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In this work we examine a system of inelastic particles confined to move on a line between an elastic
wall and a heat source. Solving a Boltzmann equation for this system leads to an analytic expression
for steady state behavior. Numerical simulations show that the system is in fact capable of
simultaneously displaying both the uniform density of the analytic solution, and a state in which the
particles are collected into a cluster adjacent to the elastic wall. The boundary conditions for the
Boltzmann treatment are then reworked to provide a theoretical description of how smooth particle
distributions and clumping phenomena can coexist. From this, we gain a prediction for the time
scale of clump formation in this system. ©1996 American Institute of Physics.
@S1070-6631~96!03011-5#

I. INTRODUCTION

The spontaneous creation of large scale structure in an
initially homogeneous system is a recurring phenomenon in
physics. Granular systems offer some unusual examples of
this behavior. Despite the absence of long range forces be-
tween the particles, large variations in density still exist. In
two-dimensional systems a non-uniform cooling process has
been observed.1,2 Regions of dense, slow particles spontane-
ously develop, with a few higher velocity particles moving
quickly through the voids. These variations in density and
speed occur regardless of the smoothness of the initial con-
ditions. Similar phenomena have also been seen in one
dimension.3,4

In this work, a system of inelastic particles on a line is
used to study the mechanisms involved in density fluctua-
tions. So as to create steady state behavior, the system has an
energy source to balance the dissipation due to collisions.
Even in a non-cooling system, we see density and energy
variations: a state composed of several rapidly moving par-
ticles and one relatively stationary clump. If the coefficient
of restitution isr , then the size of this clump is of the order
of (12r ) times the number of particles in the clump, while
the average energy within the clump is of the order of
(12r ) times the average energy of the particles in motion.
The grouping of particles in a driven one-dimensional sys-
tem has been observed previously,5 but here we see the co-
existence of the practically stationary clump and many high
velocity particles. In this paper we use a Boltzmann treat-
ment to obtain a partial differential equation describing the
distribution function for the particles in the system. This
equation is solved analytically for the case of elastic particles
and no clump. The quasi-elastic problem is then treated as a

perturbation to this solution. The clump can then be per-
ceived as an alteration to the boundary conditions for the
Boltzmann equation, and the methods developed for the no
clump case can be used to calculate an expression for the
steady state distribution function of the moving particles
when the system includes a clump. Simulations were used to
examine the mechanisms of clump formation; these consid-
erations suggest an analytic description of the process that
allows us to predict the time scale of the clump formation.

It has been shown previously6–9 that particles undergo-
ing sufficiently inelastic collisions can dissipate all their en-
ergy in the center of momentum frame within a finite amount
of time. This process has been termed ‘‘inelastic collapse,’’7

and it requires an infinite number of collisions during which
the particles’ relative separations and velocities go to zero so
that the particles come into contact. In order to ensure that
the system is not in this regime, the situations described in
this work are limited to those in which the system is quasi-
elastic, i.e., there are not enough particles in the box to form
the collapse singularity. Our density fluctuations are distinct
from the cluster formed in inelastic collapse because the in-
ternal energy and size of the clump do not vanish in a finite
time.

II. THE MODEL

In this work, we examine the behavior ofN identical
particles confined to move on the line betweenx50 and
x51. At x51, there is an elastic wall, i.e., when a particle of
velocity v hits this wall it is reflected with a velocity
v̄52v. The collisions between particles are inelastic: they
conserve momentum, but not energy. The degree of inelas-
ticity is parameterized by the coefficient of restitution,r .
When two particles with speedsv1 andv2 collide, their new
relative velocity is just2r times their old relative velocity:
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v̄22 v̄152r (v22v1). Using this and conservation of mo-
mentum, we see that their final velocitiesv̄1 and v̄2 can be
written as

v̄15qv11pv2 , v̄25pv11qv2 , ~1!

where we have defined

q5~12r !/2 and p5~11r !/2. ~2!

Thus r51 is the elastic case, whereasr50 corresponds to
total inelasticity~particles collide and move together!. In this
paper we examine systems in the quasi-elastic regime
~r very near one!, so we will characterize the degree of in-
elasticity byq!1 and do most calculations to first order in
this variable.

Since the particles are colliding inelastically, the system
loses energy@DE52 1

4(12r 2)(v22v1)
2# at each collision.

Thus, in the center of momentum frame, the particles are all
decelerating toward zero velocity. In order to look at steady
states of this system, it is necessary to provide a forcing
mechanism that pumps energy back into the system. One
possibility is to put the particles above a vibrating plate in a
gravitational field~as in Refs. 8,10 and references therein!.
Another option is a vibrating horizontal box: the particles
that hit a moving wall can gain energy from it. This model
was first proposed with one particle, by Fermi,11 as he tried
to understand cosmic radiation, and it became a classical
example in the theory of dynamical systems.12 A drawback
of both these models is that they involve periodic motion of
the wall, and hence the particles can get phase-locked and
trapped in a periodic state.13 Similar resonances have re-
cently been observed in two dimensions by McNamara and
Barrat.14 To separate the effects of phase-locking and reso-
nance from effects that are intrinsic to the inelastic nature of
granular systems, we will focus on the idealized thermal en-
ergy source proposed in Ref. 5. Particles hit the right wall
(x51) and bounce off elastically. When a particle hits the
left wall (x50), it picks a random speedv.0, from the
one-sided distributionW(v) with *0

`W(v)dv51. The outgo-
ing velocity ~always positive! is uncorrelated with the in-
coming velocity~always negative!. In this work we will of-
ten use the family of density functions,

Wa~v !52~12a!/2vae2v2/2H~v !/G~~a11!/2!, ~3!

where H(v) is the Heaviside function and
G(n)[*0

`yn21e2ydy is the gamma function. Herea de-
scribes both the strength of the forcing@the average energy
of a particle leaving the wall is (a11)/2# and the behavior
of the distribution function near the origin@Wa(v) } va for
small v#. Later we will see that the latter property plays a
large part in determining the long term behavior of the sys-
tem. Although most of the calculations are valid for any
distributionW(v), this family contains some of the more
interesting cases, including the Gaussian distribution~see
Fig. 1!.

