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In this work we examine a system of inelastic particles confined to move on a line between an elastic
wall and a heat source. Solving a Boltzmann equation for this system leads to an analytic expression
for steady state behavior. Numerical simulations show that the system is in fact capable of
simultaneously displaying both the uniform density of the analytic solution, and a state in which the
particles are collected into a cluster adjacent to the elastic wall. The boundary conditions for the
Boltzmann treatment are then reworked to provide a theoretical description of how smooth particle
distributions and clumping phenomena can coexist. From this, we gain a prediction for the time
scale of clump formation in this system. @96 American Institute of Physics.
[S1070-663(196)03011-3

I. INTRODUCTION perturbation to this solution. The clump can then be per-
ceived as an alteration to the boundary conditions for the
The spontaneous creation of large scale structure in aBoltzmann equation, and the methods developed for the no
initially homogeneous system is a recurring phenomenon iglump case can be used to calculate an expression for the
physics. Granular systems offer some unusual examples eteady state distribution function of the moving particles
this behavior. Despite the absence of long range forces bavhen the system includes a clump. Simulations were used to
tween the particles, large variations in density still exist. Inexamine the mechanisms of clump formation; these consid-
two-dimensional systems a non-uniform cooling process hasrations suggest an analytic description of the process that
been observel? Regions of dense, slow particles spontane-allows us to predict the time scale of the clump formation.
ously develop, with a few higher velocity particles moving It has been shown previou§Iy that particles undergo-
quickly through the voids. These variations in density anding sufficiently inelastic collisions can dissipate all their en-
speed occur regardless of the smoothness of the initial corergy in the center of momentum frame within a finite amount
ditions. Similar phenomena have also been seen in onef time. This process has been termed “inelastic collapse,”
dimensior’* and it requires an infinite number of collisions during which
In this work, a system of inelastic particles on a line isthe particles’ relative separations and velocities go to zero so
used to study the mechanisms involved in density fluctuathat the particles come into contact. In order to ensure that
tions. So as to create steady state behavior, the system hasthe system is not in this regime, the situations described in
energy source to balance the dissipation due to collisionghis work are limited to those in which the system is quasi-
Even in a non-cooling system, we see density and energglastic, i.e., there are not enough patrticles in the box to form
variations: a state composed of several rapidly moving parthe collapse singularity. Our density fluctuations are distinct
ticles and one relatively stationary clump. If the coefficientfrom the cluster formed in inelastic collapse because the in-
of restitution isr, then the size of this clump is of the order ternal energy and size of the clump do not vanish in a finite
of (1—r) times the number of particles in the clump, while time.
the average energy within the clump is of the order of
(1-r) times the average energy of the particles in motion.
The grouping of particles in a driven one-dimensional SY$Y| THE MODEL
tem has been observed previouslyut here we see the co-
existence of the practically stationary clump and many high  |n this work, we examine the behavior f identical
velocity particles. In this paper we use a Boltzmann treatparticles confined to move on the line betweer0 and
ment to obtain a partial differential equation describing thex=1. Atx=1, there is an elastic wall, i.e., when a particle of
distribution function for the particles in the system. Thisvelocity v hits this wall it is reflected with a velocity
equation is solved analytically for the case of elastic particleg = —y. The collisions between particles are inelastic: they
and no clump. The quasi-elastic problem is then treated as @nserve momentum, but not energy. The degree of inelas-
ticity is parameterized by the coefficient of restitutian,
3Electronic mail: grossman@cs.uchicago.edu When two particles with speeds andv, collide, their new
PElectronic mail: roman@clipper.ens.fr relative velocity is just—r times their old relative velocity:
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vp—v1=—T(v,—v4). Using this and conservation of mo- 0.9 T r . . .
mentum, we see that their final velocities andv, can be
written as

v1=Qui+Puy,  V=PUrt U, (D) i
where we have defined Wal(v) i
g=(1-r)/2 and p=(1+r)/2. (2) 7

Thusr=1 is the elastic case, whereas 0 corresponds to
total inelasticity(particles collide and move togetheln this
paper we examine systems in the quasi-elastic regime
(r very near ong so we will characterize the degree of in- v

elasticity byq<1 and do most calculations to first order in
this variable. FIG. 1. Several examples taken from the family,(v) defined in(3).

; . o . Whena i flatt =0.
Since the particles are colliding inelastically, the system ena increasesi,(v) becomes flatter aroune=0

loses energy AE=—3(1—r?)(v,—v,)?] at each collision.

Thus, in the center of momentum frame, the particles are allnerqy of the all particles leaving the wall and then subtract
deceleratmg toward zer_o yelocny. In order to Iqok at stea.d%he energy those particles had when they hit the wall. Thus
states of this system, it is necessary to provide a forcinghe net energy flux supplied by the wall is a function of the
mechanism that pumps energy back into the system. Ongy|qities of the particles coming into the wall. The same
possibility is to put the particles above a vibrating plate in a;rqument applies when we try to calculate the temperature at
gravitational field(as in Refs. 8,10 and references therein the wall. Nonetheless, this model for boundary forcing does

Anothgr optiop is a vibrating' horizontal box:. the .particles provide a simple way of idealizing the energy injection pro-
that hit a moving wall can gain energy from it. This model .oqq

was first proposed with one particle, by Ferthis he tried _ Notice also that this boundary condition acts as a source
to understand cosmic radiation, and it became a classic@} randomness in the system. Recent stddibave shown
example in the theory of dynamical syste?ﬁs{k drawback  the spontaneous development of correlations in speed and
of both these models is that they involve periodic motion ofyqgition of inelastic particles in one dimension. When the
the wall, and hence the particles can get phase-locked aryl, ticjes hit the wall, these correlations will be reduced due

trapped in a periodic stafé.Similar resonances have re- to the “loss of memory” character of the boundary condi-
cently been observed in two dimensions by McNamara ang,,

