
opposite directions; this asymmetry leading to the formation
of the S structure[Fig. 9(c)]. Figure 11 represents the depen-
dence ofy on increasingz for different values ofu. The
broadening of the curve shows a weak growing dependence
of y on increasingu at fixedz, which is much smaller than
the variation experienced byx for the sameu. In fact, the
effect of torsion can be very impressive onx, creating large S
structures for high values ofz. As seen in Fig. 12,x grows
linearly with u, the coefficient of proportionality being a

FIG. 9. Deformation of a cylindrical shell of thickness 0.2 mm,
for different values ofz and u. (a) Nondeformed cylinder,z=0, u
=0. (b) z=10.1 mm,u=0. (c) z=10.1 mm,u=0.026 rad.

FIG. 10. Lateral positiony as a function ofz without torsion for
a sheet of thickness 0.2 mm. The solid line is the geometric model’s
prediction.
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growing function ofz. If now x is plotted againstz (Fig. 13)
for several values ofu, we obtain also a linear dependence
and identify, forh=0.2 mm, a threshold value,z0<1.4 mm,
which separates two regimes. The first one, valid forz,z0,
shows thatd-cone displacement is not sensitive to torsion,
whereas forz.z0 it has a finite effect. In contrast, the onset
of displacement reveals no threshold value for the angle of
rotation. Figure 14 shows a collapse of all the experimental
points on a single line, suggesting thatx goes linearly with
usz−z0d, with a very large nondimensional coefficient.

B. Dynamics ofd cones

To better understand the origin of the aforementioned
large coefficient we repeated the experiment using sheets
having different thicknesses. The results for four thicknesses
are shown in Fig. 15, where a normalization inh−1 produces
a collapse of all the curves. We note also that there is a
variation in z0 which shows a growing dependence withh.
The best fit of the data gives

x

R
= a

z− z0

h

Ru

L
, s1d

wherea<24. This behavior is valid until the onset of buck-
ling, which corresponds to a displacementx saturating at
values of the order of the radiusR of the cylinder.

The fact thatx is dependent on thickness through Eq.(1)
shows clear evidence that the displacement ofd cones in the

presence of a shear field is not a purely geometrical effect
but involves simultaneous bending and stretching deforma-
tions. By “purely geometric” we mean a situation in which
the equilibrium state is controlled only by bending deforma-
tions that minimize the energy. The sheet avoids any stretch-
ing deformation by keeping the surface isometric to the plane
so that the equilibrium shape of the sheet can be predicted by
geometrical arguments which are independent of thickness.

An interesting application for Eq.(1) is that it constitutes
a very sensitive test to detect residual shear stress in a thin
sheet because of the large factor involving the inverse of the
thickness of the sheet. It suffices to bend the sheet as a cyl-
inder and to push it radially at a point: if the ridge joining the
two resultingd cones is not perpendicular to the axis of the
cylinder, then there is some residual stress present.

We have measured both the lateral force at the finger and
the torque necessary to twist the cylinder by means of strain
gauges. The applied forceFz for u=0 is shown in Fig. 16 for
three different thicknesses of the sheet, with a collapse on a
master curve in the planefFR/Yh3,z/hg. The scalings allow
us to identify three regimes. The first, valid forz!h, predicts
a linear response of the force withz [13], such that
FzR/Yh3,z/h. In this regime the resulting deformation is
localized in a region of size,ÎRhand arises from a balance
between bending and stretching energies. In a second regime,
valid for z,h, the deformation energy comes mainly from

FIG. 11. Position of the singularities in they direction asz is
increased, for different values ofu.

FIG. 12. Vertical positionx of the pair ofd cones, as a function
of u for different values ofz.

FIG. 13. Vertical positionx of the pair ofd cones, as a function
of z for different values ofu.