This boundary condition is neither a constant tempera-
ture nor a constant flux condition. Indeed, the amount of
energy transferred to the system depends on the properties of
the incoming particles. To compute the energy injected into
the medium by the wall in a unit time, one has to sum the

energy of the all particles leaving the wall and then subtract
the energy those particles had when they hit the wall. Thus
the net energy flux supplied by the wall is a function of the
velocities of the particles coming into the wall. The same
argument applies when we try to calculate the temperature at
the wall. Nonetheless, this model for boundary forcing does
provide a simple way of idealizing the energy injection pro-
cess.

Notice also that this boundary condition acts as a source
of randomness in the system. Recent studies4,16 have shown
the spontaneous development of correlations in speed and
position of inelastic particles in one dimension. When the
particles hit the wall, these correlations will be reduced due
to the ‘‘loss of memory’’ character of the boundary condi-
tion.

III. BOLTZMANN EQUATION

We assume that the particles do not clump or cluster
together, and thus are non-correlated so we can use statistical
tools. Define the phase space density functionf (x,v,t) to be
such that the number of particles at timet, betweenx and
x1dx, with velocity between v and v1dv, is
f (x,v,t)dx dv. f (x,v,t) is governed by a one-dimensional
Boltzmann equation~see Ref. 15!, which describes the con-
servation of particles. In Ref. 16, it is shown that ifr is close
to 1, the Boltzmann equation takes the form

f t1v f x1~a f !v50, ~4!

whereq5(12r )/2 and

a~x,v,t ![qE
2`

`

uv82vu~v82v ! f ~x,v8,t !dv8 ~5!

is the acceleration of a particle at (x,v) in the phase space.
A physical derivation of this equation might be instruc-

tive: imagine a test particle with speedv at positionx, mov-
ing through a cloud of all the other particles. If the system
were elastic, each collision would merely result in an ex-
change of velocities. Thus, when the particles are relabeled
appropriately, it can be seen that the system is unchanged. In
our quasi-elastic system, the velocities are almost, but not
exactly, exchanged. We can compute the effect of each col-
lision and hence the test particle’s average acceleration.

FIG. 1. Several examples taken from the familyWa(v) defined in ~3!.
Whena increases,Wa(v) becomes flatter aroundv50.
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• First consider the collision of the test particle with a
particle of speedv8. After this collision, the particles are
relabeled. The particle originally with velocityv8 is now
the test particle, as, from~1!, its final velocity is
pv1qv8 which, in the quasi-elastic limit, is close tov.
Thus the modification of the test particle’s velocity is
Dv/collision 5(pv1qv8)2v5q(v82v).
• The test particle encountersDN particles with
speed betweenv8 and v81dv8 in a time Dt,
where DN5uv82vu f (x,v8,t)dv8 Dt. The acceleration
of the test particle due to these encounters is
then da5Dv/Dt5(DN/Dt)(Dv/ collision)5q(v8
2v)uv82vu f (x,v8,t)dv8.
• Now integrate over everyv8 to find the average total
acceleration of the test particle due to all the other par-
ticles:a5q*2`

` (v82v)uv82vu f (x,v8,t)dv8.
The energy is supplied through interactions with the wall

and therefore the boundary conditions atx50 and 1 are es-
sential in this calculation. The right-hand wall atx51 is
elastic, and hence

f ~1,v,t !5 f ~1,2v,t !. ~6!

The main complication comes from the energy source at the
left wall, x50. During a time intervaldt, there are a number,
dN, of particles that leave this wall with velocities between
v and v1dv ~wherev.0). These outgoing particles must
have been produced from the number,dN8, of incoming par-
ticles that arrived at the wall in this time with any velocity
v8,0. If we look at the system at a given timet, the dN
particles that have left the wall in the pastdt are now spread
out betweenx50 andx5v dt, while if we had looked at
t2dt, the dN8 arriving particles would have been between
x50 andx52v8t. Thus

dN5 f ~0,v,t !dv~v dt!,

dN85E
2`

0

uv8u f ~0,v8,t !dv8.

The probability of any impinging particle~one ofdN8) being
ejected by thex50 wall with a velocity betweenv and
v1dv is given byW(v)dv. ThusdN5dN8W(v)dv, or

v f ~0,v,t !5W~v !R~ t !, ;v.0, ~7a!

R~ t ![E
2`

0

uv8u f ~0,v8,t !dv8. ~7b!

Notice thatR(t).0 is the rate at which particles hit the
left-hand wall.

The final condition onf (x,v,t) is normalization; the
number of particles in the system is fixed atN:

N5E
2`

` E
0

1

f ~x,v,t !dx dv. ~8!

It is easy to verify that~4! with the boundary conditions~6!
and ~7! conservesN.

IV. ELASTIC BOLTZMANN EQUATION

A first step in understanding the quasi-elastic model is to
study the simpler case,r51. This is a perfectly elastic one-

dimensional gas forced by the boundary conditions~6! and
~7!. In one dimension, the elastic collision rule~1! is equiva-
lent to an exchange of velocities, thus we can treat the sys-
tem as a collection of non-interacting particles.

A. Steady states of the perfect gas

In this section we will study the possible steady states of
the perfect gas. Sincer51 yields q5(12r )/250, ~4! be-
comes the one-dimensional elastic Boltzmann equation,

f t1v f x50. ~9!