Barrat!* To separate the effects of phase-locking and reso-
nance from effects that are intrinsic to the inelastic nature of
granular systems, we will focus on the idealized thermal enlll- BOLTZMANN EQUATION
ergy source proposed in Ref. 5. Particles hit the right wall ~ We assume that the particles do not clump or cluster
(x=1) and bounce off elastically. When a particle hits thetogether, and thus are non-correlated so we can use statistical
left wall (x=0), it picks a random speed>0, from the tools. Define the phase space density funcfipnu,t) to be
one-sided distributioV(v) with [;W(v)dv=1. The outgo-  such that the number of particles at timebetweenx and
ing velocity (always positive is uncorrelated with the in- x+dx, with velocity between v and v+dv, is
coming velocity(always negative In this work we will of-  f(x,v,t)dx dv. f(x,v,t) is governed by a one-dimensional
ten use the family of density functions, Boltzmann equatiotisee Ref. 1§ which describes the con-
C a2 ey servation of particles. In Ref. 16, it is shown that iis close

W,(v) =202 v PH(0)IT ((a+ 1)/2), 3 {0 1, the Boltzmann equation takes the form
wheri mHn(E)z B is . the  Heaviside .function and f+uf+(af),=0, (4)
F(n)=[yy" e Ydy is the gamma function. Here: de-
scribes both the strength of the forciftipe average energy Whereq=(1-r)/2 and
of a particle leaving the wall isd+1)/2] and the behavior o
of the distribution function near the orig[tw,(v) = v for a(x,v,t)qu [v'—v|(v'—v)f(x,v’,t)dv’ (5)
smallv]. Later we will see that the latter property plays a o
large part in determining the long term behavior of the sysdis the acceleration of a particle at,{) in the phase space.
tem. Although most of the calculations are valid for any A physical derivation of this equation might be instruc-
distribution W(v), this family contains some of the more tive: imagine a test particle with speedat positionx, mov-
interesting cases, including the Gaussian distribufisee ing through a cloud of all the other particles. If the system
Fig. 1). were elastic, each collision would merely result in an ex-

This boundary condition is neither a constant temperachange of velocities. Thus, when the particles are relabeled
ture nor a constant flux condition. Indeed, the amount ofappropriately, it can be seen that the system is unchanged. In
energy transferred to the system depends on the properties ofir quasi-elastic system, the velocities are almost, but not
the incoming particles. To compute the energy injected intaexactly, exchanged. We can compute the effect of each col-
the medium by the wall in a unit time, one has to sum thdision and hence the test particle’s average acceleration.
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« First consider the collision of the test particle with a dimensional gas forced by the boundary conditigdisand
particle of speed’. After this collision, the particles are (7). In one dimension, the elastic collision ru® is equiva-
relabeled. The particle originally with velocity’ is now lent to an exchange of velocities, thus we can treat the sys-
the test particle, as, fron(l), its final velocity is tem as a collection of non-interacting particles.

pv+qu’ which, in the quasi-elastic limit, is close ta

Thus the modification of the test particle’s velocity is

Av/collision =(pv+quv’)—v=q(v' —v). A. Steady states of the perfect gas

* The test partic/le enCOl/JnterSISN_ particles  with In this section we will study the possible steady states of
speed betweenv’ and v’'+dv’ in a time At, e perfect gas. Since=1 yields q=(1—r)/2=0, (4) be-

where AN:|U/_U|_f(X’U/'t)d”, At. The acceleration omes the one-dimensional elastic Boltzmann equation,
of the test particle due to these encounters is

then da=Av/At=(AN/At)(Av/ collision)=q(v’ fi+vf=0. 9)

—v)|v’ —v[f(xv",)dv". A steady state must satisfy the even simpler equation

* Now integrate over every’ to find the average total
acceleration of the test particle due to all the other par- vf,=0,
ticles:a=qfZ..(v' —v)[v'—v|f(x,v',t)dv". which is easily integrated to find f(x,v)

The energy is supplied through interactions with the wall=C(x) §(v) + F(v). We are interested in the effect of the
and therefore the boundary conditionsxat0 and 1 are es- energy source at=0, so letC(x)=0, i.e., ignore the solu-
sential in this calculation. The right-hand wall &&=1 is  tjons that include a bunch of particles at rest. The actual form
elastic, and hence of F(v) is determined by the boundary conditions: Equation

f(1p,H)=f(1,—0,t). (6) (§) implies thatF(v) is an even function, and.Equaticﬁﬁa)

gives thatF(v) is proportional tow(|v|)/|v|, since, for the
The main complication comes from the energy source at thgteady state problenR(t) is no longer dependent on time.
left wall, x=0. During a time intervadit, there are a number, The normalization conditio8) becomes
dN, of particles that leave this wall with velocities between
v andv+dv (wherev>0). These outgoing particles must N:f
have been produced from the numbe#N’, of incoming par-
ticles that arrived at the wall in this time with any velocity
v'<0. If we look at the system at a given tinigthe dN
particles that have left the wall in the paltare now spread
out betweerx=0 andx=uv dt, while if we had looked at
t—dt, thedN' arriving particles would have been between
x=0 andx=—v't. Thus

dN=f(0p,t)dv(v dt),

o0 ocW(v’)
F(v’)dv’=2Rf o7 dov’, (10
% 0

which allows us to calculatB, the rate of collisions with the
wall atx=0. The integral in(10) is infinite if W(0) # 0. If,

for example W(v)=W,(v), the form described i63), then
Equation (10) shows that there is no steady solution for
a=0.Whena # 0, R is well defined by(10), and the steady
state distribution function is

f(x,0)= NW(Jo ) =Ng(v) (1D)