FIG. 14. Vertical positionx of the pair ofd cones, as a function
of usz−z0d.
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the pair of nucleatedd cones in the form of bending[11].
The force and bending energy show both a logarithmic de-
pendence inz/h, which is related to the finite size of the core
of the defect, and a coefficient containing a geometric factor
[8,11]. The contribution of the cores to the total energy is
negligible. Beyond a crossover region situated aroundz
,5h we find a third regime characterized by a deviation
from the logarithmic behavior and a slight splitting of the
curves, indicating that the deformation is not due solely to
the twod cones. In fact, the restriction imposed by the finger
is severe in the sense that the sheet has to accommodate three
developable surfaces—namely, bothd cones and the original
cylindrical surface. This cannot be accomplished without
stretching deformations necessary to join distinct locally de-
velopable surfaces. In this regime the sheet selects a defor-
mation minimizing its total elastic energy and therefore the
force v /s displacement relation is different for different
thickness. We note from Fig. 16 that, forz*h, Fz scales
roughly linearly withz and is proportional toh2.

The experimentally found threshold valuez0 for d-cones
displacement is compatible with the existence of the cross-
over region centered atz,z0,5h in Fig. 6. Beyondz0 the
sheet has an equilibrium state that combines in-plane stretch-
ing and bending deformations that minimize the elastic en-

ergy; the dependence of the force onh2 is the natural conse-
quence of this fact. Belowz0, the force on the tip is
compatible withd cones where bending is the dominant con-
tribution to the energy.

V. ANALYSIS AND DISCUSSION

We now discuss our main experimental result concerning
the displacement of thed cones under imposed shear, con-
densed in the very simple scaling law(1). We interpret this in
terms of a particle+field description such that eachd cone is
a particle immersed in the shear field arising from torsion of
the cylinder. The applied shear field produces a force on the
d cone that drives it to a new position where it is balanced by
an opposite force derived from an increasing bending energy.
This dynamics is best described by looking at the energies
involved, which we develop at lowest order inx.

We first evaluate the variation in bending energy due to a
displacementx of the d cones. Following[8], the bending
energy of a genericd cone in a circular domain of radiusR is
given by Eb=C0Yh3e2 lnsR/Rcd, where C0 depends on the
Poisson ratios of the material and contains a geometric
factor, e is the amplitude of thed cone, andRc is a cutoff
radius. We generalize this result to the case when the domain
where deformation arises is not circular. The energy is then

Eb =
Yh3

24s1 − s2d
e2E

−p

p

fsudlnSRsud
Rc

Ddu. s2d

Here, fsud is proportional to the square of the local curvature
of the sheet andRsud is the angle-dependent radius of inte-
gration. Consider the reference state given by a pair ofd
cones atx=0. LetEb

s0d be the energy of this configuration and
let R0sud be the radius of integration, which is of the order of
the middistance between the twod cones,y/2=Î2Rz. The
effect of a nonzerox is to move thed cones farther apart
from each other, so that their radius in the direction that joins
bothd cones increases fromy/2 (whenx=0) to Îy2+x2/2. If
we assume that the main variation of the energy comes from
the deformation in the intermediate region between bothd
cones, then, to lowest order inx, we have

DEbsxd = Eb − Eb
s0d , Yh3e2x2

y2 . s3d

But we note[11] that e,Îz/R andy have the same depen-
dence inz, so that

DEbsxd , Yh3S x

R
D2

s4d

is independent ofz. As expected, the horizontal configuration
x=0 is indeed minimizing the bending energy and therefore
corresponds to the stable state of the system in the absence of
torsion.

We consider now the influence of applied torsion. In Fig.
17 are presented typical measurements of the torquet, in

FIG. 15. Vertical position of thed cones for different thick-
nessesh of the sheet. The constantz0 is a function ofh.

FIG. 16. Lateral forcev /s z at the finger foru=0 for three
different thicknesses of the PVC sheet. Inset: forz!h the force
goes linearly withz. The solid line corresponds to the model pro-
posed in[11] for values ofz of the order ofh. The best fit gives
FzR/Yh3=0.44 lns2.01z/hd.
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units of t0=2pR2Yh/ s1+sd, necessary to twist the cylinder
up to an angleu, for different values ofz. The stored elastic
energy due to the in-plane shear is directly seen on this graph
as the area below the torque curves. For a given torsion angle
u, this energy first increases withz whenz,z0, but decreases
when the finger is pushed further in—that is, when thed
cones move away from each other. As expected, the move-
ment of thed cones is associated with a release of energy
which is due to a coupling between the deformation field
around thed cones and the imposed shear field. The energy
release, or coupling term, should be invariant under the si-
multaneous changex→−x andu→−u, the lowest-order term
satisfying this constraint beingux. We thus construct the gain
of energy asDEcsxd,−Yhsz,hd sx/Rd sRu /Ld, where h is
an unknown function.