A steady state must satisfy the even simpler equation

v f x50,

which is easily integrated to find f (x,v)
5C(x)d(v)1F(v). We are interested in the effect of the
energy source atx50, so letC(x)50, i.e., ignore the solu-
tions that include a bunch of particles at rest. The actual form
of F(v) is determined by the boundary conditions: Equation
~6! implies thatF(v) is an even function, and Equation~7a!
gives thatF(v) is proportional toW(uvu)/uvu, since, for the
steady state problem,R(t) is no longer dependent on time.
The normalization condition~8! becomes

N5E
2`

`

F~v8!dv852RE
0

`W~v8!

v8
dv8, ~10!

which allows us to calculateR, the rate of collisions with the
wall at x50. The integral in~10! is infinite if W(0) Þ 0. If,
for example,W(v)5Wa(v), the form described in~3!, then
Equation ~10! shows that there is no steady solution for
a50. Whena Þ 0,R is well defined by~10!, and the steady
state distribution function is

f ~x,v !5
NW~ uvu!

2uvu*0
`v821W~v8!dv8

[Nf~v !. ~11!

Notice that because of the factoruvu in the denominator
of ~11! the velocity distribution function of the wall,W(v),
is not imposed on the medium. This can be understood
physically by following one particle. At each interaction with
the left wall, it picks a velocity with probabilityW(v). How-
ever, it keeps this velocity during a timeDt52/uvu ~the time
it takes to travel back and forth in the box!. Therefore a time
average should use a probability distribution proportional to
W(uvu)/uvu. The ergodic assumption turns averaging over
time for one particle into averaging over the ensemble of
particles. Therefore the probability distribution function
should be proportional toW(uvu)/uvu. Whena50, this func-
tion is not integrable: there cannot be a steady state.

B. Time dependent solution for the elastic model

In order to study what happens ifa50, we will now
solve ~9!, and compute the evolution off (x,v,t) with time.
Let f (x,v,0)5 f 0(v) be the initial distribution, where
f 0(2v)5 f 0(v). Equation ~9! can be integrated using the
method of characteristics with

f ~x,v,t !5F~x2vt,v !,
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whereF is determined using boundary conditions. Note that,
since the system is elastic, a collision between two particles
is equivalent to an exchange of velocities. Thus the distribu-
tion function is affected only by collisions with the wall.

At a particular timet, there are four distinct domains in
the (x,v) phase space, as shown in Fig. 2.

• For a particle withv.0 and 0<t2x/v[t, the last col-
lision with a wall occurred atx50. The boundary condi-
tion there~7a! yields

f ~x,v,t !5 f ~0,v,t!5R~t!W~v !v21, ~12a!

which holds whenvt>0. Call this domainD1(t).
• The next region contains particles which are moving so
slowly they have not yet hit any wall@so eitherv.0 and
0.t or v,0 and 0>t2(12x)/(2v)5t11/v#. These
particles still have the initial velocity distribution:

f ~x,v,t !5 f ~x2vt,v,0!5 f 0~v !, ~12b!

which holds when 0.vt>21. Call this domainD̃1(t).
• This region includes all particles which have collided
only with the right-hand wall, so v,0 and
0,t2(12x)/(2v)5t11/v but 0>t2(22x)/(2v)
5 t12/v. Using the boundary condition~6! at x51, the
previous result~12b!, and the evenness off 0, we find

f ~x,v,t !5 f ~1,v,t11/v !5 f ~1,2v,t11/v !5 f 0~v !,
~12c!

which holds when21.vt>22. Call this domain
D̃2(t).
• The last region is for those particles that have collided
with the left-hand wall and then with the right-hand wall,
so v,0 and 0,t2(22x)/(2v)5t12/v. Using the re-
sults fromD̃2(t) andD1(t), we find

f ~x,v,t !5 f ~1,v,t11/v !

5 f ~1,2v,t11/v !5W~ uvu!uvu21R~t12/v !,

~12d!

which holds when22.vt. Call this domainD2(t).
Notice that the boundary conditions atx50 and 1 are

satisfied by these solutions. It is also important to see that
regionsD̃1(t) andD̃2(t) are both shrinking to zero as time

goes on~eventually all the particles will have collided with
the left-hand wall!, whereas ast→`, D1(t) andD2(t) tend
to cover the whole phase space~except the linev50 whose
measure is zero and therefore plays no role in our problem!.

The expressions forf (x,v,t) in the four regions depend
only on the unknown functionR(t). Therefore using Equa-
tions ~12! and the definition ofR(t) in ~7b! we find:

R~ t !5E
0

2/t

v8 f 0~v8!dv81E
2/t

`

W~v8!RS t2 2

v8Ddv8.

~13!

This integral equation~13! cannot be solved directly, but
with the Laplace transform, R̃(p)5L$R(t)%
5 *0

`e2ptR(t)dt, it takes the explicit form

R̃~p!5
N ~p!

D~p!
, ~14!

where

N ~p![
1

pE0
`

~12e22p/v8!v8 f 0~v8!dv8, ~15a!

D~p![12E
0

`

W~v8!e22p/v8 dv8. ~15b!

This set of equations, although explicit, cannot be used to
find the exact expression forR(t), due to the complexity of
the inverse Laplace transform. However the behavior of
R(t) at large times can be seen from the structure ofR̃(p)
when p!1. We therefore compute the behavior of both
N (p) andD(p) asp→0. An easy computation leads to

N ~p!'2E
0

`

f 0~v8!dv85N, ~16!

by the normalization condition. The expansion ofD(p),
however, depends sensitively on the structure ofW(v) for
small v, and therefore ona.

1. Steady solution of the elastic model when a>0

In the first part of Section III, we found a steady state
solution~11! whena.0. Calculating the time dependence in
this case demonstrates that the system can evolve into this
steady state at large times. Fora.0,W(0)50 andD(p) is
easily computed for smallp:

D~p!'2pE
0

`W~v8!

v8
dv8. ~17!