' 2lv|fov’ " W(v")dv’ '

Notice that because of the factiar| in the denominator
The probability of any impinging particl®ne ofdN’) being  of (11) the velocity distribution function of the walliV(v),
ejected by thex=0 wall with a velocity betweerv and is not imposed on the medium. This can be understood
v+dv is given byW(v)dv. ThusdN=dN'W(v)dv, or physically by following one particle. At each interaction with

the left wall, it picks a velocity with probabilityV(v). How-
vi(0v,=W(w)R(1), Vv>0, A  ever, it keeps this velocity during a tindet=2/v| (the time
0 it takes to travel back and forth in the boX herefore a time
R(t)Ef lo|f(0p",t)dv". (7Tb)  average should use a probability distribution proportional to
o W(|v|)/|v|. The ergodic assumption turns averaging over
Notice thatR(t)>0 is the rate at which particles hit the time for one particle into averaging over the ensemble of

0
dN'=j [v’|f(0p',t)dv .

left-hand wall. particles. Therefore the probability distribution function
The final condition onf(x,v,t) is normalization; the should be proportional t&V(|v|)/|v|. Whena =0, this func-
number of particles in the system is fixedNat tion is not integrable: there cannot be a steady state.
o 1
N=f f f(x,v,t)dx dv. (8)
—=J0 B. Time dependent solution for the elastic model
Itis easy to Verify tha(4) with the boundary Conditionéﬁ) In order to Study what happens if=0, we will now
and(7) conserves\. solve (9), and compute the evolution d{x,v,t) with time.
Let f(x,v,0)=fp(v) be the initial distribution, where
IV. ELASTIC BOLTZMANN EQUATION fo(—v)=fp(v). Equation(9) can be integrated using the

A first step in understanding the quasi-elastic model is '[omethOd of charateristics with

study the simpler case=1. This is a perfectly elastic one- f(x,v,t)=F(x—vt,v),
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velacity goes on(eventually all the particles will have collided with
Dy(t),vr 20 » the left-hand wall, whereas as—, D . (t) andD _(t) tend
................... to cover the whole phase spa@xcept the liney=0 whose
measure is zero and therefore plays no role in our problem
The expressions fofr(x,v,t) in the four regions depend
only on the unknown functiofR(t). Therefore using Equa-

i tions (12) and the definition oR(t) in (7b) we find:

position

21t 0 2
R(t)=f0 v'fo<v'>du’+J2hw<v'>R(t—F)dva
19

This integral equatior(13) cannot be solved directly, but

with the Laplace transform, Fz( p) =_Z{R(t)}

FIG. 2. In order to solve the elastic Boltzmann equation, the phase space is fge_ ptR(t)dt, it takes the explicit form
divided into four time dependent regions. Notice that,tas», the two
A(p)

shaded areaii+ t) andD _(t , shrink towards the line =0. =~
0 andb-) R(D)=" ) (14

D_(t),vr < -2

whereF is determined using boundary conditions. Note thatWhere
since the system is elastic, a collision between two particles 1 (= )
is equivalent to an exchange of velocities. Thus the distribu- ./ (p)= BJ (1—e 2y fo(v)dv’, (159
tion function is affected only by collisions with the wall. 0
At a patrticular timet, there are four distinct domains in o ,
the (x,v) phase space, as shown in Fig. 2. Ap)=1- JO W(v')e 2" do’. (15b
« For a particle withv >0 and O<t—x/v=r, the last col-
lision with a wall occurred ak=0. The boundary condi- This set of equations, although explicit, cannot be used to
tion there(7a) yields find the exact expression fét(t), due to the complexity of
1 the inverse Laplace transform. However the beﬁavior of
fx0,)=1(00,7)=R(r)W(v)o ", (129 R(t) at large times can be seen from the structurd&@b)
which holds wherv 7=0. Call this domairD , (t). when p<1. We therefore compute the behavior of both
* The next region contains particles which are moving sa/ (p) and Z(p) asp—0. An easy computation leads to
slowly they have not yet hit any wdlso eitherv >0 and

0>7orv<0 and C=t—(1—x)/(—v)=7+1lv]. These ./]/"(p)~2rcf0(v’)dv’=N, (16)
particles still have the initial velocity distribution: 0
f(x,0,t)=f(x—vt,v,0)=fo(v), (12p by the normalization condition. The expansion of(p),

_ _ o~ however, depends sensitively on the structureMgiy) for
Wh|Ch hOIdS When O’UTZ_.’L. Ca” thIS doma|rD+(t). sma”v, and therefore Oly.

 This region includes all particles which have collided

only with the right-hand wall, sov<0 and . )
0<t—(1-x)/(—v)=7+1b but 0=t—(2—x)/(—v) 1. Steady solution of the elastic model when  a>0

= 7+2/v. Using the boundary conditiof6) atx=1, the In the first part of Section Ill, we found a steady state
previous resul{12b), and the evenness 6§, we find solution(11) whena>0. Calculating the time dependence in
f(x,0,0)=f(1p, 7+ L) =f(1,—v,7+ L) = fo(v) this case demonstrates that the system can evolve into this

(129  steady state at large times. Fer-0, W(0)=0 andZ(p) is
easily computed for smap:

W(v'

( ; )dv'. (17)

v

which holds when —1>v7=-2. Call this domain
D _(t).