The minimization of the energy,DEcsxd+DEbsxd, with re-
spect tox thus gives the scaling lawx,hsz,hdh−3u. This
relation gives the correct experimental dependence onu and
is compatible with the experimental relation(1) if hsz,hd
,h2sz−z0d. This is the same dependence of the force acting
on the tip(Fig. 6). As the stress field is expected to be pro-
portional to this force,h can be interpreted as the amplitude
of the stress field. The coupling energy becomes then

DEcsxd = − C1Yh2sz− z0dS x

R
DSRu

L
D , s5d

whereC1 may depend onR,L (we did not scan these param-
eters).

Within this interpretation, the intermediateh2 dependence
of this energy shows that it is not a pure bending(h3 depen-
dence) or stretching(h dependence) energy, but rather a term
involving a mixing of both. This is very much possible as we
already noticed in Sec. IV B, where forz*5h the lateral
force scales roughly linearly withz and is proportional toh2,
thus also involving anh2 scaling of the energies. However,
the precise bending and stretching balance associated with
the coupling field and singularity is not clearly evidenced
here.

From the same balance one can derive the forceF per
thickness that drives thed cones to their new position. It
reads

F

h
, s0h

z− z0

R
, s6d

where s0,YRu /L is the nominal shear stress. Expression
(6) is valid only forz.z0 and can be interpreted analogously
to the Peach-Köhler force for an edge dislocation in a crystal.
The line force is proportional to the product of the in-plane
shear field and a quantity having the units of a length which
can be interpreted as a “Burgers vector,” having an amplitude
proportional to the thickness of the sheet and, ifz@z0, to the
square of the amplitudee of the d cone.

VI. CONCLUSIONS

We have shown that a long cylindrical sheet clamped at
its ends is an adequate experimental setup to study the be-
havior of d-cone-type singularities under various external
forcing conditions. One important advantage of our experi-
mental configuration is that boundary conditions are well
defined.

An S structure consisting of twod cones linked by a
stretched ridge is a characteristic feature at all stages of the
scenario for large deformation of a thin cylindrical shell sub-
ject to pure axial torsion. We also observed the spontaneous
formation of S structures and twisting on a closed cylindrical
shell subject to inner decompression. Thus, twisting is a very
efficient way for a cylinder to fold when its volume is re-
duced. Twisted folding along lines, reminiscent of the S
structures in our crumpling experiment, has been described
as a way to send large cylindrical structures for satellites, in
a spatial ship occupying a minimal volume[15]. A good
understanding of these S structures is necessary to describe
the very large twisting of cylinders.

In addition, our experiment allows a quantitative study of
an isolated S structure. In our case, a finger pushing the
surface inwards creates a pair ofd cones which evolve into
an S structure when submitted to a sufficiently large shear
stress. A collapse of all experimental points shows that the
lateral size of the S structure is weakly dependent on torsion
and is just given by geometry. In contrast, the experiment
shows the existence of a critical valuez0 such that forz.z0
the vertical size of the S structure is affected by external
torsion. Experimental measurements show that this size is
proportional to both the torsion angleu and the variation of
z, relative to the critical valuez0. It is also inversely propor-
tional to the thickness of the sheet.

We interpret this evolution for increasing in-plane shear
stress in terms of a gliding displacement undergone by the
pair of d cones, in a manner analogous to the gliding motion
of line dislocations in crystals through the Peach-Köhler
force [14]. While in the latter case it is a dissipative effect
that might induce a drift of the defect at constant velocity, in

FIG. 17. Torquev /s torsion angle for different values ofz. The
thickness is 0.15 mm whilez0<0.9 mm.
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our case such a force is stabilized by an increasing bending
energy. It is proportional to the nominal shear stresss0 and
grows with the amplitudee of each d cone, above the
thresholdz0. We believe that this rich but simple behavior
provides a clean and precise landmark for a theory describ-
ing the interaction ofd-cone singularities with an external
stress field.
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