Therefore, ast→`,

R~ t !5L21H N ~p!

D~p! J '
N

2*0
`v821W~v8!dv8

. ~18!

Note that this expression is in fact independent oft. From
~12a! and ~12d!, we can calculate the long term behavior of
f (x,v,t) in D1(t) andD2(t):

f ~x,v,t !5N
W~ uvu!

2uvu*0
`v821W~v8!dv8

5Nf~v !, ~19!

which is the steady state solution in~11!.

FIG. 2. In order to solve the elastic Boltzmann equation, the phase space is
divided into four time dependent regions. Notice that, ast→`, the two
shaded areas,D̃1(t) andD̃2(t), shrink towards the linev50.
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The result is that if one chooses a distributionW(v) with
W(0)50 ~i.e., witha.0), the elastic gas can end up with a
velocity distribution function proportional tof(v). Notice
that in the case 0,a,1, even thoughf is singular at
v50 @as f(v);va21#, it is still integrable and therefore
~11! is an acceptable solution.

A gas of elastic particles at a constant temperatureT has
uniformly distributed positions and a Gaussian distribution
of velocities, sof (x,v) } exp(2v2/2T). In order to mimic
such behavior in our system, Equation~11! demonstrates that
the energy source must then be proportional to
v exp(2v2/2T), in other words,a51.

2. Solution of the elastic model when a50

Reference 5 considers the caseW(v); exp(2v2/2T),
i.e.,a50. Here we show that such a system never reaches a
steady state, but that its velocity distribution does tend to
resemble the non-normalizable densityW0(uvu)/uvu as time
increases.

If W(0) Þ 0 then the first term in the expansion of
D(p) is

D~p!'2W~0!pln~1/p!; ~20!

see Appendix A for the calculation. Therefore
R̃(p)'N/2pW(0)ln (1/p), which gives, using well known
results17 on the inverse Laplace transform,

R~ t !'
N

2W~0!ln~ t !
. ~21!

As t→`, the solution inD1(t)øD2(t), which never
contains the linev50, but does grow to cover the remainder
of the phase space, is

f ~x,v,t !'
N

2W~0!ln~ t !

W~ uvu!
uvu

. ~22!

The function f (x,v,t) becomes increasingly peaked
aroundv50: the particles have a tendency to form a cluster
at rest, even though there is no dissipation in the system.
Because there is no steady state that satisfies the boundary
conditions, the time dependence of the solution is essential:
the medium is continually cooling even though there is no
dissipation.

V. THE QUASI-ELASTIC LIMIT

We now consider a coefficient of restitutionr,1 but
such that (12r )N!1 in order to avoid inelastic collapse.
This is the quasi-elastic limit described in Ref. 16. One ex-
pects the solution of this problem to be close to the solution
of the elastic one. Therefore, in this section, we study the
weakly inelastic case as a perturbation of the elastic gas so-
lution in ~11!. As this steady state solution does not exist for
a50, this section treats onlya.0. Letg(x,v,t) be defined
by

f ~x,v,t !5N~f~v !1g~x,v,t !!, ~23!

and assume that this perturbationg is very small compared
to f; in fact we expect it to be of orderqN5(12r )N/2. All
calculations in this section are done to first order inqN.

The Boltzmann equation~4! from Section III becomes

gt1vgx1qNS~v !50, ~24!

where

S~v ![
d

dv F E
2`

`

uv82vu~v82v !f~v !f~v8!dv8G ~25!

is the first order contribution of the acceleration term. The
boundary conditions~6! and ~7a! are

g~1,v,t !5g~1,2v,t !, ;v, ~26!

vg~0,v,t !5Rg~ t !W~v !, ;v.0, ~27!

where we have defined

Rg~ t ![E
2`

0

uv8ug~0,v8,t !dv8, ~28!

now to be the perturbation to the rate of collisions with the
wall at x50.

A. Slowly evolving behavior of the quasi-elastic
medium

A steady state solution must satisfy

vgx1qNS~v !50,

and the boundary conditions~26! and ~27!. Neglecting the
solution representing a cluster at rest, this is easily solved by
g(x,v)52qNS(v)C(x,v)/uvu1G(v), where

C~x,v ![H x, v.0,

22x, v,0.

The form ofG(v) is determined by the boundary conditions:
~26! implies that G(v) is even, while ~27! gives
G(v)5RgW(uvu)/uvu. The normalization condition~8! im-
plies that*2`

` *0
1g(x,v)dx dv50, soRg must be given by

Rg5qN
*0

`v821S~v8!dv8

*0
`v821W~v8!dv8

. ~29!

Again, the integrability of this expression is what determines
the existence of a steady state solution. Appendix B demon-
strates thatS(v)'Bva21 as v→0. ThusS(0) Þ 0 for all
a<1 andRg is not well-defined. If, however,a.1, there
does exist a steady state perturbed solution:

f ~x,v !5NH f~v !F112qNE
0

`S~v8!

v8
dv8G

2qN
S~v !

uvu
C~x,v !1O ~q2N2!J . ~30!

Since 2qN*0
`v821S(v8)dv8 is negative, its effect is to ‘‘re-

move particles’’ from the elastic distributionNf and to re-
distribute them into the second term, a distribution propor-
tional to2S(v)/uvu. This function is positive near zero and
negative for larger values ofv, so the number of particles
with low speeds is increased. As expected, the system is
‘‘slower’’ ~lower total energy! in this inelastic steady state
than in the elastic case.
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This section has shown that the shape of the inelastic
steady state solution depends on only two parameters:qN
anda @throughf(v) andS(v)#. The calculations were done
under the assumption thatg(x,v)!f(v), i.e., qN,,1.
This inequality is satisfied, except at very small velocities.
For uvu!1 bothf(v) andS(v) are proportional touvua21.
Therefore the second term on the right-hand side of~30! is
O (qN)O (uvua22) while the first term isO (uvua21). Thus if
uvu is of orderqN, the two terms are of the same magnitude
and the treatment in this section is no longer valid. We shall
see in Section VII that the cure for this breakdown involves
the creation of a slowly varying state with
u f tu!uv f x1(a f)vu. In this limit, for short time intervals, this
section’s steady state distribution provides a fairly accurate
description of the system.