* The last region is for those particles that have collided
with the left-hand wall and then with the right-hand wall,
sov<0 and O<t—(2—x)/(—v)=7+2M. Using the re-

Z(p)%ZpL

Therefore, ag— oo,

sults fromD _(t) andD (t), we find A0 N
R(t):% (/ ~ 2 ®© /*lW ! d " (18)
f(x,v,t)=f(1o,7+1h) Z(p) Jov (v")dv
—f(L—v, 7+ L) =W(|o])|o| *R(7+2/), Note that this expression is in fact independent.oFrom

(129 and(12d), we can calculate the long term behavior of
(120 f(x,v,t) in D (t) andD_(t):

which holds when—2>v 7. Call this domainD _(t). W(|v|)

Notice that the boundary conditions at=0 and 1 are f(x,v,t):N2 = T IWio do’ =Né¢(v), (19
satisfied by these solutions. It is also important to see that lvlfov (v")dv
regionsD . (t) andD _(t) are both shrinking to zero as time which is the steady state solution (hl).
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The result is that if one chooses a distributitifv) with The Boltzmann equatiofd) from Section Ill becomes
W(0)=0 (i.e., with«>0), the elastic gas can end up with a
ve(logity d(istribution fun?:tion proporti%nal te(v). Ngtice 9t vyt aNSv)=0, 24
that in the case €a<1, even though¢ is singular at where
v=0 [as ¢(v)~v* 1], it is still integrable and therefore dl (e
(11) is an acceptable solution. S(U)Ed—[f v —v|(v' —v)p(v) (v )dv’ (25

A gas of elastic particles at a constant temperaiuhas U] J-e
uniformly distributed positions and a Gaussian distributionjs the first order contribution of the acceleration term. The

of velocities, SOf(X,U) x exp(—vZ/ZT). In order to mimic boundary Conditi0n£6) and (7a) are
such behavior in our system, Equatidri) demonstrates that

the energy source must then be proportional to 9(1w.D=9(1—v.t), Vo, (26)
v exp(—v?2T), in other wordsa=1. vg(0p,H)=Ry()W(v), Yv>0, (27

2. Solution of the elastic model when  a=0 where we have defined

Reference 5 considers the cagév)~ exp(—v%/2T), R (t)EJO lv'|g(0p’ t)dv’, (28)
i.e., a=0. Here we show that such a system never reaches a 9 —
steady state, but that its velocity distribution does tend t

. . . %how to be the perturbation to the rate of collisions with the
resemble the non-normalizable densiti(|v|)/|v| as time

: wall atx=0.
increases.
If W(0) # 0 then the first term in the expansion of
Z(p) is
) A. Slowly evolving behavior of the quasi-elastic

see Appendix A for the calculation. Therefore A steady state solution must satisfy
R(p)=N/2pW(0)In (1/p), which gives, using well known
result3’ on the inverse Laplace transform, vgxtqNSwv)=0,
and the boundary condition26) and (27). Neglecting the
(21 solution representing a cluster at rest, this is easily solved by
g(x,v)=—gNSv)C(x,v)/|v|+G(v), where

_ N
O™ 2wy

As t—o, the solution inD, (t)UD _(t), which never

. . . >
contains the line =0, but does grow to cover the remainder C(x,0)= X, v>0,
of the phase space, is 2—X%, v<0.
N W(|v]) The form ofG(v) is determined by the boundary conditions:

f(x,v,t)~ WY o] (22 (26) implies that G(v) is even, while (27) gives
G(v)=RyW(|v|)/|v|. The normalization conditiori) im-
The function f(x,v,t) becomes increasingly peaked plies thatf‘fxf(l)g(x,v)dx dv=0, soR, must be given by
aroundv =0: the particles have a tendency to form a cluster o ey ,
at rest, even though there is no dissipation in the system. g _ Jou'"S(v")dv 29
Because there is no steady state that satisfies the boundary ¢ Jov' " W(v")dv""
conditions, the time dependence of the solution is essenti

the medium is continually cooling even though there is n

aJﬁ'\gain, the integrability of this expression is what determines
%the existence of a steady state solution. Appendix B demon-

dissipation. strates thaS(v)~Bv* ! asv—0. ThusS(0) # 0O for all
a<1 andRy is not well-defined. If, howeverg>1, there

V. THE QUASI-ELASTIC LIMIT does exist a steady state perturbed solution:

We now consider a coefficient of restitution<1 but »S(v')

such that (+r)N<1 in order to avoid inelastic collapse. f(X,v)ZN{ ?(v) 1+2qu —dv’

This is the quasi-elastic limit described in Ref. 16. One ex- o v

pects the solution of this problem to be close to the solution S(v)

of the elastic one. Therefore, in this section, we study the —qNWC(x,v)+6(q2N2)]. (30

weakly inelastic case as a perturbation of the elastic gas so-
lution in (11). As this steady state solution does not exist forSince 2INfzv’ ~*S(v")dv’ is negative, its effect is to “re-
a=0, this section treats onlg>0. Letg(x,v,t) be defined move particles” from the elastic distributidN¢ and to re-
by distribute them into the second term, a distribution propor-
tional to —S(v)/|v|. This function is positive near zero and
fxv,)=N((v) +g(x.v,1)), 23 negative for larger values af, so the number of particles
and assume that this perturbatigris very small compared with low speeds is increased. As expected, the system is

to ¢; in fact we expect it to be of ordeyN=(1—r)N/2. All “slower” (lower total energyin this inelastic steady state
calculations in this section are done to first ordegM. than in the elastic case.
3222 Phys. Fluids, Vol. 8, No. 12, December 1996 E. L. Grossman and B. Roman
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This section has shown that the shape of the inelastic 02T T T T T T T T T T 1
steady state solution depends on only two parametgxs: ? 3
and« [through¢(v) andS(v)]. The calculations were done 0.24 | -
under the assumption tha(x,v)<<¢(v), i.e., gN<<1.
This inequality is satisfied, except at very small velocities.
For |v|<1 both ¢(v) andS(v) are proportional tqv|* 2.
Therefore the second term on the right-hand sid€36f is
2(qN)2(|v|*~?) while the first term is?(Jv|*~ ). Thus if
|v| is of ordergN, the two terms are of the same magnitude . Ly , L
and the treatment in this section is no longer valid. We shall 6 5 4 3 -2 -1 0 1 2 38 4 5 6
see in Section VII that the cure for this breakdown involves velocity
the creation of a slowly varying state with
|fi|<|vf+(af),|. In this limit, for short time intervals, this
section’s steady state distribution provides a fairly accurate 0.36

- (b)
description of the system. 03k

p(v)
1
1

0.24 -

B. Time dependent solution for the quasi-elastic
medium

0.18 =

p(v)

. . . . . 0.12 -
In this subsection, we discuss a time dependent solution

of (24) that elucidates the case<v<1. The techniques 0.06 -
employed mirror those used in Section IV B, so we will just 0
state the results. The behavior of the system is best under- -4
stood by looking atRy(t), the perturbation to the rate of velocity
collisions with the heated wall. Far>1 andt— «, the time

dependent calculation reproduces the steady state result fe- 3- These figures show the agreement between simulations and the
" analytic descriptions of the metastable states. The solid line is theory and the
(29). However, for 6<a<1, we find that, for |arge, dashed lines are the velocity distributions for three successive time intervals

2°qN Bil-« in the simulations. In both cases, th_e_ system NaleO_ and is a_IIovv_ed to
Ry4(t)~ T run for a total of twenty million collisions. The velocity sampling is done
9 a(l—a)fov' "W(')dv’ during the last six million of these collisionga) No clumping: Here
a=10 and gN=0.02. (b) Clumping: Here N./N=0.53, «=2, and
—2*gNA *W(v ) , -3 1—a gN=0.03. There are no simulational values at small velocities, as any data
= (1- 012) Jo o' v t (3D on slowing moving particles that are partf is masked by the relatively
stationary clump.

ThereforeR,(t) is growing with time liket'~*, which even-

tually contradicts the assumption of a small perturbation,

Thus, when 8<a <1, although there exists a steady state of V- THE BOLTZMANN EQUATION REVISITED

theelasticgas, the slightest dissipation destroys it. The math-  The analytic solution derived above corresponds to a

ematical reason for this breakdown is that the functionuniform spatial distribution of the particles and a velocity

S(v)/v is not integrable. Becaus#(v) is not “flat enough”  distribution that is a slightly skewed version ¢fv). While

at v=0, the wall produces too many particles with small this sort of state has been observed computationally for very

speeds to sustain a steady state. high « and smallqN [see Fig. )], most simulations show
The casex=1 is special for two reason¢l) a=11isa more complicated long term behavior. Note that throughout

critical value above which there exists a steady state of théhis paper, the simulations are done with an event-driven

inelastic medium, an) «=1 produces an elastic gas with code and the initial conditions are alwafx,v)=N¢(v):

a Maxwellian velocity distribution. Here, we find that, for uniform spatial distribution between zero and one, and a ve-

larget, locity distribution that matches that of the elastic solution.
gNBIn(t) In the analytic steady state solution (80), all N par-
Ry()~ ticles in the system are in motion. The velocity distribution is

Jov' T *W(v")dv’ approximatelyp(v) «| v|*~* exp{—v?/2}, so the probability
“W(v") -3 of having a low speed is small. However, simulations have
—qNA( f ’) In(t). (32)  shown, in addition to the states that mat&0), other states
in which N, of the particles form a stationary clump against
As in the previous cas@(t) grows over time, the assump- the elastic wall ax=1. In other wordsN particles have
tion thatg(x,v,t) is a small perturbation breaks down, and positions roughly equal to one and velocities approximately
there is no steady solution for the dissipative system. equal to zero, while the remaining;=N— N, “free” par-
Note that, since lim_;-(t'"%)/(1—a)=In, the Ry(t) ticles move relatively rapidly and are distributed uniformly
derived for thea=1 case(32) can in some sense be per- through the system. One can no longer expect the Boltzmann
ceived as the limit of theRy(t) in (31) calculated for equation to describe the behavior of tNe particles in the
O<a<l1. clump, as correlations are known to develop in high density

0 o W
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00—

FIG. 5. A collision. This interaction can be viewed as being between two
particles (in which casev;—v; and v,—v,), or as being between two
velocities(in which casev;—v, andv,—v;).

FIG. 4. The collision wave model for a fast particle’s interaction with the reduces to the prewo_us SO|UtIQaO)' Again all calculations
clump and the elastic wall. In this picturl.= 10 andq=0.005. The hori- have been done to first order opN; and gN.. Also, the
zontal axis is time, the vertical axis is position, and the heavy line at the totbreakdown that occurs at small velocitigs=(qN;)] for

is the elastic wall. The alternating solid and dashed lines are the world linegh o clumpless steady state solution described in Section V A
of the particles. A fast particle enters the clump from below with velocity .

v and is ejected with velocity- kv. is still an issue here.