B. Time dependent solution for the quasi-elastic
medium

In this subsection, we discuss a time dependent solution
of ~24! that elucidates the case 0,a<1. The techniques
employed mirror those used in Section IV B, so we will just
state the results. The behavior of the system is best under-
stood by looking atRg(t), the perturbation to the rate of
collisions with the heated wall. Fora.1 andt→`, the time
dependent calculation reproduces the steady state result in
~29!. However, for 0,a,1, we find that, for larget,

Rg~ t !'
2aqNBt12a

a~12a2!*0
`v821W~v8!dv8

5
22aqNA

~12a2! S E
0

`W~v8!

v8
dv8D 23

t12a. ~31!

ThereforeRg(t) is growing with time liket
12a, which even-

tually contradicts the assumption of a small perturbation.
Thus, when 0,a,1, although there exists a steady state of
theelasticgas, the slightest dissipation destroys it. The math-
ematical reason for this breakdown is that the function
S(v)/v is not integrable. BecauseW(v) is not ‘‘flat enough’’
at v50, the wall produces too many particles with small
speeds to sustain a steady state.

The casea51 is special for two reasons:~1! a51 is a
critical value above which there exists a steady state of the
inelastic medium, and~2! a51 produces an elastic gas with
a Maxwellian velocity distribution. Here, we find that, for
large t,

Rg~ t !'
qNBln~ t !

*0
`v821W~v8!dv8

52qNAS E
0

`W~v8!

v8
dv8D 23

ln~ t !. ~32!

As in the previous case,Rg(t) grows over time, the assump-
tion thatg(x,v,t) is a small perturbation breaks down, and
there is no steady solution for the dissipative system.

Note that, since lima→12(t12a)/(12a)5 ln , theRg(t)
derived for thea51 case~32! can in some sense be per-
ceived as the limit of theRg(t) in ~31! calculated for
0,a,1.

VI. THE BOLTZMANN EQUATION REVISITED

The analytic solution derived above corresponds to a
uniform spatial distribution of the particles and a velocity
distribution that is a slightly skewed version off(v). While
this sort of state has been observed computationally for very
high a and smallqN @see Fig. 3~a!#, most simulations show
more complicated long term behavior. Note that throughout
this paper, the simulations are done with an event-driven
code and the initial conditions are alwaysf (x,v)5Nf(v):
uniform spatial distribution between zero and one, and a ve-
locity distribution that matches that of the elastic solution.

In the analytic steady state solution in~30!, all N par-
ticles in the system are in motion. The velocity distribution is
approximatelyf(v) }u vua21 exp$2v2/2%, so the probability
of having a low speed is small. However, simulations have
shown, in addition to the states that match~30!, other states
in whichNc of the particles form a stationary clump against
the elastic wall atx51. In other words,Nc particles have
positions roughly equal to one and velocities approximately
equal to zero, while the remainingNf[N2Nc ‘‘free’’ par-
ticles move relatively rapidly and are distributed uniformly
through the system. One can no longer expect the Boltzmann
equation to describe the behavior of theNc particles in the
clump, as correlations are known to develop in high density

FIG. 3. These figures show the agreement between simulations and the
analytic descriptions of the metastable states. The solid line is theory and the
dashed lines are the velocity distributions for three successive time intervals
in the simulations. In both cases, the system hasN5100 and is allowed to
run for a total of twenty million collisions. The velocity sampling is done
during the last six million of these collisions.~a! No clumping: Here
a510 and qN50.02. ~b! Clumping: Here Nc /N50.53, a52, and
qN50.03. There are no simulational values at small velocities, as any data
on slowing moving particles that are part ofNf is masked by the relatively
stationary clump.
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regions.4 However, for theNf free particles, the Boltzmann
treatment of the previous section should still hold, albeit with
slightly different boundary conditions atx51. The clump at
x51 acts as a cushion against the elastic wall so that when a
free particle with velocityv strikes theNc particles next to
the wall, a series of inelastic collisions occurs within the
clump. Energy is dissipated, and the particle is ejected with a
velocity v852kv, where the effective coefficient of restitu-
tion, k, depends on the size of the clump (Nc) and the degree
of inelasticity (q):

k5
2~12q!2Nc2q

22q
'122qNc . ~33!

The above expression is calculated by assuming that the par-
ticles in the clump are basically stationary compared to the
incoming particle and hence the collisions occur in a wave6,7

~see Fig. 4!. Now the clump can be replaced by aninelastic
wall at x51, and we want to solve the time independent
Boltzmann equation with the old boundary condition~7a! at
x50, but with a new boundary condition atx51:

f ~1,v !5k2f ~1,2kv !, for all v.0. ~34!

The above techniques can be used to solve for a steady state
f (x,v) to first order inq:

v.0: f ~x,v !5NfFbf~v !2qNfx
S~v !

v G ,
v,0: f ~x,v !5NfF b

k2f~v/k!2
qNf

uvu

3S ~12x!S~v !1
1

k
SS vk D D G ,

~35!

where

b[112qNfE
0

`S~v8!

v8
dv82qNc ~36!

is a constant. Now we can look at the distributions we see in
the simulations where clumps appear and match them to the
above analytic form@see Fig. 3~b!#. Note that whenNc50
~no clump! or q50 ~totally elastic!, thenk51, and f (x,v)

reduces to the previous solution~30!. Again all calculations
have been done to first order inqNf and qNc . Also, the
breakdown that occurs at small velocities@v5O (qNf)# for
the clumpless steady state solution described in Section V A
is still an issue here.