. . VIl. CLUMP FORMATION
regions? However, for theN; free particles, the Boltzmann

treatment of the previous section should still hold, albeit with ~ AS the simulations shown in Fig. 3 demonstrate, on in-
slightly different boundary conditions &t=1. The clump at term_ed|ate time scale_s, '_[he solution derived above provides a
x=1 acts as a cushion against the elastic wall so that when&latively good description of the system. However, when
free particle with velocity strikes theN, particles next to ©OPServed over long periods of time, it becomes clear that the
the wall, a series of inelastic collisions occurs within the¢lUMPp is growing. AN, increases, the system moves among
clump. Energy is dissipated, and the particle is ejected with the mgtas?able states that are described by the dlstnpuuons
velocity v’ = — kv, where the effective coefficient of restitu- (35) with different values ofN.. Thus to understand the time
tion, x, depends on the size of the clumgd) and the degree erendence of the 'system, we must understand the mechan-
of inelasticity @): ics of clump formatllon an'd grovvth. '
N When two elastic particles collide, they exchange veloci-
o 2(1-q)""e—q ~1-2gN (33 ties. Thus, instead of a group of particles rattling back and
2—q ¢ forth, the system can be viewed as a collection of interacting
ayelocities. Wheng=0, the collisions are elastic, and hence
éjo not affect the velocities at all. Each velocity propagates
independently through the system. In the quasi-elastic re-
gime (q<€1), this picture is still approximately valid. How-
ever, at each collision, the velocities are slightly altered.
Consider two particles approaching each other with veloci-
tiesv, andv, (see Fig. 5. If g=0, after the collision, the
velocities arev;=v, andv,=v4, and it is as if the particles
f(1v)=«*f(1,~«v), for all v>0. (34  have passed through each other: the collision might as well
The above techniques can be used to solve for a steady stdlgVer have occurred. If howeveris nearly, but not quite,
f(x,v) to first order inq: zero, ther‘vlzpvzfqvl and v2=_pv1+guz. Iljstead of at-
taching each velocity to a particle, view this as merely a
rightward moving velocity and a leftward moving velocity,
and calculate the change in each due to the collision:

The above expression is calculated by assuming that the p
ticles in the clump are basically stationary compared to th
incoming particle and hence the collisions occur in a idve
(see Fig. 4 Now the clump can be replaced by melastic
wall at x=1, and we want to solve the time independent
Boltzmann equation with the old boundary conditigia at
x=0, but with a new boundary condition at=1:

v>O:f(X,v)=N{Bd)(v)—quXS(Tv)},

ﬁ qu right'mOVing: UZ_U]_:pvl+qu_U1:q(1)2_Ul),
U<OZf(X,U)=N{?¢(U/K)—m (35) . _
left-moving: vi—v,=pvo+qui—v,=q(v1—V>).
1 (v (37
X| (1=x)S(v)+ S ;) ” Thusq measures the strength of the interaction between ve-
locities.
where Every time a particle hits the heated wall, a new velocity

»S(v") (vhew>0) is added to the system and an old velocity

B=1+2qN; fo v—,dv’—qNC (36)  (vog<0) is retired. The “aging” trajectory of a typical ve-

locity can be viewed as follows: sineg,,~>0, the velocity

is a constant. Now we can look at the distributions we see inwill move away fromx=0 toward the elastic wall. As it
the simulations where clumps appear and match them to thgoes, it will lose energy due to interactions with other ve-
above analytic fornjsee Fig. 8)]. Note that wherN,=0 locities, i.e., collisions, and slow down. At the far wall, it
(no clump or q=0 (totally elastig, thenx=1, andf(x,v)  will be reflected, thus becoming negative, and begin its jour-
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T at every point in space, then the gains and losses due to
collisions average out to zero. However, in our system, when
g # 0, f(x,v) is asymmetric in both position and velocity

space, and thus a slow velocity undergoes a net drift through

Unew

§ 0 the system. This phenomenon can be quantified by calculat-
E ing a(x,vs), the acceleration of a particle ax,p) in the
. i phase space. Froi®) we have
old \<\
. a(X,vS)EqJ v —ve(v' —vg)f(x,v")dv’
0 0.5 1 o

position w0 o0
:qu—szf v'fS(X,v’)dv’—Ff (v'2+v§)
FIG. 6. The aging process in phase space for a velocity that is born at the 0 0
thheated :vﬂt(@?) \)Nitth Vegctir:yvnfwt‘lt |OST,I‘S eriergyhas it Tpvesﬂthrtolégh , , vs , , ,
St losing energy t then retUtbottom ind o (e heated wal,where fs X Falxoldo’= fo (v =0 fx07)dv ]
final velocity,vqq, IS retired.
where fg(x, 0 )=3f(x,0")+f(x,—v')] and fa(x,v')=3
[f(x,v")—f(x,—v')] are the symmetric and anti-symmetric
ney back toward the heated wall, still losing energy along théParts of the distribution. We are interested in the regime in
way. It gets back tx=0 with v <0, Where|v o <vnew- which the analytic solution breaks down, so we know that
In Fig. 6, a typical aging trajectory is traced out ir,§)  Us IS ©(aNs). However, the particles encountered are mov-
phase space. If one examines the interaction between ti@g rapidly @'), so itis valid to use the analytic description
velocities (37) closely, one sees that in fact a velocity can (39 for f(x,v"). The above expression for the acceleration
gain, as well as lose, due to a collision. However, in a syster§@n then be simplified by keeping only terms of order
where most of the particles are moving at approximately thé’s(dNr) or (qN;)?. Now we are in a position to calculate a
same speed, any given velocity is much more likely to col-differential equation for the slow velocitys:
lide with a velocity moving in the other direction. Such an dvoe dtdog 1
interaction pulls both velocities closer to zero. Note that this— = — —= U—a(x,vs)
S

description of the aging trajectory makes no assumptionsdx dx dt

about the boundary conditions =t 1; all that is needed is % qN;

that the velocity changes sign, which occurs no matter the “(qu)[ —4/3J v ¢(v')dv'+ U—>

size of the clump at that wall. From this description, we can 0 S

better understand the skewing we see in the distribution gN, e

whenq # 0. We now know that the leftward-moving par- X ﬁanf +2(1-x) fo v'S(v')dv’ } (39

ticles (v<<0) are going, on the whole, slightly slower than
their rightward-moving counterparts. This is consistent withwhere 8 is as defined in(36). This equation describes the
the fact that the velocity distribution calculated from evolution of a slow velocity through the system where the
f(x,v) has a peak for negative velocities that is slightly other velocities are assumed to be drawn from the distribu-
closer to zero than the peak for positive velocities. tion f(x,v).

Most velocities born at the wak=0 follow trajectories The key to clump formation is the critical velocity,
like that described above and hence produce the solution.;. Any velocity that is emitted from the wall which is
f(x,v). In fact, the Boltzmann treatment implicitly assumesgreater tharv;; will make it back to the heated wall, any
that all velocities do, within some finite time, come in con- lesser velocity will not, and hence will become part of the
tact with the heated wall and hence are replaced. Howeveglump. Specifically, given a2 atx=0, use(38) to calculate
this picture breaks down upon the emittance by the wall of a((x=1). Reflection through any pre-existing clump and off
very slow particle. The aging process described above is onidie elastic wall will make iv (x=1)=— kv4(x=1). Then
of a continual decrease in speed. Thus the velocity may go tose(38) again to integrate back to=0. If, upon returnp is
zero beforeit can return to the heated wall. Once this hap-exactly zero, thew? is v;;. Note that this value will be a
pens, the velocity is carried on a tide back to the elastic walfunction of the degree of inelasticity], the total number of
atx=1 where it remains—a newly recruited member of theparticles in the systemN), the strength of the forcinga(),
clump. This phenomenon explains the breakdown of the anaand the number of particles that remain frég)X. However,
lytic form of f(x,v) at small velocities that was described at only three parameters appear explicitly in the formulation:
the end of Section V A. Note that the argument given abover, qN;, andgN.=gN—qN;.
as to why the interactions between velocities slow everyone It was mentioned in the Introduction that the size of the
down is not valid for a particle that is moving much more clump and its average energy are proportional te-(].
slowly than the average speed. In this case, the number dfhis implies that for a completely elastic system, there
particles going each way that the slow velocity, calb i, should be a totally stationary, infinitely narrow bunch of par-
encounters is determined by the distributiiix,v). If both  ticles up against the elastic wall. However, for clump forma-
the velocity and number density distributions are symmetridion to occur, particles witly <v;; must be produced by the
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heated wall. Sincedvg/dx = gq=(1-r)/2, whenr=1,
dv/dx=0, andv . is zero. Therefore no clump can form in
the totally elastic case;—1 is a singular limit.

VIIl. TIME EVOLUTION

qNy

At intermediate times, the system is well described by
the distribution(35), where the exact form df(x,v) depends
on «,gNs, andgN.. However, whileq,«, andN=N;+ N,
are fixed parameters of the system, the clump di€t),
evolves in time. To truly describe the long term behavior of e e e o 300 3000 300 2000 300
the system, there must be a prediction for the variation of time
N¢(t), or equivalently ofN(t)=N—N,(t), as a function of
time.

At any given timey, there areN(1) free partces, and F12.T A conearen o asions e feomap st e

SO we can Calcu'?‘tecrit(aaq N¢,q Nc_: q N—qNy). Since th? different runs of fifteen million collisions each. As always, the initial distri-
distribution functionW(v) for emission from the wall is bution wasf(x,0)=N¢(v). Herea=6, N=50, andq=0.002.

known, the probability that a velocity less that; will be
produced can be written:

o tems with differentN andq will undergo the same evolution
p(v<vcm):f CmW(v’)du’. (39  due to the forcingW, as long as they have the sampl).
0 Note that vy must be determined numerically, so
In a small time intervalAt, the number of particles added to d(aNs)/dt is a complicated function offN; and the other
the clump(and hence removed froi;) is just the number variables. However, the initial conditions are such that the
of velocities withy <uv . produced imt, i.e., the number of ~SyStém starts clumpless, i.e,, &0, Ny=N, and we can
times the heated wall is hitQ@,) multiplied by p(v <v ). integrate numerically to findN¢(t). Figure 7 shows a typi-

Assuming thadC,, /dt is known, the change iN; is given cal result; the dots are points from six simulations, the solid
by line is the prediction of the above analytic formulation. Note

that the initial distribution is alway$(x,v)=N¢(v); the

variation in the runs is due to changes in the exact initial
configuration as well as in the random seed for generation of
W(v) at the heated wall. We chose these initial conditions
because they were likely to produce a slowly growing clump
deN dC, j Verit (40 in contrast to an initial state that already includes many

dc,,

ANf”‘( T )Atp(v<vcrit):
so that, in the limit aq\t—0,

at = dr ), Whdv,

0 slowly moving particles. We are confident that the algebra
developed here could be used to describe the time evolution

\évger/edtthe dependence ogN; is hidden invci and  giarting from a wide range of initial conditions.
W/ dt.

In fact,dC,,/dt is merely the rate at which particles hit

the left-hand wall: this is just thR that is used to define the X CONCLUSION

boundary conditions itt7b). Therefore This work has examined the density variations in a one-
dc,, 0 dimensional system dfl inelastic particles. These particles
e R= f [v’|f(0p")dv’ are constrained to move on the line between an elastic wall at

x=1 and an energy source &t=0. This system can be
=S(v") described by a Boltzmann equatié#). Analytic consider-
1+2q fo o dv'—ch) ations demonstrate that this equation has a true steady state
0 solution in only one case: whep=0 anda>0. This is a

% system of perfectly elastic particles with(0)=0, i.e., the
X fo v p(v)dv’, (4)  poundary forcing forbids the return of particles with no ki-
netic energy. In all other cases, there is no completely stable
where the time dependence is hidderNipand N, . steady state solution.