VII. CLUMP FORMATION

As the simulations shown in Fig. 3 demonstrate, on in-
termediate time scales, the solution derived above provides a
relatively good description of the system. However, when
observed over long periods of time, it becomes clear that the
clump is growing. AsNc increases, the system moves among
the metastable states that are described by the distributions
~35! with different values ofNc . Thus to understand the time
dependence of the system, we must understand the mechan-
ics of clump formation and growth.

When two elastic particles collide, they exchange veloci-
ties. Thus, instead of a group of particles rattling back and
forth, the system can be viewed as a collection of interacting
velocities. Whenq50, the collisions are elastic, and hence
do not affect the velocities at all. Each velocity propagates
independently through the system. In the quasi-elastic re-
gime (q!1), this picture is still approximately valid. How-
ever, at each collision, the velocities are slightly altered.
Consider two particles approaching each other with veloci-
ties v1 and v2 ~see Fig. 5!. If q50, after the collision, the
velocities arev̄15v2 and v̄25v1, and it is as if the particles
have passed through each other: the collision might as well
never have occurred. If howeverq is nearly, but not quite,
zero, thenv̄15pv21qv1 and v̄25pv11qv2. Instead of at-
taching each velocity to a particle, view this as merely a
rightward moving velocity and a leftward moving velocity,
and calculate the change in each due to the collision:

right-moving: v̄22v15pv11qv22v15q~v22v1!,

left-moving: v̄12v25pv21qv12v25q~v12v2!.

~37!
Thusq measures the strength of the interaction between ve-
locities.

Every time a particle hits the heated wall, a new velocity
(vnew.0) is added to the system and an old velocity
(vold,0) is retired. The ‘‘aging’’ trajectory of a typical ve-
locity can be viewed as follows: sincevnew.0, the velocity
will move away fromx50 toward the elastic wall. As it
goes, it will lose energy due to interactions with other ve-
locities, i.e., collisions, and slow down. At the far wall, it
will be reflected, thus becoming negative, and begin its jour-

FIG. 4. The collision wave model for a fast particle’s interaction with the
clump and the elastic wall. In this picture,Nc510 andq50.005. The hori-
zontal axis is time, the vertical axis is position, and the heavy line at the top
is the elastic wall. The alternating solid and dashed lines are the world lines
of the particles. A fast particle enters the clump from below with velocity
v and is ejected with velocity2kv.

FIG. 5. A collision. This interaction can be viewed as being between two
particles ~in which casev1→ v̄1 and v2→ v̄2), or as being between two
velocities~in which casev1→ v̄2 andv2→ v̄1).
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ney back toward the heated wall, still losing energy along the
way. It gets back tox50 with vold,0, whereuvoldu,vnew.
In Fig. 6, a typical aging trajectory is traced out in (x,v)
phase space. If one examines the interaction between the
velocities ~37! closely, one sees that in fact a velocity can
gain, as well as lose, due to a collision. However, in a system
where most of the particles are moving at approximately the
same speed, any given velocity is much more likely to col-
lide with a velocity moving in the other direction. Such an
interaction pulls both velocities closer to zero. Note that this
description of the aging trajectory makes no assumptions
about the boundary conditions atx51; all that is needed is
that the velocity changes sign, which occurs no matter the
size of the clump at that wall. From this description, we can
better understand the skewing we see in the distribution
whenq Þ 0. We now know that the leftward-moving par-
ticles (v,0) are going, on the whole, slightly slower than
their rightward-moving counterparts. This is consistent with
the fact that the velocity distribution calculated from
f (x,v) has a peak for negative velocities that is slightly
closer to zero than the peak for positive velocities.

Most velocities born at the wallx50 follow trajectories
like that described above and hence produce the solution
f (x,v). In fact, the Boltzmann treatment implicitly assumes
that all velocities do, within some finite time, come in con-
tact with the heated wall and hence are replaced. However,
this picture breaks down upon the emittance by the wall of a
very slow particle. The aging process described above is one
of a continual decrease in speed. Thus the velocity may go to
zerobefore it can return to the heated wall. Once this hap-
pens, the velocity is carried on a tide back to the elastic wall
at x51 where it remains—a newly recruited member of the
clump. This phenomenon explains the breakdown of the ana-
lytic form of f (x,v) at small velocities that was described at
the end of Section V A. Note that the argument given above
as to why the interactions between velocities slow everyone
down is not valid for a particle that is moving much more
slowly than the average speed. In this case, the number of
particles going each way that the slow velocity, call itvs ,
encounters is determined by the distributionf (x,v). If both
the velocity and number density distributions are symmetric

at every point in space, then the gains and losses due to
collisions average out to zero. However, in our system, when
q Þ 0, f (x,v) is asymmetric in both position and velocity
space, and thus a slow velocity undergoes a net drift through
the system. This phenomenon can be quantified by calculat-
ing a(x,vs), the acceleration of a particle at (x,vs) in the
phase space. From~5! we have

a~x,vs![qE
2`

`

uv82vsu~v82vs! f ~x,v8!dv8

52qH 22vsE
0

`

v8 f S~x,v8!dv81E
0

`

~v821vs
2!

3 f A~x,v8!dv82E
0

vs
~v82vs!

2f ~x,v8!dv8J ,
where f S(x,v8)[ 1

2@ f (x,v8)1 f (x,2v8)# and f A(x,v8)[ 1
2

@ f (x,v8)2 f (x,2v8)# are the symmetric and anti-symmetric
parts of the distribution. We are interested in the regime in
which the analytic solution breaks down, so we know that
vs is O (qNf). However, the particles encountered are mov-
ing rapidly (v8), so it is valid to use the analytic description
~35! for f (x,v8). The above expression for the acceleration
can then be simplified by keeping only terms of order
vs(qNf) or (qNf)

2. Now we are in a position to calculate a
differential equation for the slow velocityvs :

dvs
dx

5
dt

dx

dvs
dt

5
1

vs
a~x,vs!