We now have all the ingredients necessary to calculate  In this paper we have also described a set of approximate
d(qNy)/dt, given a,qN¢, andgqN.=qN—qN;. The evolu-  solutions for theg # 0 case. These distributions aabmost

tion of the system is described by steady state, and are derived for more general boundary con-

d(aN ditions than are used in the basic Boltzmann treatment. This
(aNy) . .

ErTE Fiana(ON5), (42)  new approach allows us to match the analytics to numerical

simulations that show the system developing a clump of
whereF gy, is @ function depending only on the forcing Nc(t) nearly stationary particles against the elastic wall. The
W, andgN. Thus those two parameters, plus the initial con-remaining N¢(t)=N—N,(t) free particles are distributed
dition, determine the time evolution of the systéne., sys- uniformly through the system. There is a mechanism for

3226 Phys. Fluids, Vol. 8, No. 12, December 1996 E. L. Grossman and B. Roman

Downloaded-16-Nov-2000--t0-147.94.38.40.~-—Redistribution-subject-to-AlP-copyright,~see=http://ojps.aip.org/phf/phfcpyrts.html.



clump growth, but not one for clump shrinkage. Thus, everso Z(p)=1—1,(p,5) —I5(p,9).

for a system that begins witR;=N (no clump, we see that In the first integral, we use the fact that(v')~W(0).
N; approaches 0 at— and the particle density at all A change of variablesj=2p/v’ gives

points other tharx=1 goes to zero. In fact, there is no way

for the last rapidly moving particle to be absorbed into the %

clump. Therefore, the final state of the system has |1(P,5)*2PW(0)J’2 / u~? exp(—u)du

N.=N-1, and a lone free particle oscillating between the Pl

clump and the heat source. This is the state observed in Ref. 1 2p

5. This work develops an analytic description of the mecha- ”ZPW(O)[(ZF,—/(;)JF In(?”,
nism of clump formation that allows us to predict the shrink-
age ofNy over time. Thus we claim to understand the devel- o e the second approximation is from the power series for
opment of density and velocity variations in a one-

, , _ : _ the incomplete gamma functidf.
dimensional system of inelastic particles. To tackle the second integral, we expand the exponential
The analytic work in this paper has focused on a mode|n powers ofp/v sincep/v<p/d<1:
for the energy source at=0 in which a particle that collides
with this wall is returned to the system with a velocity from . 5
a fixed distribution. Thus the velocity of a particle ejected|2(p,5)~J W(v’)( 1— _F,’)dv,
from the wall is independent of the velocity with which it s v
approached the wall. This boundary condition is an idealized - s
cousin of the oscillating wall used in work done on similar =J W(v’)dv'—J W(v')dv’
one-dimensional systems. However, the sort of clumping be- 0 0
havior we observe has also been seen for particles interacting “W(p")
with a shaking walP. In works where a gravitational field is - 2pf —dv’
included®° gravity serves to drive the particles back toward o v
the energy source, as the elastic wallxat1 does in our @
system, and again clumping is observed. Therefore, the be- ~1-W(0)s— DW(O)J , U T exp(—u)du
havior studied in this paper and the description of the mecha- o

52
In( 2) ,

nisms at work seem to be general characteristics of driven

inelastic granular systems. ~1-W(0)é—pW(0)
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This matching technique is documented in Ref. 18.

APPENDIX A: APPROXIMATION OF Z(P) FOR
SMALL p AND a=0

. . . . APPENDIX B: ESTIMATE OF S(v) FOR SMALL
In this appendix we calculate an approximation for

VALUES OF v
© -2
Ap)=1- j W(v ’)exp( U—,p) dv’, (A1) In this appendix we calculate the behavior for snpadif
0
for p<1 whena=0. Note thatZ(0)=0 and the derivative d
. —2p S(v) =g, (ad), (B1)
@’(p)=2J v"1W(v’)ex;{—v, )dv’
° where

is not defined ap=0 asW(0) # 0. ThusZ(p) does not
have a Taylor expansion abopt=0. Now choose & such w
that p< §<1 and split the integral into two parts: a(v):f v —v|(v' —v)p(v)dv’. (B2)

S — 2p
[ =| W' —|dv’
1(p,9) fo (v )exp( v’ dv, Rewrite this expression by splitting the integral to get rid of
(A2)  the absolute value sign. Then take advantage of the evenness
Iz(p,ﬁ)Ewa(v’)exp< _2,p)dv’, of ¢(v) to group the integration into large’ and smallv’
B v ranges:
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a(v)=Jm(v’—v)zcﬁ(v’)dv’—ﬁ (v —v)?p(v)dv’
- [T

—4vjwv'¢(v')dv’—fj (v'—v)%¢p(v")dv’.

Therefore, when —0, a(v)~—4v v’ ¢(v')dv’. Since
_ W(|vl)

2lv|fov’ " W(v)dv"’
andW(|v|)~Av® for v<1, we have

a(v)e(v)

b(v)

JoW(v'")dv’ Av®
Y2050 W Ydv' 2o]fev’ W(v')do'
oo _2
—Av“(f v’1W(v’)dv’> ,
0

which implies thatS(v)~Bv* ! for v<1, whereB is de-
fined by
-2
dv') ,

o

where A is the normalization constant fow(v), i.e.,
W(v)=~Av* asv—0.

~—4

(B3)

B=

(B4)
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