'~qNf !H 24bE
0

`

v8f~v8!dv81S qNf

vs
D

3Fba
qNc

qNf
12~12x!E

0

`

v8S~v8!dv8G J , ~38!

whereb is as defined in~36!. This equation describes the
evolution of a slow velocity through the system where the
other velocities are assumed to be drawn from the distribu-
tion f (x,v).

The key to clump formation is the critical velocity,
vcrit . Any velocity that is emitted from the wall which is
greater thanvcrit will make it back to the heated wall, any
lesser velocity will not, and hence will become part of the
clump. Specifically, given avs

o at x50, use~38! to calculate
vs(x51). Reflection through any pre-existing clump and off
the elastic wall will make itv̄s(x51)52kvs(x51). Then
use~38! again to integrate back tox50. If, upon return,vs is
exactly zero, thenvs

o is vcrit . Note that this value will be a
function of the degree of inelasticity (q), the total number of
particles in the system (N), the strength of the forcing (a),
and the number of particles that remain free (Nf). However,
only three parameters appear explicitly in the formulation:
a, qNf , andqNc5qN2qNf .

It was mentioned in the Introduction that the size of the
clump and its average energy are proportional to (12r ).
This implies that for a completely elastic system, there
should be a totally stationary, infinitely narrow bunch of par-
ticles up against the elastic wall. However, for clump forma-
tion to occur, particles withv,vcrit must be produced by the

FIG. 6. The aging process in phase space for a velocity that is born at the
heated wall (x50) with velocity vnew. It loses energy as it moves through
the system~top line! toward the elastic wall (x51), where it is reflected.
Still losing energy, it then returns~bottom line! to the heated wall, where its
final velocity,vold , is retired.
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heated wall. Sincedvs /dx } q5(12r )/2, when r51,
dvs /dx50, andvcrit is zero. Therefore no clump can form in
the totally elastic case;r→1 is a singular limit.

VIII. TIME EVOLUTION

At intermediate times, the system is well described by
the distribution~35!, where the exact form off (x,v) depends
on a,qNf , andqNc . However, whileq,a, andN5Nf1Nc

are fixed parameters of the system, the clump size,Nc(t),
evolves in time. To truly describe the long term behavior of
the system, there must be a prediction for the variation of
Nc(t), or equivalently ofNf(t)5N2Nc(t), as a function of
time.

At any given time,t, there areNf(t) free particles, and
so we can calculatevcrit(a,qNf ,qNc5qN2qNf). Since the
distribution functionW(v) for emission from the wall is
known, the probability that a velocity less thatvcrit will be
produced can be written:

p~v,vcrit!5E
0

vcrit
W~v8!dv8. ~39!

In a small time intervalDt, the number of particles added to
the clump~and hence removed fromNf) is just the number
of velocities withv,vcrit produced inDt, i.e., the number of
times the heated wall is hit (Cw) multiplied by p(v,vcrit).
Assuming thatdCw /dt is known, the change inNf is given
by

DNf'2S dCw

dt DDtp~v,vcrit!,

so that, in the limit asDt→0,

dNf

dt
'2

dCw

dt E0
vcrit

W~v8!dv8 , ~40!

where the dependence onqNf is hidden in vcrit and
dCw /dt.

In fact, dCw /dt is merely the rate at which particles hit
the left-hand wall: this is just theR that is used to define the
boundary conditions in~7b!. Therefore

dCw

dt
5R5E

2`

0

uv8u f ~0,v8!dv8

5Nf S 112qNfE
0

`S~v8!

v8
dv82qNcD

3E
0

`

v8f~v8!dv8, ~41!

where the time dependence is hidden inNf andNc .
We now have all the ingredients necessary to calculate

d(qNf)/dt, givena,qNf , andqNc5qN2qNf . The evolu-
tion of the system is described by

d~qNf !

dt
5F $qN,a%~qNf !, ~42!

whereF $qN,a% is a function depending only on the forcing
Wa andqN. Thus those two parameters, plus the initial con-
dition, determine the time evolution of the system~i.e., sys-

tems with differentN andq will undergo the same evolution
due to the forcingWa as long as they have the sameqN).
Note that vcrit must be determined numerically, so
d(qNf)/dt is a complicated function ofqNf and the other
variables. However, the initial conditions are such that the
system starts clumpless, i.e., att50, Nf5N, and we can
integrate numerically to findqNf(t). Figure 7 shows a typi-
cal result; the dots are points from six simulations, the solid
line is the prediction of the above analytic formulation. Note
that the initial distribution is alwaysf (x,v)5Nf(v); the
variation in the runs is due to changes in the exact initial
configuration as well as in the random seed for generation of
W(v) at the heated wall. We chose these initial conditions
because they were likely to produce a slowly growing clump
in contrast to an initial state that already includes many
slowly moving particles. We are confident that the algebra
developed here could be used to describe the time evolution
starting from a wide range of initial conditions.

IX. CONCLUSION

This work has examined the density variations in a one-
dimensional system ofN inelastic particles. These particles
are constrained to move on the line between an elastic wall at
x51 and an energy source atx50. This system can be
described by a Boltzmann equation~4!. Analytic consider-
ations demonstrate that this equation has a true steady state
solution in only one case: whenq50 anda.0. This is a
system of perfectly elastic particles withW(0)50, i.e., the
boundary forcing forbids the return of particles with no ki-
netic energy. In all other cases, there is no completely stable
steady state solution.

In this paper we have also described a set of approximate
solutions for theq Þ 0 case. These distributions arealmost
steady state, and are derived for more general boundary con-
ditions than are used in the basic Boltzmann treatment. This
new approach allows us to match the analytics to numerical
simulations that show the system developing a clump of
Nc(t) nearly stationary particles against the elastic wall. The
remaining Nf(t)5N2Nc(t) free particles are distributed
uniformly through the system. There is a mechanism for

FIG. 7. A comparison of simulational and theoretical values forqNf(t). The
solid line is obtained by numerical integration of~40!. The data is from six
different runs of fifteen million collisions each. As always, the initial distri-
bution wasf (x,v)5Nf(v). Herea56, N550, andq50.002.

3226 Phys. Fluids, Vol. 8, No. 12, December 1996 E. L. Grossman and B. Roman

Downloaded¬16¬Nov¬2000¬¬to¬147.94.38.40.¬¬Redistribution¬subject¬to¬AIP¬copyright,¬see¬http://ojps.aip.org/phf/phfcpyrts.html.



clump growth, but not one for clump shrinkage. Thus, even
for a system that begins withNf5N ~no clump!, we see that
Nf approaches 0 ast→` and the particle density at all
points other thanx51 goes to zero. In fact, there is no way
for the last rapidly moving particle to be absorbed into the
clump. Therefore, the final state of the system has
Nc5N21, and a lone free particle oscillating between the
clump and the heat source. This is the state observed in Ref.
5. This work develops an analytic description of the mecha-
nism of clump formation that allows us to predict the shrink-
age ofNf over time. Thus we claim to understand the devel-
opment of density and velocity variations in a one-
dimensional system of inelastic particles.

The analytic work in this paper has focused on a model
for the energy source atx50 in which a particle that collides
with this wall is returned to the system with a velocity from
a fixed distribution. Thus the velocity of a particle ejected
from the wall is independent of the velocity with which it
approached the wall. This boundary condition is an idealized
cousin of the oscillating wall used in work done on similar
one-dimensional systems. However, the sort of clumping be-
havior we observe has also been seen for particles interacting
with a shaking wall.5 In works where a gravitational field is
included,8,10 gravity serves to drive the particles back toward
the energy source, as the elastic wall atx51 does in our
system, and again clumping is observed. Therefore, the be-
havior studied in this paper and the description of the mecha-
nisms at work seem to be general characteristics of driven
inelastic granular systems.
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APPENDIX A: APPROXIMATION OF D(P) FOR
SMALL p AND a50

In this appendix we calculate an approximation for

D~p!512E
0

`

W~v8!expS 22p

v8 Ddv8, ~A1!

for p!1 whena50. Note thatD(0)50 and the derivative

D8~p!52E
0

`

v821W~v8!expS 22p

v8 Ddv8

is not defined atp50 asW(0) Þ 0. ThusD(p) does not
have a Taylor expansion aboutp50. Now choose ad such
that p!d!1 and split the integral into two parts:

I 1~p,d![E
0

d
W~v8!expS 22p

v8 Ddv8,

~A2!

I 2~p,d![E
d

`

W~v8!expS 22p

v8 Ddv8,

soD(p)512I 1(p,d)2I 2(p,d).
In the first integral, we use the fact thatW(v8)'W(0).

A change of variables,u52p/v8 gives

I 1~p,d!'2pW~0!E
2p/d

`

u22 exp~2u!du

'2pW~0!F 1

~2p/d!
1 lnS 2pd D G ,

where the second approximation is from the power series for
the incomplete gamma function.18

To tackle the second integral, we expand the exponential
in powers ofp/v sincep/v,p/d!1:

I 2~p,d!'E
d

`

W~v8!S 12
2p

v8 Ddv8

5E
0

`

W~v8!dv82E
0

d
W~v8!dv8

22pE
d

`W~v8!

v8
dv8

'12W~0!d2pW~0!E
d2/2

`

u21 exp~2u!du

'12W~0!d2pW~0!F2 lnS d2

2 D G ,
where the last approximation is again due to the expansion of
the incomplete gamma function. Now, as long asI 11I 2 is
independent ofd, we can combine these results to find

D~p!'12@W~0!d12W~0!p ln~2p/d!#2@12W~0!d

1pW~0!ln~d2/2!#'22W~0!p ln~p!. ~A3!

This matching technique is documented in Ref. 18.

APPENDIX B: ESTIMATE OF S(v ) FOR SMALL
VALUES OF v

In this appendix we calculate the behavior for smallv of

S~v !5
d

dv
~af!, ~B1!

where

a~v !5E
2`

`

uv82vu~v82v !f~v8!dv8. ~B2!

Rewrite this expression by splitting the integral to get rid of
the absolute value sign. Then take advantage of the evenness
of f(v) to group the integration into largev8 and smallv8
ranges:
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a~v !5E
v

`

~v82v !2f~v8!dv82E
2v

v
~v82v !2f~v8!dv8

2E
2`

2v
~v82v !2f~v8!dv8

524vE
v

`

v8f~v8!dv82E
2v

v
~v82v !2f~v8!dv8.

Therefore, whenv→0, a(v);24v*0
`v8f(v8)dv8. Since

f~v !5
W~ uvu!

2uvu*0
`v821W~v8!dv8

,

andW(uvu);Ava for v!1, we have

a~v !f~v !

;24v
*0

`W~v8!dv8

2*0
`v821W~v8!dv8

Ava

2uvu*0
`v821W~v8!dv8

52AvaS E
0

`

v821W~v8!dv8D 22

, ~B3!

which implies thatS(v);Bva21 for v!1, whereB is de-
fined by

B52aAS E
0

`W~v8!

v8
dv8D 22

, ~B4!

where A is the normalization constant forW(v), i.e.,
W(v)'Ava asv→0.
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